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Abstract 25 
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functions in biological processes and pathways. The increasing number of protein sequences 27 

necessitates computational tools for the automated prediction of catalytic residues in enzymes. 28 
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Here, we introduce SCREEN, a graph neural network for the high-throughput prediction of 29 

catalytic residues via the integration of enzyme functional and structural information. SCREEN 30 

constructs residue representations based on spatial arrangements and incorporates enzyme 31 

function priors into such representations through contrastive learning. We demonstrate that 32 

SCREEN (i) consistently outperforms currently-available predictors; (ii) provides accurate 33 

results when applied to inferred enzyme structures; and (iii) generalizes well to enzymes 34 

dissimilar from those in the training set. We also show that the putative catalytic residues 35 

predicted by SCREEN mimic key structural and biophysical characteristics of native catalytic 36 

residues. Moreover, using experimental data sets, we show that SCREEN’s predictions can be 37 

used to distinguish residues with a high mutation tolerance from those likely to cause functional 38 

loss when mutated, indicating that this tool might be used to infer disease-associated mutations. 39 

SCREEN is publicly available at https://github.com/BioColLab/SCREEN and 40 

https://ngdc.cncb.ac.cn/biocode/tool/7580. 41 

 42 

Keywords: Catalytic residue; Enzyme structure; Evolutionary conservation; Graph neural 43 

network; Contrastive learning 44 

 45 

Introduction 46 

Enzymes are critical for a wide range of diverse biochemical, molecular and physiological 47 

processes and pathways which sustain life [1]. The extraordinary catalytic proficiency of an 48 

enzyme is often intricately orchestrated by a selected set of amino acids within its active site(s), 49 

referred to as the catalytic residues [2]. These spatially proximate catalytic residues can be 50 

engaged in critical interactions with substrate molecules, catalyzing chemical reactions and 51 

ensuring the catalytic efficiency and specificity of enzymes [3]. Catalytic residues often exhibit 52 

conservation across species, particularly those within the same taxonomic groups [4], such that 53 

mutations in catalytic sites can affect enzyme function(s), potentially inducing the onset of 54 

diseases, such as cancers and metabolic disorders [5]. For instance, mutations of catalytic 55 

residues in the tumor suppressor phosphatase and tensin homolog (PTEN) have been shown to 56 

culminate in various forms of cancers, such as glioblastoma multiforme, melanoma and breast 57 

cancer [6]. Mutations in the catalytic sites of enzymes, such as CYP2C9, which are responsible 58 

for the biotransformation of small molecule drugs, can impact individual drug responses and 59 
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potentially increase the risk of metabolic disorders [7]. 60 

   The number for which enzymes with detailed catalytic residue annotations available in the 61 

Mechanism and Catalytic Site Atlas (M-CSA) database [8] is substantially lower than the vast 62 

number of enzyme sequences in the UniProt database [9] and enzyme structures in repositories 63 

such as the Protein Data Bank (PDB) [10]. This gap relates primarily to the absence of high-64 

throughput methods for identifying catalytic residues. Traditionally, the active sites in enzymes 65 

have been established using site-directed mutagenesis and biochemical assays, providing insight 66 

into the corresponding kinetic and thermodynamic parameters [11]. However, these laboratory 67 

methods are relatively low throughput, time-consuming and labor-intensive, thereby restricting 68 

analyses to small numbers of residues and constraining “down-stream” applications such as the 69 

design of novel enzymes and inhibitors [12]. Furthermore, although M-CSA offers information 70 

on enzyme functions, its coverage of the function space is not comprehensive, particularly for 71 

oxidoreductases and translocases (with only 45.6% and 30% coverage, respectively), potentially 72 

attributable to curation backlog and/or limited functional data/information [13]. There is 73 

significant demand for an in silico approach for the reliable and reproducible identification of 74 

catalytic residues in enzymes from sequence and/or structure data to enable the exploration of 75 

enzyme functions and accelerate biomolecular design. 76 

   A significant effort has been directed towards developing computational methods for the 77 

identification of catalytic residues in enzymes [14]. These methods include homology-based 78 

approaches, machine learning-based, and deep learning-based approaches. Homology-based 79 

methods annotate catalytic residues by comparing the query enzyme’s sequence or structural 80 

similarity to that of the target enzymes with experimentally validated residues. Wallace et al. 81 

firstly introduced TESS [15], a program that uses a geometric hashing algorithm to identify 82 

enzyme active sites by aligning the query enzyme to a structural template database. Mistry et al. 83 

later proposed a sequence-based method that transfers previously verified catalytic residues to 84 

other chains within the same Pfam family using a set of strict rules [16]. However, these 85 

Homology-based methods are constrained by the availability of reliable templates. Compared 86 

with homology-based methods, machine learning-based, and deep learning-based methods 87 

utilize the “ground truth” annotations of catalytic residues from curated public databases to train 88 

predictive models, which, in turn, can be applied to infer catalytic residues in most unknown 89 

enzymes [17]. For one of the earliest tools, Gutteridge et al. [18] trained a neural network model 90 
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to identify catalytic residues using enzyme structure- and sequence-derived features as inputs. 91 

Subsequently developed predictors often employed support vector machine (SVM) models or 92 

random forest models to a collection of manually curated features [19–23]. Interestingly, Chea 93 

et al. [24] did not use a machine learning model but, instead, predicted catalytic residues using 94 

statistical scores calculated from a network representation of protein structure and solvent 95 

accessibility. 96 

   Structural information of the enzymes has proven highly effective in addressing diverse 97 

challenges, ranging from predicting enzyme function [25] to guiding enzyme engineering [26]. 98 

However, most existing methods for catalytic residue prediction, which rely primarily on enzyme 99 

sequences or manually curated structural features, often struggle to capture the spatial 100 

arrangements of amino acid residues, as catalytic residues tend to form spatial clusters. Moreover, 101 

the intricate chemical reactions catalyzed by enzymes are typically driven by a small subset of 102 

catalytic residues. Despite their critical role in enzyme function, current methods often fail to 103 

incorporate comprehensive enzyme functional data, thereby limiting the ability to fully explore 104 

the connections between catalytic residues, enzyme structure, and function. 105 

   We anticipate that recognizing patterns in the spatial arrangement of residues within enzyme 106 

structures can substantially enhance the performance of catalytic residue prediction tools and 107 

deepen our understanding of enzyme function through the use of modern deep neural networks. 108 

