
Evolutionary Development of Fuzzy Cognitive Maps 

Wojciech Stach, Lukasz Kurgan, Witold Pedrycz, and Marek Reformat 
Department of Electrical and Computer Engineering 

University of Alberta 
Edmonton, Alberta T6G 2V4, Canada

{wstach, lkurgan, pedrycz, reform}@ece.ualberta.ca 

Abstract—Fuzzy cognitive maps (FCMs) form a convenient, 
simple, and powerful tool for simulation and analysis of 
dynamic systems. The popularity of FCMs stems from their 
simplicity and transparency. While being successful in a variety 
of application domains, FCMs are hindered by necessity of 
involving domain experts to develop the model. Since human 
experts are subjective and can handle only relatively simple 
networks (maps), there is an urgent need to develop methods for 
automated generation of FCM models. This study proposes a 
novel evolutionary learning that is able to generate FCM models 
from input historical data, and without any human intervention. 
The proposed method is based on genetic algorithms, and is 
carried out through supervised learning. The paper tests the 
method through a series of carefully selected experimental 
studies.  

Index Terms—decision analysis, dynamic systems modelling, 
fuzzy cognitive maps, genetic algorithms 

I. INTRODUCTION

Fuzzy cognitive maps (FCMs) are constructs of Soft 
Computing introduced by Kosko in 1986 [9] as an extension 
of cognitive maps. They have been used for modeling and 
simulation of dynamic systems. FCMs represent a given 
system as a collection of concepts and mutual relations 
(dependencies), which are capable to incorporate and adapt 
human knowledge [17]. Modelling dynamic systems using 
FCMs exhibits several advantages. Most importantly FCMs 
are very simple and intuitive to understand, both in terms of 
the underlying formal model and its execution. They are also 
characterized by flexibility of system design and control, 
comprehensible structure and operation, adaptability to a 
given domain, and capability of abstract representation and 
fuzzy reasoning [11].  

The FCMs were developed and used in numerous research 
and industrial areas, such as electrical engineering, medicine, 
political science, international relations, military science, 
history, supervisory systems, etc. Examples of specific 
applications include: diagnosis of diseases [23], analysis of 
electrical circuits [22], analysis of failure modes effects [18], 
fault management in distributed network environment [14], 
modeling of software development project [19] [20], and 
many others. However, development methods for FCM are 
far from being complete and well-defined, mainly because of 
the deficiencies that are present within the underlying design 
framework [12]. According to the literature, the development 
of FCM models almost always relies on human knowledge 

[1]. As a consequence, the developed models strongly depend 
on subjective beliefs of expert(s) from a given domain. A few 
algorithms for automated or semi-automated learning of 
FCMs have been proposed, but none of them provides a 
formalized approach assuring convergence [15]. Some of the 
proposed learning methods are quite limited as being 
applicable only to FCMs with binary states, other require 
multiple input datasets, which might be difficult to acquire. 
Most of them rely on human supervision during the learning 
process. Given these shortcomings, the objectives of this 
study are twofold: 

We introduce a new learning method, which allows for 
the development of FCM model with continuous states
based on experimental data, and without human 
intervention; and 
We carry out well-organized and thorough suite of 
experiments and come up with firm design guidelines 

The remainder of this paper is organized as follows. 
Section II presents theoretical background concerning the 
model and learning methods, which includes relevant work. 
Section III introduces and provides background of the 
proposed learning approach, while Section IV presents 
comprehensive experimental evaluation and discussion of the 
achieved results. Finally, Section V offers conclusions and 
highlights future research directions. 

