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Abstract 
 

The prediction of secondary protein structure is one 
of very active research subjects in computational 
biology. It aims to provide computational for 
prediction of secondary protein structure from the 
primary sequence. This paper performs feasibility 
study for development of a novel method for the 
prediction. The main aim is to provide a method that 
breaks current 88% accuracy limit of the third 
generation prediction methods. 

The study uses novel and comprehensive feature 
representation for primary sequences, and performs 
prediction of secondary structure for uniform, in terms 
of the secondary structure, protein fragments. It 
considers a wide range of state of the art classification 
systems on a large and high quality protein dataset 
extracted from the Protein Data Bank.  

The experimental results indicate that the multiple 
layer perceptron neural networks and boosted decision 
trees achieve best and significantly better results, when 
compared to 6 other classification systems. The 
accuracy limit of the develop solution is 72%, which 
prevent from applying these results for a system that 
will break the 88% accuracy limit. At the same time the 
results show high specificity of about 85%, which 
indicates that the generated models are very selective, 
and further improvements are possible and will be 
pursued. We also discovered an interesting finding that 
shows that higher accuracy is achieved for the protein 
fragments closer to the protein head, indicating 
possible importance of the subsequence position when 
predicting the secondary sequence. We also note that 
more evidence should be collected to further 
substantiate the claim.  
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1 Introduction 
 

One of important and heavily explored problems in 
computational biology is computational prediction and 
analysis of protein structure. In general proteins have a 
complex three-dimensional (tertiary) structure. Ability 
to know and analyze it is the key to understanding 
biological functions of proteins. The tertiary structure 
can be learned by experimental approaches, such as X-
ray crystallography and NMR (Engel, 1982). These 
methods are expensive, tedious, and impossible to 
perform for some proteins, and therefore 
computational approaches gain their momentum 
(Ganapathiraju et al., 2004). The computational 
methods use primary amino acid sequence and predict 
two dimensional (secondary) structures as an 
intermediate step to tertiary structure prediction.  Their 
development is further motivated by large number, 
counted in millions, of currently publicly known 
primary proteins structures, compared to only about 30 
thousands of known tertiary structures, which are 
stored in Protein Data Bank (PDB) (Berman et al., 
2000).  

 
This paper focuses on performing feasibility study 

to design a novel approach to predict two dimensional 
protein structures. The main difference between 
numerous existing secondary structure prediction 
methods and the new method lays in fundamental 
methodology and goals. The existing methods aim to 
predict secondary structure for entire protein and 
currently achieve up to 80% accuracy. The new 
method focused on predicting secondary structure for 
some parts of the protein called fragments, aiming to 
obtain very high accuracy of possibly over 90%, and 
leaving the remaining parts of the proteins 
unrecognized. The highly reliable information about 
secondary structure of protein fragments will provide 
invaluable help to predict the remaining parts of the 
protein with high accuracy using existing methods. 
Both approaches are compared in Figure 1. 



 
Figure 1. The comparison between the existing and the 
proposed method for secondary protein structure prediction. 
 

The new method applies divide and conquer 
approach to increase the secondary prediction 
accuracy. The prediction of secondary structure for 
fragments is performed in three steps. First, a given 
primary sequences is cut into fragments. Second, for 
each fragment the secondary structure is predicted. 
Third, the predicted structure is kept only for 
predictions characterized by high confidence. 

The first step is performed by utilizing hydrophobic 
information about the primary protein structure.  It was 
originally proposed by Dr. Ruan from Nankai 
University, and currently is in preparation for 
publication. The method allows dividing the protein 
sequences into a set of disjoint fragments. The 
characteristic feature of each fragment is that it has 
uniform secondary structure, and therefore it is called 
uniform fragment. Some other alternative methods to 
divide the protein into a set of uniform fragments are 
also under development, but are outside of the scope of 
this paper. This paper assumes that the protein primary 
sequence is divided into set of uniform fragment, and 
performs feasibility study of the second step to verify 
if high accuracy classification of the fragments into 
their corresponding secondary structures can be 
performed. The paper also performs additional 
experiments that aim to shed more light into the 
relation between primary sequence fragments for given 
secondary structures and the quality of their secondary 
structure prediction. The results of this study will be 
used in the design of the third step. 