To this end, we propose here a deep learning-based solution, called SCREEN, for the accurate 109 

prediction of catalytic residues in enzymes. SCREEN employs a graph neural network that 110 

models the spatial arrangement of active sites in enzyme structures and combines data derived 111 

from enzyme structure, sequence embedding, and evolutionary information obtained by using 112 

two complementary methods – BLAST (Basic Local Alignment Search Tool) [27] and HMMER 113 

(sequence analysis tool using profile hidden Markov models) [28]. Moreover, we apply the 114 

contrastive learning framework to further enhance the predictive performance of SCREEN by 115 

incorporating enzyme functional information.  116 

 117 

Method 118 

Training and test datasets 119 

We curated a dataset comprising 1055 enzymes with annotated catalytic residues, which we used 120 

to train and optimize our predictive model (Figure 1A). First, we collected data from M-CSA 121 
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database, which contains catalytic residue annotations and details about enzymic reaction 122 

mechanisms [29]. We combined the EF family dataset that includes catalytic residue annotations 123 

for enzyems from different SCOP families [22]. We filtered the combined dataset by clustering 124 

the proteins with the CD-HIT software at 40% sequence identity [30], then randomly selected 125 

one protein from each cluster. This prevented overfitting the model into larger clusters of similar 126 

enzymes. Next, we collected enzyme three-dimensional structures from the Protein Data Bank 127 

(PDB) [9]. We obtained the Enzyme Commission (EC) numbers [31] using the SIFTS database 128 

[32]. We used the first-level EC numbers due to the relatively sparse/incomplete nature of these 129 

data at the lower levels [33]. We shuffled the dataset randomly and then divided it into training 130 

(90%) and validation (10%) subsets (Figure S1). 131 

   We acquired five widely-used test datasets to conduct a comparative evaluation of our model 132 

against existing tools. These test sets included the EF-fold dataset, EF-superfamily dataset, and 133 

HA superfamily dataset, representing enzymes from every SCOP fold and superfamily 134 

respectively. We also collected the PC test dataset [20], which was originally obtained from 135 

Catalytic Residue Dataset (CATRES) and represents proteins of the PIRSF protein groups [34]. 136 

Finally, we obtained the NN test dataset [18], which comprises enzymes of six main classes. 137 

Importantly, we excluded enzymes from these five test datasets from our training/validation 138 

dataset. Table S1 summarizes the training and the five test datasets. 139 

 140 

Overview of the SCREEN model 141 

SCREEN is a supervised deep learner that integrates information derived from atomic structures, 142 

sequences, and evolutionary profiles. Specifically, SCREEN presents the input (enzyme 143 

structures) as graphs at the residue level, leveraging evolutionary information, sequence 144 

embeddings – generated by a modern language model – and relevant structural characteristics, 145 

such as B-factors and solvent accessibility (Figure 1B) [35]. We correspondingly employed a 146 

graph convolutional neural network to generate propensities for catalytic residues from these 147 

inputs. The training process employed enzyme function information (Enzyme Commission 148 

numbers) [36] via a contrastive learning framework, utilizing the Triplet Margin Loss function 149 

to enable clustering enzymes of the same classes and separating enzymes from different classes 150 

in a latent feature space (Figure 1C). This allowed our model to develop class-specific latent 151 

feature spaces, leading to improvements in predictive performance/capacity. Moreover, we 152 
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employed a dynamic training strategy, in which we initially trained the network using the 153 

contrastive learning and then applied our model to accurately identify catalytic residues (Figures 154 

S2 and S3). 155 

 156 

Graph-based representation of protein structure 157 

We represented the input enzyme structure composed of n residues 𝑬𝒏𝒛= {𝐫𝟏, 𝐫𝟏, … , 𝐫𝐧} as an 158 

attributed graph encoded with evolutionary context, sequence embeddings and relevant 159 

structural characteristics, such as solvent accessibility and B-factors. Specifically, the graph 160 

representation  𝑮  = (𝑽, 𝑨, 𝑿) consists of three-dimensional enzyme structure by taking the 161 

residue set 𝑽 ⊆ 𝑬𝒏𝒛 as graph nodes, the adjacency matrix 𝑨 with 𝒏 × 𝒏 size that quantifies 162 

connectivity of nodes/residues, and the feature matrix  𝑿 ∈ 𝓡𝒏×𝜽. 163 

   The feature matrix 𝑿= (𝑿𝑳, 𝑿𝑮, 𝑿𝑨) covers the evolutionary, sequence and structural features. 164 

The 𝑿𝑳 descriptor quantifies evolutionary conservation by utilizing two complementary tools: 165 

PSI-BLAST, which is a heuristic algorithm that relies on the dynamic programming [27], and 166 

HMMER that is based on the hidden Markov model (HMM) [28]. We run PSI-BLAST on the 167 

NCBI’s non-redundant (nr) database, with three iterations and the E-value threshold of  < 𝟏𝟎−𝟑 . 168 

We normalize the output position-specific scoring matrix (PSSM) of size 𝒏 × 𝟐𝟎  with the 169 

sigmoid function: 𝒙 =
𝟏

𝟏+𝒆−𝒙 . We use HMMER with the uniclust30 database [37] and default 170 

parameters to generate the 𝒏 × 𝟑𝟎 HMM matrix that we normalize to the [0, 1] range [28]. The 171 

𝑿𝑮  descriptor captures sequence information computed by ProtT5 model, a deep learning 172 

language model that was pre-trained on 390 billion amino acids [38]. The enzyme sequence is 173 

encoded into residue-level feature embeddings denoted as  𝑿𝑮 ∈ 𝓡𝒏×𝒉𝟏, where 𝒉𝟏 defaults to 174 

