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Disruption of the endoplasmic reticulum (ER) homeostasis is the cause of ER stress. We performed microRNA
(miRNA) analysis (deep sequencing) to search for coping responses (including signaling pathways) induced
by disrupted ER Ca2+ homeostasis. Our focus was on a specific branch of UPR namely the bi-functional protein
kinase/endoribonuclease inositol-requiring element 1α (IRE1α). Activated IRE1α undergoes autophosphoryla-
tion and oligomerization, leading to the activation of the endoribonuclease domain and splicing of the mRNA
encoding XBP1 specific transcription factor. This processing changes the coding reading frame, producing a po-
tent transcription factor termedXBP1s.Weutilized the XBP1 splicing luciferase reporter to screen formodulators
of the IRE1α branch of the unfolded protein response (UPR). Here, we describe a detailed experimental design
and bioinformatics analysis of ER Ca2+ depletion (thapsigargin treated)-induced microRNA (deep sequencing)
profile. The data can be access at the Gene Expression Omnibus (GEO), the National Center for Biotechnology In-
formation (NCBI), reference number GSE57138.
© 2014 . The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Direct link to deposited data

Deposited data can be found at: http://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE57138.

Experimental design, materials and methods

Isolation of mRNA

NIH-3T3 cells were cultured as previously published [1,2] and total
RNAwas harvested using TriZol (Invitrogen) as permanufacturer's pro-
tocol. PurifiedmRNAwasmeasured spectrophotometrically and diluted
istry, University of Alberta,
56; fax: +1 780 492 0886.
alak).

c. This is an open access article unde
to 1 μg/μl. Samples were frozen and sent to Biosys Inc. (Lethbridge, AB)
for deep sequencing.

Sequencing of miRNA and quality control

Short reads in fastq formatwere demultiplexed and assembledusing
BclToFastq.pl script from Illumina CASAVA 1.8.1 software pipeline. For
further analysis short reads were then transferred to desktop worksta-
tion with the following parameters:

Processor: IntelCorei7 CPU930 @ 2.80 GHz × 8; RAM: 8.8 Gb; opera-
tional system: 64 bit, Ubuntu 11.04 (Natty Narwahl). First, read quality
was examined using FastQC program (http://www.bioinformatics.
bbsrc.ac.uk/projects/fastqc).

Command: fastqcbreads.fastqN
FastQC analysis revealed high base quality in all of the libraries,

which exceeded 30 on Phred scale (less than 1/1000 chance of a
base being wrong). GC and sequence content were obviously skewed
as compared to theoretical nucleotide distributions for vertebrate
genome; however such skewed nucleotide distribution is expected
in small RNA libraries characterized by low sequence diversity and
a limited number of sequences occupying large fraction of the se-
quence pool. FastQC also matches short reads to known adapter se-
quences in order to detect the extent of adapter contamination, in
our case only a tiny fraction (~1%) of the libraries matched RNA
PCR Primer Index 1 from Illumina's small RNA library construction
r the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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kit. The rest of the over-represented sequences could not bematched
to known adapters and PCR primers, which pointed at their cellular
origin.

After high sequence quality and absence of significant adapter
contamination were established, we proceeded to trim the parts of
adapter sequences remaining in short reads. Common length of
miRNA is 21–24 nucleotides, yet the length of the short read
retained after demultiplexing of 36 cycle sequencing run is 29 (7
bases were allocated to the barcode). Therefore several nucleotides
at the 3′ end of the short read belong to the sequencing adapter
and have to be trimmed to enable efficient alignment to the refer-
ence (genome or small RNA collection). Adapters were trimmed at
the 3′end with the Btrim program (PMID: 21651976). We consid-
ered sequences with at least 18 nt and leading N base was trimmed
at the 5′ end.

Command: btrim -pbpattern.txtN-3 -f 1 -t -l 18breads.fastqN-
obtrimmed_reads.fasqN (see btrim manual for details).

