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Hypothesis
Stochastic machines as a colocalization mechanism for scaffold protein
function
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a b s t r a c t

The axis inhibition (Axin) scaffold protein colocalizes b-catenin, casein kinase Ia, and glycogen syn-
thetase kinase 3b by their binding to Axin’s long intrinsically disordered region, thereby yielding
structured domains with flexible linkers. This complex leads to the phosphorylation of b-catenin,
marking it for destruction. Fusing proteins with flexible linkers vastly accelerates chemical interac-
tions between them by their colocalization. Here we propose that the complex works by random
movements of a ‘‘stochastic machine,’’ not by coordinated conformational changes. This non-cova-
lent, modular assembly process allows the various molecular machine components to be used in
multiple processes.

� 2013 Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies.
1. Introduction enable productive kinase-substrate collisions leading to phosphor-
The Axin [1] scaffold protein [2] colocalizes adenomatous pol-
yposis coli protein (APC), b-catenin, casein kinase Ia (CKI-a), and
glycogen synthetase kinase 3b (GSK3b) [3]. The kinases phosphor-
ylate b-catenin, thus signaling b-catenin’s ubiquitination and pro-
teasomal destruction [4,5], important steps in the Wnt signaling
pathway [2]. The two kinases and the b-catenin bind to Axin’s long
intrinsically disordered region [4–6], yielding structured domains
connected by flexible linkers. Stochastic, uncoordinated move-
ments of the linkers and their bound proteins are proposed to
ylation. Thus, the complex works by random movements of a
‘‘stochastic machine,’’ not by cooperative conformational changes.
Unlike typical machines, the different parts of the device are
loosely connected, with random movements bringing components
together.

Proteins with flexible linkers accelerate their chemical interac-
tions by colocalization [7]. Here such colocalization is proposed to
result from proteins binding onto a single intrinsically disordered
scaffold protein, with this modular assembly allowing the compo-
nents to be used in multiple processes. Colocalization with flexibil-
ity and modular assembly are proposed to underlie the common
occurrence of intrinsic disorder in scaffold proteins [8,9].

To give more detail regarding the Wnt pathway [2], CKI-a car-
ries out the initial phosphorylation of b-catenin [3], followed by
GSK-3b phosphorylation of three other sites on b-catenin [10].
The tetra-phosphorylation of b-catenin then signals its destruction.
By binding to its cell surface receptor, the Wnt protein induces the
inactivation of the complex, b-catenin levels then elevate and acti-
vate a number of genes when it migrates into the nucleus.
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The conformational changes underlying the phosphorylation of
b-catenin by the complex remain unclear mainly due to the ab-
sence of a structural model. Below we present the evidence for
intrinsic disorder and binding site locations in the various proteins
in the complex, then we put this information together to develop a
model for the complex. This model leads to the mechanism pro-
posed herein.
2. Materials and methods

The sequential, structural, and functional information of the
Wnt pathway proteins were extracted from Swissprot, and PDB.
Intrinsically disordered residues and regions are assigned from
experiments through missing electron density in X-ray crystallog-
raphy, regions sensitive to proteolysis, or to regions indicated to
lack stable structure by NMR. Disorder predictions were made
using PONDR�VSL2 [11]. Binding regions within disordered seg-
ments were predicted using the MoRFpred predictor [12].
3. Results and discussion

3.1. Intrinsic disorder in the b-catenin destruction complex

The first step is to identify the regions of order and disorder in
the Axin-scaffolded complex. An ordered (or structured) protein
exhibits a stable conformation, whereas an intrinsically disordered
protein or region does not [13]. Ordered proteins yield 3D struc-
tures by X-ray crystallography or NMR spectroscopy while disor-
dered proteins do not. Instead disorder is identified by the
absence of electron density in X-ray structures, by collapsed
NMR spectra, or by various other biophysical methods [13]. Also,
disorder predictors, currently above 75% accuracy, can also be used
to indicate which proteins and protein regions lack stable structure
[14]. Concurrent use of prediction and experiment provides a use-
ful overview.

With regard to the locations of ordered and disordered regions
for 4 of the 5 proteins in the Axin-scaffolded complex (APC is omit-
ted because its length of >2700 residues complicates the figure,
and because the complex functions in APC’s absence [15]), the
experimental data and the predictions [16] show reasonable agree-
ment (Fig. 1). Axin and the omitted APC are both predominantly
disordered by prediction, with <21% of the amino acids being struc-
tured [16]. The b-catenin protein is mostly structured but with dis-
ordered termini. GSK3b and CK1a have less than 16% disorder as is
often observed for enzymes.