II. FUZZY COGNITIVE MAPS (FCMS)
Following the generic concept introduced by Axelrod [2], 

their significant augmentation coming under the name of 
fuzzy cognitive maps (FCMs) was proposed by Kosko. The 
most significant enhancement lies in the way of reflecting 
causal relationships. Instead of using only the sign (+ or -), 
each edge is associated with a number (weight) that 
determines the degree of considered causal relation between 
the two concepts. This, in turn, allows implementing 
knowledge concerning the strength of such relationship, 
which now can be described by fuzzy terms, such as weak, 
medium, strong, or very strong. In other words, a weight of 
the directed edge from the node A to B quantifies how much 
concept A causes B [10]. The strength of relationship between 
two nodes (i.e., weight) is usually normalized to the [–1, 1] 
interval. The value of –1 represents full negative (inhibitory), 
+1 full positive, and 0 denotes no causal effect. As a result, a 
FCM model is fully described by set of nodes (concepts) and 
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edges (cause-effect relationships), represented by weights, 
between them. Apart from the graph representation, for 
computational purposes, the dependencies captured by this 
model can be equivalently expressed by a square matrix, 
called connection matrix, which stores all weight values for 
edges between corresponding concepts represented by 
corresponding rows and columns. An example of the FCM 
along with its connection matrix is shown in Fig. 1. 
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 N1 N2 N3 N4 N5 N6 N7
N1 0 0 0.6 0.9 0 0 0 
N2 0.5 0 0 0 0 0 0 
N3 0 0.6 0 0 0.8 0 0 
N4 0 0 0 0 0 0 0.9
N5 0 0 0 0 0 -0.8 -0.9
N6 -0.3 0 0 0 0 0 0 
N7 0 0 0 0 0 0.8 0 

Fig. 1. FCM model describing public city health issues and its corresponding 
connection matrix [13] 

It is instructive to recall a formal definition of a FCM and 
show all necessary notation. Let R be the set of real numbers, 
N denote the set of natural numbers, 1,1][K  and L = 
[0,1] .

A fuzzy cognitive map F is a 4-tuple (N, E, C, f) where 
1) }N,...,N,{NN n21 is the set of n concepts forming 

the nodes of a graph 
2) ijji eN,N:E  is a function of NN  to K

associating eij to a pair of concepts ji N,N , with eij denoting 

a weight of directed edge from Ni to Nj if ji  and eij equals

zero if ji . Thus nn
ij KeNN:E  is a connection 

matrix.
3) ii CN:C  is a function that at each concept Ni

associates the sequence of its activation degrees such as for 
L(t)C,t iN  given its activation degree at the moment 

t. nL(0)C  indicates the initial vector and specifies initial 

values of all concept nodes and nL(t)C  is a state vector at 
certain iteration t. 

4) L:f R  is a transformation function, which 
includes recurring relationship on 0t  between 1)(tC  and 

(t)C

n

ij
j

jjii tCeftCni
1

)()1(},,...,1{  (1) 

 (1) describes a functional model of FCM, which is used to 
perform simulations of the system dynamics. Simulation 
consists of computing state of the system, which is described 

by a state vector, over a number of successive iterations. The 
state vector specifies current values of all concepts (nodes) in 
a particular iteration. Value of a given node is calculated 
from the preceding iteration values of nodes, which exert 
influence on the given node through cause-effect relationship 
(nodes that are connected to the given node).  

The transformation function is used to reduce unbounded 
weighted sum to a certain range, which is usually set to [0, 1]. 
The normalization hinders quantitative analysis, but allows 
for comparisons between nodes, which can be defined as 
active (value of 1), inactive (value of 0), or active to a certain 
degree (value between 0 and 1). Three most commonly used 
transformation functions concern bivalent, trivalent, and 
logistic nonlinearities. 

Several types of simulation scenarios, which are dependent 
on transformation function, are possible [8]. Applying 
discrete-output transformation function (e.g. bivalent or 
trivalent function), the simulation heads to either a fixed state 
vector value, called hidden pattern or fixed-point attractor, or 
keeps cycling between a number of fixed state vector values, 
known as a limit cycle. Using a continuous-output
transformation function (e.g., logistic one), the fixed-point 
attractor and limit cycle, as well as so called chaotic attractor
can appear. The chaotic attractor appears when the FCM 
continues to produce different state vector values in 
successive cycles. In this study, we are concerned with the 
logistic transformation function: 

xe
xf 51

1)(  (2) 

Fig. 2 shows an example of this dynamic pattern. In a 
nutshell, simulation of a FCM results in a sequence of state 
vectors, which specify state of the modeled system in the 
successive iterations.  

This paper introduces a learning method, which avoids 
disadvantages of the existing approaches. It uses a real-coded 
genetic (RCGA) algorithm to develop FCM connection 
matrix based on historical data consisting of one sequence of 
state vectors. With this regard, it is advantageous to identify 
main differences between the approach taken here and those 
already reported in the literature. A concise comparative 
summary of the learning scenarios is included in Table I. This 
table includes the methods considering essential design 
factors such as the learning objective, involvement of a 
domain expert, input historical data, type of transformation 
function, and a type of the learning strategy. It also shows, in 
the “number of nodes” column, for how many and of what 
size FCM model a given method was tested. All learning 
methods, except the RCGA, were tested on a single map of 
the indicated size. Entries in boldface point at the main 
disadvantages of a given learning method. We note that the 
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proposed method draws conclusions from the methods 
proposed in the past, and provides substantial advancement. 