 
1.1 Related Work 

 
The secondary protein structure prediction is used 

as an important intermediate step for predicting tertiary 
structure, protein function, and protein structural 
change, as well as for computer-assisted molecular 

design (Truhlar et al., 1999). The molecular design is a 
basis for rational drug design, and development of 
novel treatments for diseases such as cancer, cystic 
fibrosis, and autoimmune disorders. The Dictionary of 
Secondary Structures of Proteins annotates each amino 
acid that constitutes the primary structure as belonging 
to one of seven secondary structure types, which are 
typically reduced to three states: helix (H), strand (E), 
and coil (C) (Engle, 1982). Secondary structure of a 
protein refers to the folding of the chain of amino acids 
in the three states. 

 
Predicting protein secondary structure using 

computational approaches has over 30 years of history. 
Different prediction methods have been developed and 
continue to improve prediction accuracy, from early 
results of about 60% accuracy to state of the art 
algorithms that achieve about 80% accuracy (Rost, 
2001). The first generation prediction methods were 
based on single amino acid propensities (Chou and 
Fasman, 1978; Garnier et al., 1978). Second-
generation prediction methods are based on 3-51 
adjacent residues propensities (Gibrat et al., 1987; Rost 
and Sander, 1994a; Rost et al., 1994b). The third 
generation prediction methods use evolutionary 
information and large protein databases to consider 
global properties associated with protein families. 
They use position specific profiles, and facilitate 
structure discovery based on sequence alignment 
between the query protein and other known proteins 
using PSI-BLAST and hidden Markov models 
(Altschul et al., 1997; Hargbo and Elofsson, 1999; 
Rost and Sander, 2000). The third generation methods 
are based mostly on considering global protein 
properties based on advanced multiple alignment 
procedures, and aim to predict secondary structure for 
the entire proteins. 

 
1.2 Motivation and Goals 

 
Existing secondary structure prediction methods are 

statistical in nature. The three-state prediction accuracy 
of third generation methods that are based solely on 
multiple sequence alignment is limited to the level of 
88%. They cannot be expected to overcome this 
accuracy limit due to natural variations observed in 
structural families (Rost et al., 1994b; MacCallum, 
1997).  

The investigated new method concentrates on the 
prediction of secondary structure for protein fragments 
for which the highest confidence was achieved, instead 
of finding the secondary structure of the entire protein. 
We aim to develop a method that will be able to break 
the 88% accuracy limit for the selected protein 

Primary sequence 
GTMLLGMLMICSATEK 

Secondary Structure 
CCCHHHHHHCCCCEEE 

Primary sequence 
GTMLLGMLMICSATEK 
Partial Secondary Structure 

CCC….HHHHHH………EEE 

new  method 
1. divide sequence into fragments 
2.  predict structure for each fragment 
3. accept high quality predictions 

existing 
prediction 



fragments providing reliable data for standard third 
generation methods, which will complete the 
prediction process. The new method applies divide and 
conquer principle by dividing the entire protein into 
uniform, in terms of the secondary structure, fragments 
and performing prediction for each of the fragments 
individually. Our investigation focuses on designing a 
classifier that will predict secondary structure for the 
protein fragments using their primary sequence as the 
input. 

The rest of the paper is organized as follows. 
Section 2 gives background concepts and presents the 
proposed method and goals for the feasibility study, 
while Section 3 describes experimentation, results, and 
conclusions. The paper ends with summary and future 
work. 

 
2 Background and Goals 

 
The method for prediction of secondary structure 

for uniform protein fragments is shown in Figure 2. 

 
Figure 2. The procedure used to assess quality of prediction 
of secondary structure for protein fragments. 
 
2.1 Selection of Uniform Protein Fragments 

 
The assessment of the quality of the prediction for 

uniform fragments is based on two assumptions. First, 

the PDB is used as a source of data that includes 
primary and secondary protein structure. A custom set 
of filters, which are described in the next section, is 
used to guarantee high quality of the input data. 
Second, this study divides the primary sequences into 
subsequences that correspond to secondary structures 
from PDB. This is an idealized situation where the 
fragments are fully uniform and span the entire 
corresponding primary subsequence. The actual known 
method for dividing the sequences into fragments 
guarantees uniformity, but at the same time the 
resulting fragment usually are only subsequences of 
the entire corresponding primary subsequences.  For 
instance, based on the following primary and 
secondary protein sequences 
- primary sequence:  GTMLLGMLMICSATEK 
- secondary sequences: CCCHHHHHHCCCCEEE 
the idealized scenario realized in this paper divides the 
primary sequence into GTM, LLGMLM, ICSA, and 
TEK, while the actual division might be GTM, LLG, 
MLM, IC, SA, and TEK. 