CKIa, b-catenin, and GSK3b all bind to single stretch of disor-
der in Axin (Fig. 1), located between the regulator of G-protein
signalling (RGS) domain and the dishevelled and axin (DIX)
domain. Both b-catenin and GSK3b dock onto short segments
of Axin. Crystal structures show that the Axin segments both
become helices [5,6]. Similar conversion from disorder into helix
upon binding has been inferred for many other protein
complexes [17].

Among all the proteins involved in the Wnt-pathway, Axin
plays the central role in increasing the local concentrations of the
various players. In various other pathways, Axin binds �30 other
proteins through its �500 residue-long flexible region [8]. The
Stokes radius of a polypeptide chain with such a length in a glob-
ular compact conformation is �30 Å. However, for a flexible pre-
molten globule-like chain (which is the most likely conformation
of this fragment in solution) the Stokes radius can be close to
�50 Å (see Supplementary material). The increased hydrodynamic
dimensions augment the prospects of binding to other molecules
through the increase in the protein capture radius, which is com-
monly suggested to increase the binding rates for disordered
regions. Simulations suggest that the increased capture radius of
IDPs is counter balanced by their slower diffusion [18] with a typo
correction in [19]. On the other hand, the reduced structural
constraints of IDPs has been suggested to lead to a higher rate of
productive collisions, thus increasing IDP binding rates by this
alternative mechanism [18,19]. Note however, that the key events
proposed herein occur after binding via a colocalization mecha-
nism, so whether the high binding rates for IDPs result from an in-
creased capture radius or from a higher fraction of productive
collisions is not crucial to the hypothesis being developed here.

The structure of CKIa bound to Axin has not yet been deter-
mined. Pull-down experiments indicate that the binding between
Axin and CKIa involves two well separated Axin regions [4]. Many
complexes with more than one binding site separated by regions of
disorder have been resolved by crystallography with the disor-
dered connecting loops remaining intact. Further study on one of
these, phosphatase 1 complexed with inhibitor 2, shows that the
protein crystal contains large holes to accommodate the unstruc-
tured loops [20]. The requirement for large holes to accommodate
the regions disorder is likely a barrier to crystallization and might
help explain why the CKIa–Axin complex has resisted structure-
determination efforts, especially given the long distance between
the two biding sites (Fig. 1).

A possible loop in the Axin–CKIa complex is interesting for
several reasons. First, several docking proteins (similar to scaffold
proteins in many respects [9]) were shown to contain structured
domains at their amino termini followed by long disordered tails
at their amino termini, with the disordered regions binding to
the structured domains multiple times. The end result is likely a
structured core surrounded by multiple loops [16]. Such loops
were suggested to be protective by leading to structural condensa-
tion, and different partners binding to different loops were
suggested to functionally partition collections of partner proteins
[21,22]. In addition, loop formation would lead to a further de-
crease the volume of the complex as compared to binding to a
non-looped disordered region, thus increasing the local concentra-
tions. For these reasons, it would be interesting to determine
whether indeed the Axin–CKIa interaction involves loop
formation.

3.2. The stochastic machine mechanism

Using the intrinsic disorder and binding sites information
described in Fig. 1, a plausible model for the b-catenin destruction
complex was constructed (Fig. 2). As for Fig. 1, APC was omitted for
simplification, and as also for Fig. 1, the G295-A500 fragment is
indicated by a dashed line. This figure is drawn to scale using the
structures from the PDB and a value of 3.8 Å/residue to estimate
the lengths of the intrinsically disordered regions. The estimated
distance of 3.8 Å/residue corresponds to the peak value of a histo-
gram of distance/residue for several hundred long irregular regions
in protein crystal structures.

How do we know for sure that attachment of kinases and b-cate-
nin to a region of disorder would increase the rate of phosphoryla-
tion? To test this possibility, in a previously published experiment
[23], we isolated an Axin fragment containing the binding sites for
b-catenin and GSK3b, namely the fragment from G295-A500 shown
in both Figs. 1 and 2, and we demonstrated that this segment lacks
structure by four separate biophysical methods, namely: (1) Its lack
of unfolding during heating as monitored by fluorescence; (2) Its ex-
tended structure as shown by size exclusion chromatography; (3) Its
random coil conformation as shown by circular dichroism; (4) Its
high internal mobility as shown by the 1H–15N HSQC NMR spectrum
[23]. When mixed with b-catenin and GSK3b, this disordered frag-
ment greatly accelerates the phosphorylation rate of b-catenin as
estimated by 32P incorporation as reported previously [23].