1024. These vectors encapsulate information about individual residues that are adjacent in the 175 

sequence, and broader protein-level information. Lastly, the 𝑿𝑨 descriptor encompasses several 176 

key properties that are derived from the atomic-level data: atom types and atomic mass when 177 

excluding hydrogen atoms, 𝑩-factor, residue side-chain presence, the count of bonded hydrogen 178 

atoms, ring membership, van der Waals radius, and solvent accessibility. Given that residues 179 

might have different numbers of atoms, we compute the average values across all atoms, 180 

resulting in atomic descriptor 𝑿𝑨 ∈ 𝓡𝒏×𝒉𝟐, with 𝒉𝟐 = 14. 181 

 182 
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Predictive model 183 

We designed the graph convolutional neural network (GCN) with three convolutional layers to 184 

facilitate the propagation of feature embeddings for residues that share spatial proximity. 185 

   For a given graph defined by the adjacency matrix 𝑨 ∈ {𝟎, 𝟏}𝒏×𝐧 and the feature matrix 𝑿= 186 

( 𝑿𝑳, 𝑿𝑮, 𝑿𝑨 ), our model produces residue-level representations 𝑯(𝐢) ∈ 𝓡𝒏×𝒅𝐢  where 187 

𝒅𝐢 represents the embedding dimension for the 𝒊th convolutional layer. 188 

𝐻(i) = GCN(𝐴, [𝑋𝐿 , 𝑋𝐴]) (1) 189 

We refine residue representations through the process of neighbor aggregations as follows: 190 

𝐻(i) = 𝑅𝑒𝐿𝑈 (�̃�−
1
2(𝐴 + 𝐼𝑛)�̃�−

1
2𝐻(i−1)𝑊(i)) (2) 191 

𝐻(0) = [𝑋𝐿 , 𝑋𝐴] (3) 192 

where 𝑰𝒏 ∈ 𝓡𝒏×𝐧 is the identity matrix, �̃� ∈ 𝓡𝒏×𝐧 is the diagonal degree matrix with 193 

entries 𝑫𝒊𝒊=∑ (𝑨 + 𝑰𝒏)𝒊𝒋𝒋 , 𝑾(𝟏) ∈  𝓡𝜽×𝒅𝐢 is the trainable weight matrix for the 𝒊th convolutional 194 

layer, ReLU denotes the Rectified Linear Unit activation function, and [] denotes the 195 

concatenation operation. The above architecture generates graph representation 𝑿𝑬 ∈ 𝓡𝒏×𝐝 , 196 

where d =512 (Figure S4), which we combine using multilayer perception (MLP) network as 197 

follows: 198 

𝑋𝐸 = 𝑅𝑒𝐿𝑈 (𝑀𝐿𝑃([𝑅𝑒𝐿𝑈(𝑀𝐿𝑃([𝐻1, 𝐻2, 𝐻3])), 𝑅𝑒𝐿𝑈 (𝑀𝐿𝑃(𝑋𝐺))])) (4)    199 

   We employ three fully connected layers in the MLP network to reduce the feature space to the 200 

final output vector Y ∈  R𝑛×2 that gives numeric propensities for putative catalytic residues. 201 

 202 

Contrastive learning 203 

We used contrastive learning with Triplet Margin Loss to craft enzyme representations that 204 

improve the catalytic residue predictions. Using the graph representation 𝑿𝑬 ∈ 𝓡𝒏×𝐝 , we 205 

employed average aggregation across residues, generating a fixed-sized sequence representation 206 

vector Z ∈  𝐑𝟏×𝒉𝟑, with 𝒉𝟑 set to 1024. During training in each epoch, we iteratively refined 207 

every sequence representation vector and computed enzyme class cluster centres. When training 208 

with a query enzyme 𝒛𝒂 , we selected the enzyme cluster centre embedding from the same 209 

D
ow

nloaded from
 https://academ

ic.oup.com
/gpb/advance-article/doi/10.1093/gpbjnl/qzae094/7933190 by Virginia C

om
m

onw
ealth U

niversity user on 08 January 2025



8   

enzyme class as the positive sample 𝒛𝒑, and randomly sampled another cluster centre from a 210 

different enzyme class as the negative sample 𝒛𝒏, which resulted in the following Triplet Margin 211 

Loss function: 212 

𝓛𝑻𝑴 =  ‖𝒛𝒂 −  𝒛𝒑‖
𝟐

− ‖𝒛𝒂 −  𝒛𝒏‖𝟐 +  𝜶 (𝟓) 213 

where we set the margin α to the default value of 1. This loss function minimizes the Euclidean 214 

distance between enzyme representations belonging to the same main enzyme class while 215 

maximizing the distance between those form different main enzyme classes. We implemented a 216 

dynamic training strategy, where we performed contrastive learning for enzyme classification 217 

during early training epochs, and gradually shifted towards the default training that converges to 218 

produce accurate propensities for catalytic residues. 219 

 220 

The multiplexed assays of variant effects data analyses 221 

We gathered the multiplexed assays of variant effects (MAVE)  measurements for four enzymes, 222 

which provided insight into the impact of a broad collection of substitutions on both enzyme 223 

function [6,39]. We categorized the missense variants of PTEN into two main groups: functional 224 

or inactive, regardless of their effect on abundance. The classification thresholds for the scores 225 

generated by each MAVE were guided by an established methodology [40]. Specifically, we 226 

used a minimal number of Gaussians (three) to ensure a reliable fit to the variant score 227 

distributions, and the intersection point between the first and last Gaussian served as the 228 

classification cut-off. Adopting this binary classification approach allowed us to categorize 229 

variants into two classes: (1) Wild Type-Like (WTL), variants characterized by high activity; 230 

(2) Functional Loss (FL), variants assigned that exhibit low activity. 231 

 232 

Results 233 

SCREEN accurately predicts catalytic residues 234 

We collected five commonly-used test datasets to comparatively assess SCREEN against eight 235 

current solutions. These test datasets included the EF superfamily and EF fold datasets [22], the 236 