 
While application of the idealized scenario may 

results in overestimating the accuracy of the resulting 
classification, it provides certain benefits. It allows for 
direct evaluation of the accuracy of classification of 
the fragments into the secondary structures. It also 
allows performing additional studies related to 
investigation of the relation between uniform 
fragments and their secondary structure. 

 
2.2 Protein Representation 

 
The prediction of secondary structure is performed 

with an intermediate step that transforms the primary 
sequences into their feature space representation. This 
is due to the differences in length of the primary 
sequences for different proteins, i.e. the primary 
sequences length can vary between several to several 
hundred residues (amino acids), while prediction 
algorithms usually assume input data of fixed length. 
The usual features describe amount and position of 
amino acids that compose a given proteins, and can 
vary between about 20 features to several hundred 
features (Kurgan and Homaeian, 2005). This 
investigation assumes comprehensive feature 
representation that is based on protein and amino acid 
properties listed in Table 1. The table also provides 
motivation for introduction of each of the features. 
Each uniform protein fragment is described using set 
of 83 features and is classified into one of the three 
secondary protein structures.  

 

secondary structure 
CCCHHHHHHCCCCEEE 

primary sequence 
GTMLLGMLMICSATEK 

Uniform fragments 
GTM, LLGMLM, ICSA, TEK 

Divide sequence into fragments 
- each fragment corresponds to a 

subsequences for a given secondary 
structure (as defined in PDB) 

Protein Data Bank 
(PDB) 

Uniform fragments 
helix LLGMLM 
coil GTM, ICSA 
strand TEK 

Classifier 
- classifies each of the uniform 

fragments into the corresponding 
secondary structure 

Compare with original 
secondary structure assignment 
from PDB and evaluate accuracy 



Table 1. Feature representation of a primary sequence for a uniform protein fragment 
 
Property 
Name 

Feature 
index 

Description Motivation 

Sequence Length
  

1 Length (# amino acids) of a protein fragment The length relates to quantity of the three-state 
structures 

# of  duplicates 2 Number of times a given uniform fragment occurs in a 
protein dataset 

Higher occurrence of a uniform fragment gives higher 
confidence of quality of its  primary structure 

Relative position 3 Position of a given uniform fragment in the protein.  The 
position describes in which quarter of the protein the 
majority of the fragment resides. 

Fragment’s position relates to the secondary structure 

Average 
hydrophobicity 

4 Average hydrophobicity value of the uniform protein 
fragment using Esienberg’s hydrophobic index table 
(Cornette et al., 1997) 

Hydrophobic force is one of the strongest determinant 
factors of a protein structure. 

Accumulated 
average 
hydrophobicity 

5 Accumulated (summed starting from the protein head) 
average hydrophobicity value of the uniform protein 
fragment using Esienberg’s hydrophobic index table 
(Cornette et al., 1997) 

Hydrophobic force is one of the strongest determinant 
factors of a protein structure. Sequences at the protein 
head determine the rest of the protein. 

Average log 
Hydrophobicity 

6 Average hydrophobicity value of the uniform protein 
fragment using hydrophobicity values of the Black and 
Mould hydrophobic index table (Black and Mould, 1991) 

Hydrophobic force is one of the strongest determinant 
factors of a protein structure. Log value allows better 
scaling of the value. 

Accumulated 
average log 
hydrophobicity 

7 Accumulated (summed starting from the protein head) 
average hydrophobicity value of the uniform protein 
fragment using hydrophobicity values of the Black and 
Mould hydrophobic index table (Black and Mould, 1991) 

Hydrophobic force is one of the strongest determinant 
factors of a protein structure. Sequences at the protein 
head determine the rest of the protein. Log value 
allows better scaling of the value. 

Molecular weight 8 The molecular weight of the uniform protein fragment. It 
is computed as a sum of molecular weights of the neutral, 
free amino acids. 

The three-state structures are related to their weight. 
Amino acids are very small biomolecules with an 
average molecular weight of about 135 Daltons. 