Fig. 1. Structural/sequence information for Axin, CKI-a, GSK-3b, and b-catenin. The bars represent the proteins’ full sequences, with blue corresponding to structure and red
to disordered regions. The top bar for each protein shows the experimentally identified order/disorder distribution (see Supplementary Table S1 [17]), whereas the bottom
bar depicts the predicted order/disorder. The green lines above Axin’s bar depict the partner proteins’ binding sites [8]: (a) GSK-3b, (b) b-catenin, and (c) CKI-a’s (two
segments). The CKI-a binding regions were estimated using rather long fragments [8]. Possible binding site locations within these fragments were estimated by the MoRFpred
algorithm [12] shown in yellow. The dashed line above Axin’s diagram corresponds marks the G295-A500 disordered segment [24].

Fig. 2. The stochastic machine mechanism. This figure shows a possible configu-
ration for the complex involving Axin, b-catenin, GSC-3b, and CKI-a. Axin is shown
with colour variation to make its pathway easier to follow. The dashed line
corresponds approximately to the location of the G295-A500 disordered segment
[24]. Axin binds to CKI-a (at two separate sites), to GSK-3b, and also to b-catenin.
Since the b-catenin binding site of Axin is located between the GSK-3b and CKI-a
interaction sites, and since the two binding sites with CKI-a may lead to the
formation of a loop, b-catenin becomes close to both kinases. Hence, the formation
of this b-catenin destruction complex pulls all the proteins together, and substan-
tially raises their local concentrations. Because the phosphorylation sites are in a
disordered region of b-catenin and because the various binding sites are all in a long
disordered region in Axin, random motions of these flexible regions can readily
bring about the substrate–enzyme collisions needed for function.
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To test for possible allosteric activation of the substrate or
kinase by Axin binding with the b-catenin but not with the GSK3b
and vice versa, fragments with one binding site but not the other
were added to mixtures of b-catenin and GSK3b. Very little phos-
phorylation was observed if the fragment contained just one bind-
ing site [23], with the rates essentially the same as observed for
comparable mixtures of b-catenin and GSK3b without fragment
addition [23]. This experiment rules out the possibility of allosteric
activation of the phosphorylation by Axin binding to either the
kinase or to its substrate.
The previously published experiments just described in [23]
show that joint attachment of both b-catenin and the GSK3b ki-
nase to a disordered segment increases the phosphorylation rate,
but what is the mechanism by which this rate increase occurs?
Given the flexibility described above for the G295-A500 segment
and likely for the entire disordered region shown in Fig. 2, the
mechanism very likely involves random motions that lead to
collisions between the kinases and their phosphorylation sites
at b-catenin’s Ser45, Thr41, Ser37, and Ser33. By attaching the
two proteins to a common region of disorder, their time-aver-
aged concentrations relative to each other would become greatly
raised, thus increasing the reaction rates. Basically, the region of
disorder functions by colocalizing the substrate and the kinase
into a small volume, while the flexibility of the disorder allows
movements to bring about the same collisions that would occur
in the unbound state but at a much greater rate due to their
higher local concentrations. Also complex formation creates an
entropically favourable situation, whereby an inefficient inter-
molecular interaction is transformed into a more efficient intra-
molecular interaction. This effect is further augmented via Axin
oligomerization through the DIX domain [24], thus increasing
the phosphorylation of b-catenin bound to one Axin molecule
by a kinase bound to another by the colocalization of the
complexes.

Colocalization is a fundamentally important, general biological
principle [7]. Several mechanisms for colocalization have been sug-
gested, including the connection of two proteins via a flexible lin-
ker, thus accounting for the observed acceleration of
phosphorylation when the G250-A500 fragment of Axin is added
to mixtures of b-catenin and GSK3b [23].

Flexible-linker-based colocalization was suggested previously
to arise from gene fusion [7]. Indeed, connecting structured protein
domains by flexible linkers via gene fusion has been long recog-
nized [25]. Assembling domains by binding onto regions of disor-
der provides an alternative to gene fusion, but with the added
benefit that the same components could be reused in different
assemblies. Indeed, Axin acts as the scaffold protein for at least
three other pathways: the transforming growth factor b (TGF-b)
pathway [26], the c-Jun NH2-terminal/stress activated protein
kinase (JNK) pathway [27], and the p53 signaling pathway [28].
Likewise, b-catenin and the two kinases discussed here are also
used for several other biochemical processes [29].
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Note also that phosphorylation of serine or threonine [30,31]
and ubiquitination of lysine [32] both show strong preferences
for regions of intrinsic disorder. In addition poly-ubiquitin-trig-
gered proteasomal digestion is accelerated by an appropriately
located region of disorder [33]. Thus, the disordered amino termi-
nus of b-catenin is important for the degradation process [13].