TABLE I 
OVERVIEW OF LEARNING APPROACHES APPLIED TO FCMS

FCM type 
Algor Ref Learning

goal

Human 
involve

d

Type of 
data used 

a)
Transform. 

function
#

nodes

Learning
type 

DHL [4] Con. 
matrix No Single N/A N/A Hebbian

BDA [25] Con. 
matrix No Single Binary 5, 7, 9 modified 

Hebbian

NHL [16] Con. 
matrix 

Yes&
No b) Single Continuous 5 modified 

Hebbian

GS [12] Con. 
matrix No Multiple Continuous 7 Genetic 

PSO [17] Con. 
matrix No Multiple Continuous 5 Swarm 

GA [7] Initial
vector N/A N/A Continuous 11 Genetic 

RCG
A

this
paper 

Con. 
matrix No Single Continuous 4, 6, 8, 

10 Genetic

a) Single – historical data consisting of one sequence of state vectors, 
Multiple – historical data consisting of several sequences of state 
vectors, for different initial conditions 

b) Initial human intervention is necessary but later when applying the 
algorithm there is no human intervention needed 

III. PROPOSED LEARNING METHOD

The essence of our learning is to optimize the connection 
matrix via genetic learning.  

A. Problem Statement 
Given set of concepts N, sequence of their activations 

degree, called input data, C(t) at certain iteration interval 

Kt {0,...,t } , and transformation function f 

Our objective is to establish the connection matrix Ê , such 
that FCM model expressed by the 4-tuple (N, Ê , Ĉ , f) 
minimizes the error between given sequence C(t) and 
sequence ˆ (t)C  obtained from simulation model performed 
according to the formula (1) subject to initial 
condition ˆ (0) (0)C C . The error is measured using criterion 
described in Section III.B 

The aim of the proposed learning method is to eliminate 
human intervention during development of a FCM model. 
This process is performed by exploiting information from 
historical data to compute FCM model connection matrix that 
is able to mimic the data. The input (historical) data comprise 
of one sequence of state vectors over time. The data length is 
defined as the number of successive iterations (time points) 
of the given historical data. The input data is used to compute 
a FCM model, called candidate FCM, by applying a learning 
procedure that uses RCGA algorithms.  

Assuming that concepts do not exhibit cause-effect 
relationships on themselves, the connection matrix of a FCM 
can be completely expressed by N(N-1) variables, where N 

denotes  the number of concepts. The proposed learning 
algorithm uses input data to find the parameters. Input data is 
a sequence of states described by state vectors at a particular 
time (iteration). They illustrate the system’s behavior over 
time, and are represented by a set of state vectors C(t) at time 
point t; see Fig. 2.

Fig. 2. Example input data 

The proposed learning method constructs a connection 
matrix based on input data. The learned model objective is to 
generate the same state vector sequence for the same initial 
state vector, as it is defined by the input data. At the same 
time, the learned model generalizes the inter-relationship 
between concept nodes, which are inferred from the input 
data. Therefore, the FCM model is suitable to perform 
simulation for different initial state vectors, and quantify the 
degree and type of the cause-effect relationships between the 
concepts.  

B. Proposed Genetic Algorithms Based Learning Method 
The proposed learning method uses an extended GA called 

real-coded genetic (RCGA) algorithm, where a chromosome 
consists of floating point numbers. A useful summary about 
relevant GAs can be found in [3] [5] [6]. A high-level 
overview of the learning process is shown in Fig. 3. 