Composition 
vector (1-20) 

9-28 Normalized, by the protein length, composition percentage 
of each amino acid in the primary sequence of the uniform 
protein fragment 

Most structure prediction methods use this property 
(Eisenhaber, 1996; Zhang et al., 2001; Ruan et al., 
2005) 

1st order compo-
sition moment 
vector  (1-20) 

29-48 Normalized, by the protein length, composition percentage 
of each amino acid that additionally takes into 
consideration position of the amino acids in the primary 
sequence of the uniform protein fragment 

Measure used for protein content prediction (Ruan et 
al., 2005) 

Auto correlation 
function (1-10) 

49-58 Reflects the profile of the hydrophobicity indices of 
residues along the amino acid sequence of the uniform 
protein fragment  

Measure used for protein structure prediction (Zhang 
et al., 2001) 

Electronic group 
(1-6) 

59-64 Divides amino acids based on the electronic property, i.e. 
if they are neutral, electron donor or electron acceptor 

Electrostatic forces are strong, and stabilize secondary 
and tertiary structure (Ganapathiraju et al., 2004) 

Chemical group 
(1-19) 

65-83 Divides amino acids based on chemical groups There are 19 chemical groups of which AAs are 
composed (Ganapathiraju et al., 2004; Kurgan and 
Homaeian, 2005) 

Class 84 Three state secondary structures: helix, strand, and coil Target predicted attribute 

 
2.3 Feasibility Study Goals 

 
The goal of this paper is to verify the following two 

hypotheses: 
1. Is it possible to achieve prediction accuracy 

significantly higher than 88% for the task of 
classification of uniform protein fragments? 

2. What is the relation between the position of the 
uniform proteins fragments, with the respect to 
the beginning (head) of the protein sequences 
and the quality of secondary structure 
prediction? 

 
Satisfying the first goal would provide a valuable 

solution to the overall new prediction method 
presented in Figure 1. The 88% accuracy limit is 

related to the current accuracy limit of the third 
generation secondary structure prediction methods.  

The answer to the second hypothesis would provide 
a valuable insight into the analysis of secondary 
protein structures. A recent paper shows that long 
primary protein sequences stored in PDB are a 
covering set of all smaller peptides in three 
dimensional structures (Kichara and Skolnik, 2003). 
This means that short protein sequences can be found 
as subsequences of longer proteins. At the same time, 
biologist argue that for a set of primary sequences that 
have the same amino acids at first t sites, amino acids 
situated after site t, which constitute so called tail, 
converge to similar sequences with increasing value of 
t. Based on these two observations, it would be 
interesting to investigate if certain, say located near the 



protein head, uniform proteins fragments are 
characterized by being “more characteristic” for given 
secondary sequence structures since they dictate the 
remaining, tail, portion of the primary sequence. 

 
3 Experiments and Results 

 
The two hypotheses defined in Section 2.3 were 

verified experimentally. A comprehensive set of 
experiments, which included careful preparation of 
input data based on proteins published in PDB, strict 
evaluation of prediction accuracy of several state of the 
art classification systems for the secondary structure 
prediction for the uniform fragments, and finally 
careful analysis of the generated results, which led to 
verification of the defined hypotheses, were 
performed. We first describe the data preparation 
process, which is followed by description of the 
selected classification systems, experimental results, 
and summary of the results. 
 
3.1 Dataset Preparation 

 
The main goal for data preparation procedure was 

to assure high quality of the used proteins. The primary 
and secondary structures of the considered in the 
experimentation proteins were extracted from PDB, 
release as of August 12th 2004. Analogically to the 
procedure performed in (Kurgan and Homaeian, 2005) 
for the proteins that have isotopes, the last one was 
selected. The proteins were filtered according to a set 
of rules defined in Table 2 to eliminate errors and 
inconsistencies.  

 

Table 2. Filters used to select high quality protein sequences 
 

Filter # removed 
sequences 

The length of the sequence was less than 4. 455 
Number of residues did not match the sequence 
length. 

9 

The sequence had the residue called UKN 
(unknown) 

25 

There were some residue(s) other that the legal 
twenty two amino acids. 

11540 

There was some helix of length less that 3. 1291 
There was some strand of length less that 2. 19022 
There was some helix indexed out of the sequence. 10038 
There was some strand indexed out of the 
sequence 

8023 

There was some coil indexed out of the sequence 219 
Overlap between helix and strand 782 
Overlap between helix and coil 1342 
No secondary structure 9972 
No primary structure 13 

 
Additionally, all sequences with identical primary 

sequences and different secondary sequences were 
eliminated. Lastly, sequences with ambiguous amino 
acids in the primer, i.e. B or Z, were removed resulting 
in a dataset that included 5834 sequences. The dataset 
was further filtered using the 25% PDB SELECT list 
(Hobohm and Scharf, 1992; Hobohm and Sander, 
1994). The list is a subset of PDB proteins that 
excludes proteins of low quality and homologous 
proteins of lower quality (the list of proteins can be 
obtained from http://homepages.fh-giessen.de/~hg 
12640/pdbselect/). The filtering resulted in the final set 
of 539 proteins. 