Rather than forming a compact machine, which would require
shape complementarity over large regions of sequence, the interac-
tions between the disordered scaffold and each of its partners
depends on only a few residues for each partner of each interac-
tion. The small number of residues needed to form each complex
facilitates their evolvability [34]. Finally the conformational
changes underlying the phosphorylations are suggested to be sto-
chastic movements of disordered regions, not the coordinated
movements of a structured machine.

3.3. Possible alternative mechanism and experimental test

The formation of the various binary interactions, including the
interactions with ATP, could lead to new surface features that
result in additional protein–protein interactions as has been
reported previously [35], thereby leading to higher-order struc-
tures that accelerate the phosphorylation steps via directed rather
than random conformational changes. A second relevant example
was observed when the binding of calmodulin to its site in a long
disordered region in calcineurin was found to lead to an additional,
unexpected interaction between calcineurin’s long disordered
region and the exterior of the calmodulin complex [36]. To distin-
guish our model from such alternative models involving higher or-
der structures, one could test for additional sites of protein–protein
interactions using protection against amide hydrogen exchange
and/or by atomic force microscopy as has been done previously
[35–37].

4. Summary

Here we have suggested that intrinsically disordered protein
can provide flexible linkers between structured domains, and by
concentrating them, accelerate their interactions, not through
specific conformational changes, but through random collisions
via stochastic movements. The stochastic machine mechanism
could also apply to structured domains connected by flexible link-
ers has have been described previously, and the disordered regions
need not be particularly long as in the case of Axin. Thus, it is likely
that stochastic machines are very common, especially within the
disorder-rich eukaryotic cell [38]. Thus, stochastic machines based
on random movements within intrinsically disordered proteins are
likely to be exceedingly common, thus providing support for view-
ing cells as being composed of collections of molecular machines
[39].

Acknowledgements

This work was supported in part by the Grants R01 LM007688-
01A1 (to A.K.D. and V.N.U.) and GM071714-01A2 (to A.K.D. and
V.N.U.) from the National Institute of Health, and the Programs of
the Russian Academy of Sciences for the ‘‘Molecular and Cellular
Biology’’ (to V.N.U). We also gratefully acknowledge the support
of the IUPUI Signature Centers Initiative.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/
j.febslet.2013.04.006.
References

[1] Zeng, L. et al. (1997) The mouse fused locus encodes Axin, an inhibitor of the
Wnt signaling pathway that regulates embryonic axis formation. Cell 90, 181–
192.

[2] Hart, M.J., de los Santos, R., Albert, I.N., Rubinfeld, B. and Polakis, P. (1998)
Downregulation of beta-catenin by human Axin and its association with the
APC tumor suppressor, beta-catenin and GSK3 beta. Curr. Biol. 8, 573–581.

[3] Liu, C. et al. (2002) Control of beta-catenin phosphorylation/degradation by a
dual-kinase mechanism. Cell 108, 837–847.

[4] Zhang, Y., Qiu, W.J., Chan, S.C., Han, J., He, X. and Lin, S.C. (2002) Casein kinase I
and casein kinase II differentially regulate Axin function in Wnt and JNK
pathways. J. Biol. Chem. 277, 17706–17712.

[5] Xing, Y., Takemaru, K., Liu, J., Berndt, J.D., Zheng, J.J., Moon, R.T. and Xu, W.
(2008) Crystal structure of a full-length beta-catenin. Structure 16, 478–
487.

[6] Dajani, R., Fraser, E., Roe, S.M., Yeo, M., Good, V.M., Thompson, V., Dale, T.C. and
Pearl, L.H. (2003) Structural basis for recruitment of glycogen synthase kinase
3beta to the Axin–APC scaffold complex. EMBO J. 22, 494–501.

[7] Kuriyan, J. and Eisenberg, D. (2007) The origin of protein interactions and
allostery in colocalization. Nature 450, 983–990.

[8] Cortese, M.S., Uversky, V.N. and Dunker, A.K. (2008) Intrinsic disorder in
scaffold proteins: getting more from less. Prog. Biophys. Mol. Biol. 98, 85–106.