FastQC was used to examine the characteristics of the sequencing
libraries after trimming and to verify its efficiency. The length distribu-
tion of the sequencing libraries after adapter trimming showed that the
absolute majority of the reads were in the range of 21–22 nucleotides
consistent with expected miRNA length. About 20–30% of the reads
were discarded by Btrim due to the minimum length of 18 nucleotide
requirement. The total number of reads retained after trimmingwas be-
tween 2.8 and 6.0 millions.

In order to verify that the sequencing reads originate from the
murine cells and align primarily to miRNAs, trimmed reads were
mapped to the mouse genome (UCSC, mm9) and to the collection
of mouse miRNA stem loop sequences downloaded from miRBase.
The alignment was performed using bowtie [3] with one mismatch
allowed.

Command: bowtie -v 1 -best -p 4 -Sbbowtie_indexNbtrimmed_
reads.fastqNbsamN

The absolute majority of the sequencing reads 96–98% could be
mapped to the mouse genome with one mismatch allowed, similarly
most of the reads 93–95% were successfully mapped to miRNA stem-
loop sequences confirming that the sequencing library indeed origi-
nates from murine cells and mostly represents miRNAs. Lastly, unique
reads were collapsed using Raw_data_parse program from miRExpress
suite (PMID: 19821977).

Command: Raw_data_parse -ibtrimmed_reads.fastqN-obtrimmed_
reads.mergedN

Resulting merged files are tab delimited text files with 2 columns:
unique sequence and opposite column with the number of times
given sequence were counted in the library (read count).
Initial annotation of known miRNAs

The collapsed reads were uploaded into miRanalyzer web-based
pipeline (http://bioinfo2.ugr.es/miRanalyzer/miRanalyzer.php; PMID:
21515631) and matched to known mature miRNA (miRBase version
16), RFAM database (version 15) of known non-coding RNAs and
known gene transcripts. MiRanalyzer uses bowtie short read aligner
to match short sequences against the genome, known mature miRNA
sequences, star miRNA sequences, miRNA generating hairpins, star
sequences, which are not in miRBase and, finally, the library of
other non-coding RNAs (RFAM). The corresponding sequences
were uploaded from miRanalyzer website (http://bioinfo2.ugr.es/
miRanalyzer/standalone.html). We used miRanalyzer with default
search parameters to detect knownmiRNAs. The miRanalyzer's out-
put is saved in the miRanalyzer folder with detailed information
about mapping to known miRNA. Known miRNAs were divided
into mature, maturestar (star sequences), maturestarunobs (star
sequences not in miRBase) and hairpin. For each of the libraries
there are files with unique and ambiguous mappings.
Differential expression analysis

Differential expression analysiswas performedbased onunique align-
ments to known miRNAs (mature_unique.txt file). Mature_unique.txt is
the tab delimited file with the following format:

name mature miRNA ID from miRBase;
#unique reads number of unique reads mapped;
readCount number of reads mapped;
norm_expressed_all normalized to all reads;
norm_expressed_mapped normalized to mapped reads.

miRNAexpression profilingwas performedusing edgeRbioconductor
package (PMID: 20478825). Raw read counts (readCount column in
mature_unique.txt file) of uniquely mapped miRNAs were loaded into
R version 2.13.0. Differentially expressed miRNAs were detected using
bioconductor package edgeR 2.2.5 following the instructions provided
in user manual. First, raw count data contained in mature_unique.txt
files was loaded into edgeR and represented as a count matrix where
row names are mature miRNA ids and columns contain read counts for
every sample.

Commands: R # start R in the directory withmature_unique.txt files
N library(edgeR) # load the library
N db- readDGE(c(“CT1.txt”, “CT2.txt”, “T1.txt”, “T2.txt”), column =

c(1,3), group = c(“ct”, “ct”, “tr”, “tr”)) # create count matrix, specify
experimental groups

N db- d[rowSums(d$counts) N=5,] # removemiRNAswith low ex-
pression (blow 5 counts summed between samples)

N db- calcNormFactors(d) # calculate normalization factors and per-
form TMM normalization

N db- estimateCommonDisp(d) # estimate common dispersion
N de.comb- exactTest(d) # detect differentially expressed miRNAs,