HA superfamily dataset [24], the NN dataset [18], and the PC dataset [20]. We compared the 237 

results from SCREEN with those of a conventional sequence-based method, CRpred [19], and 238 

six tools that employed different predictive models based on enzyme structures. These tools 239 
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included a neural network-based approach [18], three SVM-based methods [20], a random 240 

forests-based PREvaIL [23], and a statistical approach [24]. We compared the precision, recall, 241 

and F1 score to evaluate the predictions of catalytic residues, referencing the reported 242 

performance from the original paper (Table 1, Figure S5). We also evaluated the recently 243 

proposed graph-based method, AEGAN [41], by retraining and testing it on the same training 244 

and test sets, with the hyperparameter for negative sample size set to 20. We showed that 245 

SCREEN consistently outperformed the eight tools for the five test datasets. Compared to these 246 

methods, SCREEN achieved a higher F1 score across all five test datasets. The high F1 scores 247 

achieved by SCREEN were coupled with balanced and high values of precision and recall that 248 

ranged between 61.0 and 69.3 and between 61.2 and 82.0, respectively. We also quantified and 249 

compared two other popular metrics, the area under the receiver operating curve (AUC) and the 250 

area under the precision-recall curve (AUPR). Figure 2A reveals that SCREEN achieved 251 

substantially higher AUC and AUPR scores when compared with the latest structure-based 252 

(PREvaIL) and the sequence-based (CRpred) tools, except for the EF superfamily and EF fold 253 

dataset, where AUC and AUPRC values were comparable. 254 

   Using SCREEN, we also measured Best-F1 score and AUPR values for specific enzyme types 255 

(Figure S6). Particularly, for hydrolases, which represent the largest portion of the training 256 

dataset (313 of 1055; 29.7%), SCREEN obtained notable consistency across the five test datasets, 257 

with Best-F1 scores ranging from 0.63 to 0.78, AUPR values ranging from 0.56 to 0.68. For the 258 

isomerase data, the predictive performance was particularly high, with the Best-F1 score 259 

exceeding 0.74 and AUPR surpassing 0.80, even though these enzymes represent only a small 260 

portion of the training set (87 of 1055; 8.2%). 261 

 262 

The use of enzyme structure information in SCREEN markedly improves the catalytic 263 

residue prediction 264 

The catalytic residues typically tend to form cohesive clusters within the three-dimensional 265 

enzyme structures. Thus, we systematically investigated the spatial distribution of residues in 266 

enzyme structures by measuring the Euclidian distances to the nearest catalytic residue for both 267 

catalytic and non-catalytic residues in individual protein sequences. Figure 2B shows there was 268 

a clear difference in the distribution of Euclidian distances, with the catalytic residues peaking 269 

at ~ 6Å, and most non-catalytic residues exceeding 15Å, supporting that catalytic residues form 270 
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cohesive active enzymatic sites. We investigated whether SCREEN could reconstruct the same 271 

spatial distributions for enzyme catalytic residues. A performance assessment of SCREEN using 272 

five test datasets (Figure 2C, Figure S7) showed that the majority of catalytic residues predicted 273 

grouped together in the structure and that the distance values were consistent among the datasets, 274 

with median values being ~ 6Å. These results agree with findings presented in Figure 2B, 275 

implying SCREEN accurately captures the spatial distribution of predicted catalytic residues. 276 

   These findings suggest the use of structure information in SCREEN likely results in predictive 277 

performance improvements. We further investigated whether SCREEN could improve results 278 

compared with a “baseline model” that excludes structure-based inputs and replaces the graph 279 

convolutional neural network (GCN) with a sequence-based convolutional neural network 280 

(CNN). The comparison of SCREEN with the baseline using five test datasets employing the 281 

Best-F1 score, AUPR, and AUC metrics (Figure 2D) showed that the use of graph network led 282 

to a marked improvement in predictive performance. 283 

   To assess predictions, we selected enzymes from the EF superfamily dataset ranked around the 284 

10%, 50%, and 90% percentiles based on the Best-F1 score. We plotted catalytic residues 285 

predicted by the structure-based SCREEN and the sequence-based baseline model against 286 

ground-truth catalytic residues within enzyme structures. In the top 10%, for carboxylic ester 287 

hydrolase (PDB ID:1LE6), SCREEN accurately predicted all catalytic residues, whereas the 288 

sequence-based baseline introduced three false positives (Figure 2E). In the median ranking, for 289 

casein kinase-1 (PDB ID:1CSN), SCREEN successfully identified Asp-131, Lys-133, and Thr-290 

181 as key residues, but the baseline model failed to identify Thr-181 (Figure 2F). In the 90% 291 

ranking, for dihydropteroate synthase (PDB ID:1AD1), SCREEN identified Arg-239 and gave 292 

one false positive, whereas the baseline misidentified two non-essential residues (Figure 2G). 293 

These findings indicate that SCREEN has a superior performance compared with the sequence-294 

based baseline model. This supports our design and, in particular, the use of the graph network 295 

and enzyme structure as a key input. We also investigated various graph convolution types, 296 

including the extensively employed Graph Convolutional Layer (GCN), Graph Attention (GAT), 297 

and Graph Isomorphism Network (GIN), but none of the models outperformed another using the 298 

same test sets and metrics (Figure S8). 299 

 300 

SCREEN accurately predicts catalytic residues using structure models 301 
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Although we showed SCREEN’s predictive performance benefits from the use of enzyme 302 

structure data, this information is often missing for many proteins/enzymes. Recent advances in 303 

protein structure prediction, like the AlphaFold algorithm [42-44], make it possible to accurately 304 

predict protein structure from sequences and to use such structure models as the input to 305 

SCREEN. We evaluated whether the use of predicted structures rather than experimentally 306 

determined structures would alter SCREEN’s predictive performance (Table S2). We generated 307 

𝐶𝛼-𝐶𝛼 contact maps for enzymes based on experimental protein structures sourced from PDB, 308 

as well as putative structures from AlphaFold. We tested SCREEN’s performance by using each 309 

of these two sets of contact maps, comparing it against a sequence-based baseline model devoid 310 

of structural information. Figure 3A showed that SCREEN consistently benefits from utilizing 311 

putative enzyme structures (with Best-F1 = 0.702, AUPR = 0.644, and AUC = 0.985) compared 312 

with sequence data alone (with Best-F1 = 0.691, AUPR = 0.624, and AUC = 0.973). 313 