[9] Buday, L. and Tompa, P. (2010) Functional classification of scaffold proteins
and related molecules. FEBS J. 277, 4348–4355.

[10] Polakis, P. (1999) The oncogenic activation of beta-catenin. Curr. Opin. Genet.
Dev. 9, 15–21.

[11] Peng, K., Radivojac, P., Vucetic, S., Dunker, A.K. and Obradovic, Z. (2006)
Length-dependent prediction of protein intrinsic disorder. BMC Bioinform. 7,
208.

[12] Disfani, F.M., Hsu, W.L., Mizianty, M.J., Oldfield, C.J., Xue, B., Dunker, A.K.,
Uversky, V.N. and Kurgan, L. (2012) MoRFpred, a computational tool for
sequence-based prediction and characterization of short disorder-to-order
transitioning binding regions in proteins. Bioinformatics 28, i75–i83.

[13] Radivojac, P., Iakoucheva, L.M., Oldfield, C.J., Obradovic, Z., Uversky, V.N. and
Dunker, A.K. (2007) Intrinsic disorder and functional proteomics. Biophys. J.
92, 1439–1456.

[14] He, B., Wang, K., Liu, Y., Xue, B., Uversky, V.N. and Dunker, A.K. (2009)
Predicting intrinsic disorder in proteins: an overview. Cell Res. 19, 929–
949.

[15] Kawahara, K., Morishita, T., Nakamura, T., Hamada, F., Toyoshima, K. and
Akiyama, T. (2000) Down-regulation of beta-catenin by the colorectal tumor
suppressor APC requires association with Axin and beta-catenin. J. Biol. Chem.
275, 8369–8374.

[16] Xue, B., Dunker, A.K. and Uversky, V.N. (2012) The roles of intrinsic disorder in
orchestrating the Wnt-pathway. J. Biomol. Struct. Dyn. 29, 843–861.

[17] Mohan, A., Oldfield, C.J., Radivojac, P., Vacic, V., Cortese, M.S., Dunker, A.K. and
Uversky, V.N. (2006) Analysis of molecular recognition features (MoRFs). J.
Mol. Biol. 362, 1043–1059.

[18] Huang, Y. and Liu, Z. (2009) Kinetic advantage of intrinsically disordered
proteins in coupled folding-binding process: a critical assessment of the ‘‘fly-
casting’’ mechanism. J. Mol. Biol. 393, 1143–1159.

[19] Huang, Y. and Liu, Z. (2012) Corrigendum to ‘‘Kinetic advantage of intrinsically
disordered proteins in coupled folding-bindign process: a critical assessment
of the ‘‘fly-casting’’ mechanism.’’ [J. Mol. Biol. 393 (2009) 1143–1159]. J. Mol.
Biol. 422, 156.

[20] Marsh, J.A., Dancheck, B., Ragusa, M.J., Allaire, M., Forman-Kay, J.D. and Peti, W.
(2010) Structural diversity in free and bound states of intrinsically disordered
protein phosphatase 1 regulators. Structure 18, 1094–1103.

[21] Simister, P.C. and Feller, S.M. (2012) Order and disorder in large multi-site
docking proteins of the Gab family – implications for signalling complex
formation and inhibitor design strategies. Mol. BioSyst. 8, 33–46.

[22] Simister, P.C., Schaper, F., O’Reilly, N., McGowan, S. and Feller, S.M. (2011) Self-
organization and regulation of intrinsically disordered proteins with folded N-
termini. PLoS Biol. 9, e1000591.

[23] Noutsou, M. et al. (2011) Critical scaffolding regions of the tumor suppressor
Axin1 are natively unfolded. J. Mol. Biol. 405, 773–786.

[24] Shibata, N. et al. (2007) Crystallization and preliminary X-ray crystallographic
studies of the axin DIX domain. Acta Crystallogr., Sect. F: Struct. Biol. Cryst.
Commun. 63, 529–531.

[25] Sonnhammer, E.L. and Kahn, D. (1994) Modular arrangement of proteins as
inferred from analysis of homology. Protein Sci. 3, 482–492.

[26] Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D. and Nusse, R.
(1987) The Drosophila homolog of the mouse mammary oncogene int-1 is
identical to the segment polarity gene wingless. Cell 50, 649–657.

[27] Sharma, R.P. and Chopra, V.L. (1976) Effect of the Wingless (wg1) mutation on
wing and haltere development in Drosophila melanogaster. Dev. Biol. 48, 461–
465.

[28] Nusslein-Volhard, C. and Wieschaus, E. (1980) Mutations affecting segment
number and polarity in Drosophila. Nature 287, 795–801.