 

 
Figure 3. The dataset preparation procedure. 

PDB 
September 2004 

5834 protein 
sequences 

filter defined in 
Table 2 

539 protein 
sequences 

25% PDB 
SELECT list 

539 protein 
sequences 

divide into uniform 
fragments 

1863 helix (H) 
fragments 

1956 strand (E) 
fragments 

3339 coil (C) 
fragments filter defined 

in Table 3 

1861 distinct 
helix fragments 

1939 distinct 
strand fragments 

3289 distinct 
 coil fragments 

remove 
duplicates
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system input data
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The resulting set of proteins was divided into three 

sets corresponding to uniform fragments for helix, 
strand, and coil structures. The uniform fragments 
were additionally filtered to eliminate errors similar to 
the ones defined for entire primary sequences, which 
are summarized in Table 3.  

 
Table 3. Filters used to select high quality uniform protein 
fragments 
 
State/class Filter 
H (helix fragments) Helix fragments of length ≤ 3 and those 

adjacent to strand fragment were removed 
E (strand fragments) Strand fragments of length ≤ 2 and those 

adjacent to helix fragment were removed  
C (coil fragments) Coil fragments of length ≤ 2 were removed 

 
Within each of the uniform fragment sets duplicate 

structures were removed and value of the second 
feature from Table 1 was computed. Next, inconsistent 
uniform fragments, i.e. fragments of identical primary 
structure and different secondary structure, between 
the three sets were removed. Schematic diagram for 
the entire dataset preparation procedure is shown in 
Figure 3. 

 
Finally, the following 8 datasets were created: 

- DA, which includes all 7057 uniforms fragments 
- D1, D2, D3, and D4, which include only first, first 

two, first three, and first four uniform fragments 
respectively, with respect to the protein head, for 
each protein from the set of 539 proteins. 

- d1, d2, d3, and d4, which include only first, 
second, third, and fourth uniform fragments 
respectively, with respect to the protein head, for 
each protein from the set of 539 proteins. We note 
that d1 and D1 are the same dataset. 

 
The DA dataset was used to investigate the first 

hypothesis, while the remaining datasets were used to 
investigate the second hypothesis. The summary 
information for the datasets is shown in Table 4. The 
resulting sets uniform fragments were converted into 
the feature representation, as defined in Table 1. 

 
3.2 Experimental Setup 

 
The prediction of secondary structures for all 

considered datasets of uniform fragments was 
performed using a comprehensive set of classification 
systems. They were selected to include all state of the 

art systems, as well as to cover all major families of 
systems. The classification systems can be divided 
based on the generated model into the following 
families: 

- black-box systems, which generate a model that 
cannot be interpreted by the user 

- white-box systems, generate an interpretable 
model 

The white-box systems can be further divided into: 
- rule-based systems, which generate models that 

consists of production rule sets 
- decision tree systems, which generate models 

that consists of decision trees 
- probabilistic systems, which generate 

probabilistic models 
Our paper uses state of the art methods in each of 

the classification systems families. A detailed list of 
the considered classification systems, which includes 8 
methods, is shown in Table 5. 

 
Table 4. Summary information for the considered datasets of 
uniform protein fragments 
 

length length Data
set 

State # frag-
ments min max

Data
set 

State # frag-
ments min max 

H 1863 4 68 H 15 4 32 
E 1956 3 26 E 2 12 13 

DA 

C 3339 3 74 

d1 

C 406 3 74 
H 15 4 32 H 267 4 68 
E 2 12 13 E 223 3 19 

D1 

C 406 3 74 

d2 

C 11 3 15 
H 282 4 68 H 13 5 24 
E 225 3 19 E 3 5 10 

D2 

C 417 3 74 

d3 

C 398 3 44 
H 295 4 68 H 258 4 59 
E 228 3 19 E 184 3 17 

D3 

C 815 3 74 

d4 

C 20 3 18 
H 553 4 68 
E 412 3 19 

D4 

C 835 3 74 

 

 

 
Table 5. List of considered classification systems 

 
system type classification 

system name 
reference 

black-box Multiple Layer 
Perceptron (MLP) 
Neural Network 

(Hornik et al., 1989) 

RIPPER (Cohen, 1995; Cohen, 1996) rule-base 
SLIPPER (Cohen and Singer, 1999) 
ID3 (Quinlan, 1986) 
CART (Breaiman et al., 1984) 
C5.0 (RuleQuest, 2003) 

decision 
trees 

boosted C5.0 (RuleQuest, 2003) 

white-
box 

probabilistic Naïve Bayes (NB) (Duda and Hart, 1973) 

 



The selected methods were used for the three-state 
prediction of the uniform fragments based on the 
feature representation. The implementation of the 
methods was obtained from the authors, and in case of 
the ID3, CART, MLP, and NB systems, the 
TANAGRA ver. 1.1.3 software, available at eric.univ-
lyon2.fr/~ricco/tanagra/en/tanagra.html, was used. The 
C5.0 system was combined with boosting option, 
which generates and combines several models to 
increase the prediction accuracy (Schapire and Singer, 
1998). Boosting potentially results in increasing the 
accuracy of prediction in expense for more complex 
model. 