   To further assess SCREEN’s denoising power on predicted structure error, we evaluated the 314 

model performance employing AlphaFold-predicted structures with varying quality. Specifically, 315 

we quantified the quality of predicted structures employing root-mean-square deviation (RMSD) 316 

metric as compared with experimental solved structures (RMSD = 0). Figure 3B revealed that 317 

SCREEN’s performance was better employing AlphaFold-derived structures than using 318 

sequence data alone. SCREEN also out-performed currently-employed tools CRHunter and 319 

PREVAIL across the entire RMSD range, achieving the Best-F1 score of > 0.6 using AlphaFold-320 

predicted structures, contrasting average Best-F1 scores of 0.45 and 0.26 for CRHunter and 321 

PREvaIL, respectively. 322 

   SCREEN performed relatively well using predicted structures (Figure 3A and B), irrespective 323 

of the quality of predictions via AlphaFold. Here, we used two examples to illustrate SCREEN’s 324 

ability to accurately identify catalytic residues even in relatively low-quality predicted structures 325 

(Figure 3C). For the human calcineurin heterodimer (PDB ID: 1AUI, Chain A) [45], where the 326 

AlphaFold-predicted structure had an RMSD score of up to 6.76 Å, SCREEN successfully 327 

identified all 10 catalytic residues. Similarly, SCREEN accurately identified catalytic residues 328 

(Ser-53, Pro-54, and Asp-96) in the PVUII DNA methyltransferase (PDB ID: 1BOO, Chain A) 329 

[46], for which the structure predicted had an RMSD score of 4.75 Å. Taken together, these 330 

results suggested that SCREEN can accurately predict catalytic residues from AlphaFold-331 

predicted enzyme structures, which might be attributed to the robustness of the input features 332 
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and how they are represented in the graph network model. 333 

 334 

SCREEN predicts catalytic residues in “previously-unseen” enzymes 335 

We investigated SCREEN’s ability to generate accurate predictions for “previously unseen” 336 

enzymes. To this end, we categorized enzymes in the five test sets into three distinct groups 337 

based on their sequence identities, namely ≤ 30% (low), 30 to 70% (moderate) and > 70% (high), 338 

to enzymes in the training dataset. Figure 3D showed SCREEN’s Best-F1 scores across three 339 

sequence identity ranges, i.e., ≤ 30% (low), 30 to 70% (moderate), and > 70% (high), for each 340 

of the five test datasets. We showed that SCREEN consistently outperformed the sequence-based 341 

baseline model for each of the five datasets and the three identity ranges. Importantly, 342 

SCREEN’s predictions were accurate also for enzymes with limited sequence identities to those 343 

in the training datasets, achieving the Best-F1 scores of 0.725, 0.738, 0.652, 0.718, and 0.794. 344 

These predictions were significantly better than those achieved using the existing tools, such as 345 

CRHunter (Best-F1 values of 0.328, 0.315, 0.450, 0.365, and 0.140, respectively) and PREVAIL 346 

(Best-F1 of 0.264, 0.261, 0.263, 0.264, and 0.263, respectively). We also used CATH [47] 347 

assignments to evaluate the model’s robustness on enzymes sharing no homologous 348 

superfamilies with those in the training dataset, as shown in Table S3 and Figure S9. 349 

 350 

Model training for enzyme classes improves the prediction of catalytic residues 351 

We investigated whether the training of the graph network model with distinct enzyme function 352 

implications would improve predictive performance, considering that the small subset of 353 

catalytic residues contributes to the intricate functions of enzymes. We used enzyme class 354 

information (first-level EC numbers) to refine enzyme representation through a contrastive 355 

learning framework during the training process. This led to a separation of latent feature spaces 356 

in SCREEN’s deep network model for different types of enzymes. We displayed these latent 357 

feature spaces among different enzyme classes employing t-distributed stochastic neighbor 358 

embedding (t-SNE) [48]. We showed that predictive performance (metrics: F1, AUPR, and AUC) 359 

of SCREEN was enhanced compared to when enzyme function was not incorporated for each of 360 

the data sets (EF fold, HA superfamily, EF superfamily, NN, and PC) (Figure 4A, Figure S10) 361 

and that SCREEN was able to group enzymes with similar functions together and separating 362 

enzymes with distinct functions (Figure 4C). Taken together, these findings indicate that the 363 
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enzyme function incorporation through contrastive learning during the training process improves 364 

predictive performance as SCREEN can differentiate catalytic from non-catalytic residues for 365 

different distinct types of enzymes (Figures S11 and S12). 366 

 367 

SCREEN can capture selected features of catalytic residues 368 

We analyzed catalytic residues predicted by SCREEN, in order to investigate whether they 369 

possess structural and biophysical characteristics expected for enzymes. To better understand the 370 

relevance of the features learned by SCREEN, we initially displayed the general chemical 371 

properties (including hydrophobicity, charge, and hydrogen bonds), along with low-dimensional 372 

projections of residue-level representations (Figure 4B). We observed that charged amino acids 373 

dominated in the catalytic residues predicted (Figure 4D), consistent with previous findings 374 

showing that electrostatic filtering has a marked effect on enzyme substrate selection [49]. 375 

Moreover, catalytic residues were inferred to be more rigid (structurally) than non-catalytic 376 

residues (based on low vs. high B-factor values; see Figure 4E), which accords with a previous 377 

study of native catalytic residues [50]. Fewer hydrophobic residues were associated with 378 

catalytic residues (Figure 4D), which is consistent with limited solvent accessibility (Figure 4F) 379 

and suggests substrate avoidance in substrate–enzyme interactions [51]. Collectively, these 380 

results show that SCREEN can capture key features that typify native catalytic residues in 381 

distinct classes of enzymes. 382 

 383 

Linking catalytic residues to enzyme function and structure 384 

Based on these catalytic residues, we further analyzed the sequence-structure-function 385 

relationship of enzymes to gain deeper insights into enzymes’ catalytic mechanisms. We 386 

categorized enzymes according to their catalytic functions defined by third-level EC numbers 387 

and then by (complete) fourth-level EC numbers (which link to substrates). For enzyme clusters 388 

sharing the same catalytic function/mechanism, we assessed structural similarity by their TM-389 

scores among cluster members [52], selected enzymes from individual clusters and mapped the 390 

catalytic residue predictions to respective three-dimensional structures (Figure 5). 391 