Fig. 3. High-level diagram of the proposed learning method 

The RCGA algorithm uses the input data to develop and 
optimize, with respect to the input data, connection matrix of 
a candidate FCM model. RCGA defines each of its 
chromosomes as a floating-point vector. The length of the 
chromosome corresponds to the number of variables. Each 
element of the vector is called gene. In case of the learning 
FCMs, each chromosome consists of N(N-1) genes, which 
are floating point numbers from the range [-1,1]: 

T
NNNN eeeeeee 12232111312 ,...,,...,,,,...,,Ê

where eij specifies the value of a weight for an edge from 
ith to jth concept node 

The design of fitness function takes advantage of a specific 
feature of the FCM theory. At each iteration of FCM model 

if  (Fitness function(best individual) > max_fitness or t>max_generation) 
then stopping_condition = true;

where: best individual – the chromosome in the current generation 
with highest fitness function value, t – current generation number  
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simulation state vector C(t+1) depends only on the state 
vector at the preceding iteration. Let us assume that the input 
data length is K. By grouping each two adjacent state vectors, 
K-1 different pairs can be formed 

1,...,0)1()( KttCtC  (3) 

If we define C(t) as an initial vector, and C(t+1) as system 
response, K-1 pairs in the form of {initial vector, system 
response} can be generated from the input data. The larger K
is the more information about the system behavior we have 
and the more accurate learning can be performed [21]. The 
fitness function is calculated for each chromosome by 
computing the difference between system response generated 
using a candidate FCM and a corresponding system response, 
which is defined in the input data. This difference is 
computed across all K-1 initial vector / system response pairs, 
and for the same initial state vector as 

1

1 1

2
)(ˆ)(

N1)(K
1 K

t

N

n
nn tCtCDifference  (4) 

where 
)(),...,(),()( 21 tCtCtCt nC  – given system response for 

(t 1)C  initial vector, 

)(ˆ),...,(ˆ),(ˆ)(ˆ
21 tCtCtCt nC  – system response of the 

candidate FCM for )1(tC  initial vector 
Fitness function is defined as:  

110000
1)(

Difference
Differenceh  (5) 

Other RCGA parameters include: 
recombination method – single-point crossover; 
mutation method – randomly chosen from random 
mutation, non-uniform mutation, and Mühlenbein’s 
mutation; 
selection method – randomly chosen from roulette wheel 
and tournament; 
probability of recombination: 0.9; 
probability of mutation: 0.5; 
population_size: 100 chromosomes; 
max_generation: 300000; 
max_fitness: 0.999; 

The above values were established experimentally. 

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup 
The goal of the experiments is to assess quality of the 

proposed method for learning FCMs. Tests are divided into 
two groups: tests performed with synthetic, and with real-life
data.

synthetic tests use randomly generated input FCM 
models to generate synthetic input data, which is used 
to learn candidate FCM. A wide range of input FCM 

models was considered to accommodate different 
types of real-life FCM models. As a result, the tests 
were performed with FCMs with 4, 6, 8, and 10 nodes, 
and with densities of 20%, 40%, 60%, and 80%, which 
results in sixteen test configurations. 
real-life data tests were performed with large 7 nodes 
FCM model that have been reported in literature. In 
this case the FCM was predefined by the original 
author (domain expert). The experiments involved 
simulating the input FCM to generate input data, and 
later using the input data to generate a candidate FCM 

A diagram presenting an overview of the test procedure is 
shown in Fig. 4.  

Fig. 4. High-level diagram of the experimental setup 

In general, the goal of learning is to find FCM connection 
matrix that generates the same state vector sequence as the 
input data for a given initial state vector.  

Error criterion, which measures similarity between the 
input data, and data generated by simulating the candidate 
FCM with the same initial state vector as for the input data is 
used to evaluate quality of learning. The criterion is defined 
as a normalized average error between corresponding concept 
values at each iteration between the two state vector 
sequences:

1

1 1
)(ˆ)(

)1(
1 K

t

N

n
nn tCtC

NK
error  (6) 

where  
(t)Cn is value of a node n at iteration t in the input data, 

(t)Ĉn is value of a node n at iteration t from simulation 
of the candidate FCM 

K is input data length 
N is number of nodes 

Since the methods listed in Table I have different learning 
goals and the description of test procedures they applied was 
insufficient to repeat exactly the same set of experiments, we 
were not able to perform comprehensive comparison tests. 
However, in order to put the quality of the proposed learning 
method into a perspective, a set of reference results were 
computed. This reference was generated by computing error 
values for randomly generated FCMs and comparing them 
with the input FCM. Ten random FCMs were generated for 

RCGA
algorithm

input FCM input data candidate FCM 
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each test category, and the average value of the two criteria 
was reported. Several minor assumptions were also made. For 
both, the input and candidate FCMs, all weight values smaller 
than 0.05 were rounded down to 0, since no real-life map 
considers such weak relationships to be of any relevance. 
Moreover, during simulations all nodes values are rounded to 
two digits after decimal point, which results from a trade-off 
between model comprehensibility and accuracy of 
relationship representation. 