We also note that the features generated according 
to Table 1 are continuous. All above classification 
systems can use continuous data, except the NB, for 
which Equal-Frequency discretization was performed. 
 
3.3 Experiments, Results, and Conclusions 

 
The selected 8 classification systems were applied 

on the 8 datasets. Each prediction was performed using 
ten-fold cross-validation procedure. The results report 
average accuracy together with standard deviation. 
Also, for all classification systems, except RIPPER and 
SLIPPER, average, over the three classes, sensitivity 

and specificity values were computed to give further 
insights. The results are summarized in Table 6.  

 
To easy the analysis, the experimental results are 

represented using a series of figures. The analysis of 
the results needs to be proceeded by closer analysis of 
the input datasets. The Figure 4 shows distribution of 
secondary structures for the 8 datasets.  

 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

D1 D2 D3 D4 DA d2 d3 d4

% H % E % C

 
Figure 4. Distribution of the secondary structures for the 
considered 8 datasets 

 
Table 6. Summary of experimental results 
 

dataset DA dataset D1 dataset D2 dataset D3 
accuracy accuracy accuracy accuracy 

Classifi-
cation 
System min max avg (stdev) 

sensit
ivity 

speci
ficity min max avg (stdev)

sensit
ivity

speci
ficity min max avg (stdev)

sensit
ivity

speci
ficity min max avg (stdev)

sensi
tivity

speci
ficity

RIPPER 67.52 72.34 69.11 (1.8) --- --- 92.68 97.56 95.21 (2.0) --- --- 62.64 74.73 69.36 (3.8) --- --- 66.92 78.20 72.22 (3.2) --- --- 
SLIPPER 65.11 70.08 67.75 (1.7) --- --- 92.68 97.56 96.18 (1.7) --- --- 63.00 74.73 70.81 (3.7) --- --- 66.92 80.45 72.29 (4.4) --- --- 
ID3 65.36 67.21 66.59 (0.5) 64.72 82.30 95.85 96.34 96.00 (0.2) 33.33 66.67 67.03 70.44 68.36 (1.1) 66.78 83.26 70.45 73.68 72.30 (1.0) 62.94 81.39
MLP 71.04 72.96 72.43 (0.5) 70.63 85.33 94.88 96.10 95.68 (0.5) 34.12 67.34 72.64 75.60 74.29 (0.9) 72.29 86.66 74.89 77.37 75.92 (0.7) 67.54 84.58
CART 66.61 68.14 67.58 (0.5) 64.35 82.23 95.61 96.10 95.85 (0.1) 33.54 66.85 67.69 70.99 69.26 (1.1) 71.05 85.09 71.65 75.26 73.40 (1.1) 64.18 82.15
NB 66.40 66.70 66.54 (0.1) 67.15 83.29 95.61 96.34 96.05 (0.3) 41.72 74.01 69.34 70.44 69.91 (0.3) 71.05 85.09 68.05 68.72 68.36 (0.2) 69.95 84.05
C5.0 64.40 68.80 67.50 (1.4) 65.19 82.70 92.60 97.60 95.20 (2.0) 39.50 72.05 59.80 76.10 69.32 (4.9) 68.23 84.30 60.40 78.20 70.64 (4.9) 62.71 81.80
boosted C5.0 70.10 74.60 72.37 (1.4) 69.96 85.09 95.20 97.60 96.16 (1.2) 35.56 68.63 67.00 81.50 75.71 (4.4) 74.01 87.35 67.70 80.50 75.22 (3.8) 66.01 83.35
AVERAGE 67.1 70.1 68.7 67.0 83.5 94.4 96.9 95.8 36.3 69.3 66.1 74.3 70.9 70.6 85.3 68.4 76.5 72.5 65.6 82.9

dataset D4 dataset d2 dataset d3 dataset d4 
accuracy accuracy accuracy accuracy 

Classifi-
cation 
System min max avg (stdev) 