   The results indicated that same catalytic motif may represent distinct enzymes that serve 392 

different functions linked to diverse ligands or substrates. Figure 5A shows both 4-393 

hydroxyproline betaine 2-epimerase (PDB ID: 4h2h, Chain A) and L-Ala-D/L-Glu epimerase 394 
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(PDB ID: 1TKK, Chain A) belong to the same superfamily and share a common catalytic motif 395 

(KDEDK) [53], but they differ in their substrate specificity: 4-hydroxyproline betaine 2-396 

epimerase facilitates the 2-epimerization of trans-4-hydroxy-L-proline betaine (tHyp-B) to cis-397 

4-hydroxy-D-proline betaine (cHyp-B), whereas L-Ala-D/L-Glu epimerase catalyzes the 398 

reversible epimerization of L-Ala-D-Glu to L-Ala-L-Glu. 399 

   Enzymes in a particular family can have similar structures and functions, despite undergoing 400 

sequence divergence through evolution. A compelling illustration emerges when we studied two 401 

related enzymes, the glutamate racemase (PDB ID: 1b73, Chain A) [54] and aspartate racemase 402 

(PDB ID: 1jfl, Chain A) [55] (Figure 5A). Despite enabling similar reactions via the same 403 

mechanism, their catalytic residues are significantly different but have analogous tertiary 404 

structures. Another example relates to protein-tyrosine-phosphatase non-receptor class (PDB ID: 405 

1ytw, Chain A) [56] and protein-tyrosine-phosphatase non-receptor type 1 (PDB ID: 1bzc, Chain 406 

A) [57] (Figure 5B). Here, although both enzymes are tyrosine phosphatases and catalyze the 407 

same reaction to remove phosphoryl groups from tyrosine residues in proteins, their respective 408 

catalytic residues are distinctly different. 409 

   The shared structural arrangements of catalytic residues can be associated with functional 410 

similarity. Figure 5B shows phosphatase 5 (PDB ID: 1S95, Chain A) and phosphatase 2B (PDB 411 

ID: 1aui, Chain A) exhibite significant structural similarity and share catalytic residues (motif: 412 

DHDDRNHHRH) pertaining to serine/threonine phosphatase function(s), characterized by 413 

executing a “nucleophilic assault” on the phosphorus atom within a phosphorylated serine or 414 

threonine residue [45]. 415 

   Although enzymes catalyzing the same reactions often exhibit marked sequence and/or 416 

structural similarity, exceptions exist where structurally dissimilar enzymes enable similar 417 

reactions via the same mechanism. This is expected since enzymes facilitate numerous reactions 418 

using a finite set of building blocks in their residues, resulting in multiple enzymes inevitably 419 

sharing components of their catalytic mechanisms. Here, we showed that non-homologous 420 

proteins, protein phosphatase 5 (PDB ID: 1S95, Chain A) and dual-specificity phosphatase (PDB 421 

ID: 1d5r, Chain A) employ distinct structural motifs to execute the same reaction that 422 

dephosphorylates a phosphoprotein substrate (Figure 5B, Figure S13). 423 

 424 

Associating mutations with the SCREEN-predicted catalytic pockets 425 
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Here, we studied the patterns of mutations in the context of their proximity to the catalytic 426 

pockets predicted by SCREEN. We collected the multiplexed assays of variant effects data, 427 

probing mutation effect(s) on the functions of four different enzymes, namely PTEN tumor 428 

suppressor (PDB ID: 1d5r, Chain A) [58], human cytochrome P450 CYP2C9 (PDB ID: 1og5, 429 

Chain A) [59], NUDT15 (PDB ID: 5lpg, Chain A) [60], and Escherichia coli TEM1 beta-430 

lactamase (PDB ID: 1btl, Chain A) [61], encompassing a total of 15,665 variants across 1,343 431 

residues. 432 

   To function effectively, enzymes must be present at sufficiently high levels and have suitable 433 

catalytic residues in the active sites [62]; however, mutations can affect both of these aspects, 434 

potentially resulting in impaired enzymatic function. We used the MAVE data [63] for two 435 

residue classes: (1) wild type-like (WTL) residues that exhibit high functional tolerance to 436 

mutations, whose most missense mutations do not adversely impact enzyme function; and (2) 437 

functional loss (FL) residues that are prone to mutations that either decrease abundance (e.g., 438 

unstable structures) and/or impair function, leading to diminished enzyme activity (Figure S14). 439 

   We systematically analyzed key characteristics of mutations in the context of the predicted 440 

catalytic residues. Specifically, we applied an additional tree-structured model to SCREEN 441 

(Figure 6A). The Euclidean distance values to the closest catalytic residue predicted by 442 

SCREEN combined with solvent accessibility, which, as expected, were inferred to vary 443 

according to residue type (WTL or FL), allowing to differentiate among different mutation 444 

groups. Figure 6B illustrates the catalytic residues predicted by SCREEN along with residue 445 

mutation type predictions. We performed five-fold cross-validation on all MAVE data; our 446 

results revealed an average accuracy of 0.70 and 0.84, and precision of 0.58 and 0.88 on the 447 

validation data and the entire dataset, respectively (Figure 6C). We found distinct spatial 448 

distribution patterns for the WTL and FL residues based on their Euclidean distances from the 449 

putative catalytic residues (Figure 6D). Our result aligns well with experimental data showing 450 

that FL residues are relatively close to the catalytic site, while WTL residues are distributed 451 

throughout the structure (Figure S15). This result indicates that SCREEN can be useful to 452 

establish the impact of mutations on enzyme structure and function and provides a tool to guide 453 

the identification of disease-associated mutations in enzymes. 454 

 455 

Discussion 456 
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Enzymes can catalyze a broad set of chemical reactions using a limited set of catalytic residues 457 