B. Experiments Outcome 

B.1. Results for Synthetic Data 

A total of almost 200 tests were performed. For each FCM 
size and density 10 tests were performed, and average results 
are reported. Table II shows summary of the results for the 
considered number of concept nodes and densities.  

TABLE II 
Experimental results for the synthetic data 

nodes density [%] error stdev nodes density [%] error stdev
4 20 0.000 0.000 8 20 0.057 0.043
4 40 0.000 0.000 8 40 0.015 0.021
4 60 0.000 0.000 8 60 0.014 0.020
4 80 0.000 0.000 8 80 0.006 0.008
6 20 0.005 0.005 10 20 0.088 0.095
6 40 0.005 0.006 10 40 0.037 0.048
6 60 0.004 0.004 10 60 0.026 0.039
6 80 0.003 0.003 10 80 0.006 0.009
Legend: 

nodes – number of nodes of the input FCM 
density [%] – ratio of non-zero weights to the total number of 
weights

To ease the analysis of the results, a relation between FCM 
parameters, i.e. size and density, and each of the evaluation 
criteria was presented in Fig. 5, which includes a table with 
the average values of the corresponding criterion across 
different sizes and densities of the input FCMs. The content 
of the table is also represented as graph, which additionally 
includes the baseline results. 
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Fig. 5. Error values as a function of number of nodes and FCM density 

Error values are relatively small, compared to the baseline 
values, for all considered experiments. We note that the error 

values slightly increase with the increasing size and 
decreasing density of the input FCM, but even for the 10 
nodes and 30% dense FCM the value indicates finding high 
quality candidate FCM. The results show that the proposed 
learning method is able to find FCM that can closely mimic 
the input data proving usefulness of the genetic algorithm 
based learning for this problem. 

B.2. Results for Real Life Data 

The experiments were performed with FCM model 
proposed by Tsadiras, which concerns business industry and 
financial activities [24]. This FCM describes relationships 
among seven concepts, which were identified as important in 
the strategic planning process of a e-business company. The 
following concepts were considered: e-business profits, e-
business sales, prices cutoffs, customer satisfaction, staff 
recruitments, impact from international e-business 
competition, and better e-commerce services. The density of 
the considered FCM was 40%.

The input data for learning, shown in Fig. 6, was generated 
with a randomly chosen initial state vector, and reaches the 
fixed-point attractor state after 10 iterations. The input data 
was applied to the proposed RCGA learning algorithm, 
resulting in a learning progress shown in Fig. 7. 
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Fig. 7. Learning process for the e-
business company FCM 

The learning results were evaluated identically as in case 
of the experiments with the synthetic data. 

The error ( stdev) value was 0.004 ( 0.005). 

Results achieved by the RCGA algorithm, in terms of 
comparison of state vector sequences and error defined by the 
difference between the input data and the generated sequence, 
for the e-business FCM, are presented; see Fig. 8.  
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The above results show high usefulness of this learning 
method. The quality of generated candidate FCM is 
comparable with the corresponding results obtained from 
synthetic data.  

V. CONCLUSIONS AND FURTHER DIRECTIONS

In this study, we have developed a comprehensive learning 
environment for the design of fuzzy cognitive maps. It has 
been demonstrated how genetic optimization help construct 
maps on a basis of numeric data. We showed and quantified 
the feasibility and effectiveness of the evolutionary approach 
via series of numeric experiments  

The paper discussed relevant work, and proposes and tests 
a novel learning strategy, based on a real-coded genetic 
algorithm. The method is able to generate a FCM model from 
input data consisting of a single sequence of state vector 
values. A comprehensive set of tests was performed, 
including experiments with both synthetic and real-life data, 
and different sizes and densities of FCMs. The results show 
that the proposed learning method is very effective, and 
generates FCM models that can almost perfectly simulate the 
input data. We note that the quality of learning deteriorates 
with the increasing size of considered FCMs. In general, the 
proposed method achieved excellent quality for maps up to 6 
nodes, while for maps up to 10 nodes that quality is still 
satisfactory. Since many different configurations of FCMs 
have been tested, the results can be also treated as a testbed 
for future learning methods. 

The future work will concern the use of the learning 
method in a context of practical applications. Those could 
involve areas such as, e.g., stock exchange, sports bets, 
weather conditions or seismic hazards.  
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