sensit
ivity 

speci
ficity min max avg (stdev)

sensit
ivity

speci
ficity min max avg (stdev)

sensit
ivity

speci
ficity min max avg (stdev)

sensi
tivity

speci
ficity

RIPPER 65.92 75.14 69.75 (2.8) --- --- 74.00 88.00 79.20 (4.0) --- --- 2.44 100.0 86.95 (29) --- --- 65.92 96.70 69.75 (8.8) --- --- 
SLIPPER 62.01 73.48 66.71 (3.4) --- --- 66.00 82.00 76.00 (5.1) --- --- 90.24 100.0 96.14 (3.1) --- --- 62.01 73.48 66.85 (3.4) --- --- 
ID3 64.58 67.09 65.82 (0.8) 63.62 81.63 79.00 80.80 80.26 (0.6) 55.35 87.78 79.00 80.80 80.26 (0.6) 33.33 66.67 77.61 78.70 78.41 (0.4) 54.81 86.49
MLP 71.04 72.96 72.43 (0.5) 71.19 85.91 80.60 84.20 82.56 (1.4) 56.13 88.51 96.10 96.10 96.10 (0.0) 33.33 66.67 76.52 79.13 77.87 (0.9) 53.87 85.53
CART 64.64 67.88 66.40 (0.9) 63.04 81.46 79.60 82.00 80.52 (0.7) 55.41 87.85 79.60 82.00 80.52 (0.7) 33.33 66.67 72.17 78.26 75.87 (2.0) 53.24 85.06
NB 66.40 66.70 66.54 (0.1) 69.95 84.50 78.20 80.80 79.18 (0.8) 54.41 87.53 93.41 94.39 93.90 (0.3) 35.30 68.12 73.91 76.96 75.37 (0.8) 55.03 85.90
C5.0 57.50 68.20 64.40 (3.2) 62.57 81.26 70.00 82.00 74.80 (3.7) 50.79 83.81 92.70 97.60 94.71 (1.9) 32.83 66.17 61.70 80.40 71.66 (6.3) 49.62 82.17
boosted C5.0 64.40 77.70 69.99 (3.7) 68.16 83.98 72.00 84.00 78.80 (3.9) 53.54 86.62 92.70 97.60 95.42 (1.8) 33.08 66.42 67.40 82.60 75.97 (4.9) 53.64 84.30
AVERAGE 64.6 71.1 67.8 66.4 83.1 74.9 83.0 78.9 54.3 87.0 78.3 93.6 90.5 33.5 66.8 69.7 80.8 74.0 53.4 84.9

 



The distributions show that datasets D1, and d3 
contain mainly coil fragments, which is expected given 
the knowledge of overall protein structure. 
Additionally dataset D3 contains a higher number of 
coil fragments due to including first three fragments in 
the sequences, i.e. in significant majority of the cases 
both 1st and 3rd fragments are coils. We also note that 
datasets d2 and d4 contain similar distribution, but 
with low number of coils, which agrees with the 
protein structure. Therefore we note that the dataset 
DA will be used to study goal 1, while goal 2 will be 
studied based on two sequences of datasets: D2, D4, 
and DA; d2 and d4.  

The DA datasets is suitable to provide results for 
goal 1 due to high quality of the data, and suitable 
distribution of the secondary structure. The D2, D4, 
and DA sequence will be studied to verify the goal 2. 
This is due to similar secondary structure distribution 
between these datasets. We note that since D2 contains 
first two fragments in the sequence, D4 first four, and 
DA all fragments, using this sequence of datasets will 
reveal if there is a relationship between position of the 
fragment and the quality of prediction. Similarly d2 
and d4 sequences, which have similar distribution of 
classes, were selected.  

 
To evaluate quality of the generated classifiers two 

aspect were considered. First, if they can archive 
accuracy above 88%, and second how they perform 
with respect to each other and so called default 
hypothesis. The default hypothesis is defined as the 
accuracy of classifier that would always choose the 
class (secondary structure) with the highest count of 
input examples. For instance, in case of D1 is the coil 
class. Therefore, classifiers should generate models 
with accuracy significantly better than the default 
hypothesis accuracy to be evaluated as high quality. 
Therefore further analysis is based on accuracy gain, 
which equals to the difference between the achieved 
accuracy and the accuracy of the default hypothesis. 
The default hypothesis values for the selected datasets 
are shown in Table 7.  