[64]. Identifying these residues allows us to understand how existing enzymes function at the 458 

molecular level and to design new ones. In this work, we hypothesize that the structural 459 

organization of catalytic residues in spatial space, along with their generally high evolutionary 460 

conservation, collectively contributes to catalytic residue identification. To this end, we 461 

conceptualized, designed, and assessed SCREEN, a structure-based graph network that uses 462 

functional priors through contrastive learning and combines structure-, sequence-, and 463 

evolutionary profile-based representations to accurately predict catalytic residues in enzymes.  464 

   Comparative empirical assessments using five commonly-utilized test datasets and seven 465 

currently-available (published) predictors revealed that SCREEN (1) accurately predicts 466 

catalytic residues in known and computationally-modeled enzymes; (2) outperforms current 467 

tools; and (3) generalizes well to enzymes that have limited similarity to enzymes used to train 468 

the model, suggesting that SCREEN is applicable to currently-unknown enzymes. Incorporating 469 

enzyme function as a prior could improve the prediction of catalytic residues by enhancing the 470 

consistency of enzyme’s latent representations based on their functions. However, we did not 471 

explore enzyme function prediction in depth, e.g., addressing questions such as can we also 472 

utilize this model to solve enzyme function classification tasks? A more comprehensive 473 

understanding of the spatial distribution across diverse enzyme functions and the sequence-474 

structure-function relationship could be achieved by analyzing a larger sample of enzymes that 475 

thoroughly covers the EC space. Additionally, our analysis is limited by treating enzymes as 476 

independent units. Enzymatic reactions involve multiple residues, substrates, and cofactors 477 

interacting across various chemical steps [13]; as such, an integrated analysis would be necessary 478 

for a more comprehensive understanding of the catalytic chemical activity. Further, future 479 

research should focus on determining the level of confidence that can be assigned to model 480 

predictions of catalytic residues, as well as exploring the techniques that can effectively assess 481 

this confidence. 482 

   We demonstrate that SCREEN could infer key structural and biophysical features, including 483 

amino acid charge, solvent accessibility and structural rigidity, of predicted and known catalytic 484 

residues. Further, We undertook sequence-structure-function analyses to link catalytic residues 485 

to enzyme structure and function. Our analyses revealed that while enzymes that catalyze 486 

identical reactions often display significant sequence and/or structural similarity, exceptions 487 
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arise wherein dissimilar sequences and/or structures can catalyze reactions via the same 488 

mechanism. In addition, using multiplexed enzyme mutation data, we showed that SCREEN 489 

could infer the tolerance of individual catalytic residues to mutations and, thus, predict which 490 

mutations in catalytic residues likely lead to the functional loss of an enzyme. Taken together, 491 

SCREEN should provide a useful tool for the reliable prediction of catalytic residues to support 492 

studies of known and unknown enzyme groups/classes as well as enable in silico investigations 493 

of diseases linked to mutations. 494 

 495 

Conclusion 496 

SCREEN is an efficient and robust method for high-throughput prediction of catalytic residues 497 

by integrating enzyme functional and structural information. We demonstrate SCREEN’s 498 

effectiveness and robustness across various widely used datasets, illustrating that the predicted 499 

putative catalytic residues closely align with the key structural and biophysical characteristics of 500 

native catalytic residues. Furthermore, we performed sequence-structure-function analyses to 501 

establish connections between catalytic residues and enzyme structure and function. This 502 

highlights SCREEN’s potential for reliably predicting catalytic residues in both known and 503 

unknown enzyme groups/classes, thereby supporting studies of the molecular mechanisms 504 

underlying enzyme functions. 505 
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 697 

 698 

Figure legends 699 

Figure 1  SCREEN – a predictor of catalytic residues in enzymes 700 

A. Data collection. We curate catalytic residue annotations from the M-CSA database, extract 701 

the corresponding enzyme structures from the RCSB PDB database, and retrieve corresponding 702 

enzyme function information using the SIFTS program [32] . B. Generation of inputs that include 703 

evolutionary profiles based on multiple sequence alignments (MSA), sequence embeddings that 704 

leverage a large-scale protein language model, and structural characteristics derived from the 705 

atomic structures. C. The architecture of SCREEN’s predictive model. 706 

 707 

Figure 2  Predictive performance of SCREEN  708 

A. Comparison of the sequence-based CRpred and structure-based PREvaIL on the five test 709 

datasets. B. The distribution of the Euclidean distances to the nearest catalytic residues for the 710 

residues in enzymes from the M-CSA database [13]. C. The distribution of the Euclidean 711 

distances to the nearest catalytic residue for the catalytic residues predicted by SCREEN. For 712 

boxplots, the center line represents the median, top and bottom edges are the first and third 713 

quartiles, respectively. D. Comparison of the structure-based SCREEN model (GCN encoder) 714 

with a sequence-based baseline model (CNN encoder) on the five test datasets. E.–G. Three 715 

examples, ranked approximately at 10% (E), 50% (F), and 90% (G) based on the Best-F1 scores 716 

for catalytic residues predicted by SCREEN. We compare SCREEN with a sequence-based 717 

baseline model (CNN encoder). The native catalytic residues are in green in a zoomed figure. 718 
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The correctly identified catalytic residues by SCREEN and baseline model (CNN encoder) are 719 

marked in red, while misidentified residues are in gray.  720 

 721 

Figure 3  Analysis of predictive performance when using putative enzyme structure and 722 

low similarity test proteins  723 

A. Comparison of results produced by the SCREEN using the native structure, structure 724 

predicted from sequence with AlphaFold, and sequence-based baseline predictor (CNN 725 

encoder); the error bars represent standard deviation of the mean based on 10 independent runs. 726 

B. Comparison of results produced by the SCREEN using the native structure, AlphaFold-727 

predicted structure, and sequence-based baseline predictor in the context of the quality of the 728 