FDR is calculated using the Hochberg–Benjamini procedure by default
N de.numb- sum(de.com$table$FDR b 0.1) # get number of differen-

tially expressed miRNAs (FDR b 0.1)
N deb- rownames(topTags(de.com, n = de.num)$table) # get the

ids of differentially expressed miRNAs
N # Build MA plot, with differentially expressed miRNAs shown as

red dots and straight blue lines drawn at 1 and −1 to denote 2 fold
change in expression on the log scale

N plotSmear(de.com, de.tags = de, cex = 0.6)
N abline(h = c(−1,1), col=”dodgerblue”, lwd = 2)
N dev.off()
N write.table(de.com$table, file=”diff_exp.txt”, quote=F,

row.names=F, col.names=T, sep=”\t”) # write ou the result to tab
delimited file

We used TMM normalization and common dispersion (using
tagwise dispersion yielded the same result). FDRwas calculated accord-
ing to the Hochberg–Benjamini procedure (PMID: 2218183).
Comprehensive annotation of known and putative miRNAs

The short RNAs thatwere generated based on the protocol described
in the “Sequencing of miRNA” section were processed to find putative
(novel) miRNAs and a more complete list of known miRNAs. First,
these short reads were filtered. The reads that did not match the NCBI's
mouse genome (using build 37.2 from http://www.ncbi.nlm.nih.gov/
projects/genome/guide/mouse/) were discarded. This was based on
the sequence alignment with the Bowtie program [4] assuming perfect
match. In the second filtration step, the reads that matched repetitive
DNAs from Repbase [5] (uploaded from http://www.girinst.org/
server/RepBase/) and non-coding RNAs (tRNAs, rRNAs, snRNAs, and
snoRNAs) from Rfam [6] (using build 10.0 from http://rfam.janelia.
org/) were removed. Second, knownmiRNAs were tagged using release
17 of miRBase [7] and set aside. Third, the remaining reads were
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processed to find putative miRNAs. They were aligned to mRNAs using
RefSeq database [8]; the matching reads were tagged as mRNA-
matching. They were also aligned to the expressed sequence tags
(ESTs) using dbEST [9]; the matching sequences were tagged as EST-
matching. Two putative miRNA precursor sequences of the mRNA-
matching, ETS-matching and the remaining short reads (one with
10 nt upstream and 70 nt downstream, assuming that miRNA is at the
5′ arm of the RNA hairpin; the with 70 nt upstream and 10 nt down-
stream, assuming that miRNA is at the 3′ arm) were processed by the
MIREAP program (http://sourceforge.net/projects/mireap/) to analyze
whether they have hairpin structure. The hairpin-like reads were folded
with the RNAfold program [10] to select those withminimum free ener-
gy below−25 Kcal/mol. The protocol that utilizes MIREAP and RNAfold
is consistent with related works [11–13], and performance of MIREAP
was recently favorably evaluated in ([14]). The remaining short RNAs, in-
cluding both miRNAs and miRNA star, were clustered to group similar
reads. Each cluster corresponding to one putative miRNA and its se-
quence was set as the most frequent/abundant sequence in the cluster.
The abundance was computed as a sum of abundance values of reads
in a given cluster.

The known and putativemiRNAs andmiRNA starwere combined to-
gether and thosewith the abundance (number of counts) below 5were
removed. Similar to our initial analysis, the Bioconductor package edgeR
[15] was applied to findmiRNAs that were differentially expressed. We
utilized TMM normalization and tagwise dispersion.
Annotation of targets for selected differentially expressed microRNAs

The miRNAs were sorted by the adjusted p-values generated
when annotating differentially expressed miRNAs. Known and puta-
tive target genes were computed for the miRNAs with the adjusted
p-values b 0.5. The experimentally validated target genes were col-
lected using miRecords database [16]. Since the number of experi-
mental annotations was relatively low, we also used three target
predictors: TargetScan [17,18], DIANAmicroT [19], and RepTar [20].
RepTar does not predict targets for novel miRNAs and thus we used
the remaining two predictors for the putative miRNAs. Targets that
were predicted by multiple methods were considered to be more
reliable.
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