 
Table 7. Default hypothesis values 
 

Datasets 
DA D1 D2 D3 D4 d2 d3 d4 

default 
hypothesis 
accuracy 46.6 95.91 45.12 60.91 46.38 53.29 96.13 55.84

 
3.1.1 Results for goal 1. The accuracy, sensitivity 
and specificity of the 8 classifiers, and the default 
hypothesis accuracy for ten-fold cross validation test 
on DA are shown in Figure 5. 
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Figure 5. Summary of results for goal 1 

 
The analysis shows that none of the classifiers was 

able to break the 88% accuracy limit. This shown that 
the described approach does not provide a suitable 
solution to provide a system that can be used to 
improve third generation secondary structure 
prediction methods. At the same time we note that all 
classifiers perform significantly better than the default 
hypothesis. This shows that the applied approach gives 
promising results that could be improved in the future. 
We also note that among the tested 8 classification 
systems the best results in terms of accuracy, 
sensitivity and specificity were achieved by MLP and 
boosted C5.0 classification systems. The two systems 
achieved 72.4% accuracy. A paired T-test at 5% 
confidence shows that the two classifiers performed 
significantly better, in terms of the accuracy, than all 
other classification systems. 

 
3.1.2 Results for goal 2. Two studies: for D2, D4, 
and DA datasets, and for d2 and d4 datasets, were 
performed. The accuracy of the 8 classification 
systems for the selected datasets is shown in Figures 6 
and 7.  The figures show the accuracy gain values for 
each of the classification system, and the linear trend 
for the average accuracy gain. 
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Figure 6. Summary of results for goal 2 for D2, D4, and DA 
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Figure 7. Summary of results for goal 2 for d2 and d4 

 
The linear trend shows that the prediction accuracy 

gain, which is independent of the class distribution, 
decreases when fragments farther from the protein 
head are considered. We also note that the trend is 
relatively weak, showing only about 3.5% accuracy 
gain difference in case of the D1, D2, and DA datasets, 
and about 7% in case of the d2 and d4 datasets.  

 
Difference between average sensitivity and specifi-

city for the selected datasets are shown in Figure 8. 
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Figure 8. Summary of average sensitivity and specificity 
results for goal 2 

 
The average sensitivity and specificity show the 

same trend as observed for accuracy gain. We observe 
that the MLP and boosted C5.0 classification systems 
are once again characterized by the best results. The 

lowest quality, on average, is exhibited by the ID3 
system. 

 
In a nutshell, we conclude that although the results 

show that higher accuracy prediction is achieved for 
the protein head fragments, more evidence should be 
collected to substantiate the claim. We also note that 
results of all classification systems for all datasets are 
characterized by high specificity of about 85%, when 
compared to sensitivity and accuracy. High specificity 
shows that generated classification models are 
characterized by low false positive scores, which 
means that the models for a specific secondary 
structure, say helix, very rarely classify fragments of 
the other secondary structures, i.e. coil and strand, as 
helices. This shows that the generated models are very 
selective, and further improvements are possible. 

 
4 Summary and Future Work 

 
The paper concerns feasibility study for 

development of a novel system for secondary protein 
structure prediction from primary protein sequences. It 
investigates two hypotheses. First, it investigates if the 
prediction accuracy for uniform protein fragments can 
break current 88% limit of predictive accuracy of the 
third generation prediction methods. Second, it 
investigates relation between position of the uniform 
proteins fragments, with the respect to the protein 
head, and the quality of secondary structure prediction. 

 
The experimental study, which used a novel protein 

representation, and worked on high quality large 
protein dataset, shows that the prediction of the 
secondary structure for uniform protein fragments is 
limited to 72% accuracy. This shows that this approach 
cannot be used to develop the high quality prediction 
system for entire proteins. At the same time, we note 
that high specificity of the classification results and 
their relatively high accuracy shows that further 
improvements are possible and should be pursued. We 
also note that among the considered eight state of the 
art classification systems, the multiple layer perceptron 
neural networks and boosted C5.0 decision tree 
performed best and significantly better than other six 
considered systems. 

 
The study also shows that higher accuracy, 

sensitivity, and specificity of the prediction are 
achieved when predicting secondary structure for 
uniform fragments closer to the beginning of the 
protein. This indicates that those fragments are of 
bigger importance and possibly have more 



characteristic structure. We note that the discovered 
trend is relatively weak and further investigation is 
required to provide more evidence. 

 
The future work will include enhancing the future 

representation of a primary sequence, including 
scoring matrices based approach for prediction, and 
performing additional studies that would reveal 
relations between the uniform proteins fragments and 
the corresponding secondary structure. 
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