AlphaFold-predicted structure. The dashed horizontal lines represent the Best-F1 scores 729 

generated by CRHunter (blue line) and PREvaIL (yellow line). C. Examples of contact maps by 730 

ground-truth of native enzyme structures (PDB) and AlphaFold-predicted enzyme structures, 731 

and corresponding catalytic residues identified by SCREEN for enzymes 1aui-A and 1boo-A. D. 732 

Evaluation for enzymes that share varying levels of sequence identify with the training proteins 733 

on the five test datasets. 734 

 735 

Figure 4  Analysis of putative catalytic residues generated by SCREEN  736 

A. Comparison of the SCREEN models with its variant SCREEN_NoEC that does not 737 

incorporate enzyme function through contrastive learning on the five test datasets. This figure 738 

also shows results from CRpred and PREvaIL. B. The t-SNE based visualization of latent feature 739 

spaces in the SCREEN model for residue characteristics, such as hydrophobicity (left), hydrogen 740 

bond types (medium) and charges (right). The "H-bond acceptor" denotes residues exclusively 741 

serving as hydrogen bond acceptors without containing H-bond donor atoms. C. The t-SNE 742 

based visualization of latent feature spaces in the SCREEN model for different color-coded 743 

enzyme classes. D.–F. Analysis of structural and biophysical characteristics, which include 744 

biophysical properties of amino acids (D), B-factor (E) and solvent accessibility (F) for the 745 

putative catalytic residues generated by SCREEN. 746 

 747 

Figure 5  Diversity of enzyme structure and catalytic residues with the same catalytic 748 

mechanism  749 

D
ow

nloaded from
 https://academ

ic.oup.com
/gpb/advance-article/doi/10.1093/gpbjnl/qzae094/7933190 by Virginia C

om
m

onw
ealth U

niversity user on 08 January 2025



24   

We examine enzymes that have the same catalytic mechanism: Isomerases acting on amino acids 750 

and derivatives with EC number 5.1.1 (A) and phosphoric monoester hydrolases with EC number 751 

3.1.3 (B). We plot the TM-score as a measure of structural similarity as a heatmap, with larger 752 

numbers (more yellow) representing more similar structures. We also map the catalytic residues 753 

prediction by SCREEN onto the structures as well as enzyme reactions on the right. 754 

 755 

Figure 6  Assessing the tolerance of catalytic residues to mutations 756 

A. Architecture of the tree-structured model for characterizing mutated residues based on 757 

catalytic residue predictions by SCREEN. B. SCREEN identified catalytic residues of four 758 

different enzymes: PTEN tumor suppressor (PDB ID: 1d5r, Chain A), human cytochrome P450 759 

CYP2C9 (PDB ID: 1og5, Chain A), NUDT15 (PDB ID: 5lpg, Chain A), and Escherichia coli 760 

TEM1 beta-lactamase (PDB ID: 1btl, Chain A) (top). Residues within enzyme structures are 761 

colored according to their predicted mutant class: blue corresponds to the Wild Type-like (WTL) 762 

residues, while gray to the Functional Loss (FL) residues (bottom). C. Quality of distance-based 763 

classification of residues with different mutation classes, measured by accuracy and precision on 764 

both the validation and entire datasets. D. Distribution of the Euclidean distances for residues of 765 

different mutation classes. 766 

 767 

Table 1  Comparison with current predictors of catalytic residues 768 
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Table 1  Comparison with current predictors of catalytic residues 1 

Note: a Model performance on EF superfamily and EF fold datasets by Youn et al. [22]; b Model 2 

performance on HA family dataset by Chea et al. [24]; c Molde performance on NN dataset using 3 

the structure-based method without spatial clustering by Gutteridge et al. [18]; d Model 4 

Performance on PC dataset by Petrova and Wu [20]. 5 

Methods Measurement 

(%) 

EF 

Superfamily 

dataset 

EF fold 

dataset 

HA 

superfamily 

dataset 

NN 

dataset 

PC 

dataset 

Methods from Youn et al.[22]; 

Chea et al.[24]; Gutteridge et 

al.[18]; Petrova and Wu [20] 

Precision 

(Recall) 
16.9 (53.9)𝑎 17.1 (51.1)𝑎 16.5 (29.3)𝑏 56.0 (14.0)𝑐 7.0 (90.0)𝑑 

F1 25.7 25.6 21.1 22.4 13.0 

CRpred  Precision 

(Recall) 

15.9 (52.1) 16.1 (48.0) 24.7 (49.7) 65.9 (18.0) 5.6 (84.5) 

F1 24.4 24.1 33 28.3 10.5 

CRHunter  Precision 

(Recall) 

21.5 (68.7) 21.0 (62.7) 33.2 (69.6) 76.4 (24.0) 7.6 (92.1) 

F1 32.8 31.5 45.0 36.5 14.0 

PREvaIL  Precision 

(Recall) 

17.0 (59.4) 17.0 (56.5) 17.0 (57.9) 58.9 (17.0) 17.0 (58.1) 

F1 26.4 26.1 26.3 26.4 26.3 

AEGAN  Precision 

(Recall) 

31.7 (85.7) 31.0 (83.7) 29.8 (85.7) 29.6 (83.9) 28.6 (86.6) 

F1 45.9 44.6 43.6 43.3 41.3 

SCREEN (This study) Precision 

(Recall) 

61.9 (61.2) 61.0 (68.4) 69.3 (74.8) 68.5 (79.9) 67.6 (82.0) 

F1 61.5 64.5 72.0 73.8 74.1 

Table 1 Click here to access/download;Table;Table 1 121424.docx
D

ow
nloaded from

 https://academ
ic.oup.com

/gpb/advance-article/doi/10.1093/gpbjnl/qzae094/7933190 by Virginia C
om

m
onw

ealth U
niversity user on 08 January 2025

https://www2.cloud.editorialmanager.com/gpb/download.aspx?id=334985&guid=d8865353-34eb-4781-89f9-91ca983f83af&scheme=1
https://www2.cloud.editorialmanager.com/gpb/download.aspx?id=334985&guid=d8865353-34eb-4781-89f9-91ca983f83af&scheme=1