[29] MacDonald, B.T., Tamai, K. and He, X. (2009) Wnt/beta-catenin signaling:
components, mechanisms, and diseases. Dev. Cell 17, 9–26.

[30] Gao, J., Thelen, J.J., Dunker, A.K. and Xu, D. (2010) Musite, a tool for global
prediction of general and kinase-specific phosphorylation sites. Mol. Cell.
Proteomics 9, 2586–2600.

http://dx.doi.org/10.1016/j.febslet.2013.04.006
http://dx.doi.org/10.1016/j.febslet.2013.04.006
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0005
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0005
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0005
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0010
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0010
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0010
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0015
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0015
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0020
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0020
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0020
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0025
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0025
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0025
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0030
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0030
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0030
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0035
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0035
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0040
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0040
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0045
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0045
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0050
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0050
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0055
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0055
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0055
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0060
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0060
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0060
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0060
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0065
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0065
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0065
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0070
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0070
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0070
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0075
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0075
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0075
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0075
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0080
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0080
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0085
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0085
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0085
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0090
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0090
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0090
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0095
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0095
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0095
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0095
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0100
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0100
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0100
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0105
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0105
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0105
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0110
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0110
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0110
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0115
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0115
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0120
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0120
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0120
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0125
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0125
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0130
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0130
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0130
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0135
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0135
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0135
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0140
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0140
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0145
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0145
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0150
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0150
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0150


B. Xue et al. / FEBS Letters 587 (2013) 1587–1591 1591
[31] Iakoucheva, L.M., Radivojac, P., Brown, C.J., O’Connor, T.R., Sikes, J.G.,
Obradovic, Z. and Dunker, A.K. (2004) The importance of intrinsic disorder
for protein phosphorylation. Nucleic Acids Res. 32, 1037–1049.

[32] Radivojac, P., Vacic, V., Haynes, C., Cocklin, R.R., Mohan, A., Heyen, J.W., Goebl,
M.G. and Iakoucheva, L.M. (2010) Identification, analysis, and prediction of
protein ubiquitination sites. Proteins 78, 365–380.

[33] Inobe, T., Fishbain, S., Prakash, S. and Matouschek, A. (2011) Defining the geometry
of the two-component proteasome degron. Nat. Chem. Biol. 7, 161–167.

[34] Davey, N.E., Trave, G. and Gibson, T.J. (2011) How viruses hijack cell
regulation. Trends Biochem. Sci. 36, 159–169.

[35] Sacho, E.J., Kadyrov, F.A., Modrich, P., Kunkel, T.A. and Erie, D.A. (2008) Direct
visualization of asymmetric adenine-nucleotide-induced conformational
changes in MutL alpha. Mol. Cell 29, 112–121.
[36] Rumi-Masante, J., Rusinga, F.I., Lester, T.E., Dunlap, T.B., Williams, T.D., Dunker,
A.K., Weis, D.D. and Creamer, T.P. (2012) Structural basis for activation of
calcineurin by calmodulin. J. Mol. Biol. 415, 307–317.

[37] Rosa, J.H. and Richards, F.M. (1981) Hydrogen exchange from identified
regions of the S-protein component of ribonuclease as a function of
temperature, pH, and the binding of S-peptide. J. Mol. Biol. 145, 835–
851.

[38] Xue, B., Dunker, A.K. and Uversky, V.N. (2012) Orderly order in protein
intrinsic disorder distribution: disorder in 3500 proteomes from viruses and
the three domains of life. J. Biomol. Struct. Dyn. 30, 137–149.

[39] Alberts, B. (1998) The cell as a collection of protein machines: preparing the
next generation of molecular biologists. Cell 92, 291–294.

http://refhub.elsevier.com/S0014-5793(13)00291-3/h0155
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0155
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0155
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0160
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0160
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0160
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0165
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0165
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0170
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0170
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0175
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0175
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0175
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0180
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0180
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0180
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0185
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0185
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0185
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0185
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0190
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0190
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0190
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0195
http://refhub.elsevier.com/S0014-5793(13)00291-3/h0195

	Stochastic machines as a colocalization mechanism for scaffold protein function
	1 Introduction
	2 Materials and methods
	3 Results and discussion
	3.1 Intrinsic disorder in the β-catenin destruct
	3.2 The stochastic machine mechanism
	3.3 Possible alternative mechanism and experimental test

	4 Summary
	Acknowledgements
	Appendix A Supplementary data
	References


