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Abstract 

 
This paper proposes a new framework for signal 

prediction realized at linguistic level. It uses Fuzzy 
Cognitive Maps approach and a genetic algorithm 
based learning method. Fuzzy Cognitive Maps are very 
convenient and powerful technique of modeling and 
analysis of dynamic systems. Recently introduced 
learning method that uses real-coded genetic 
algorithm approach opened new possibilities of their 
applications, which are explored in this paper. The 
developed method learns model of a given continuous 
signal and predicts its future values as a set of 
linguistic terms. The theoretical design of the proposed 
method is supported by comprehensive experiments, 
carried out for synthetic and real-word data. The 
results demonstrate high quality of the developed 
method,  
 
 
1. Introduction 
 

Given the complexity and omnipresence of signal 
processing (occurring in numerous problems of 
filtering, prediction, control) we are faced with 
continuous challenges of building more advanced 
algorithms that are in rapport with the reality. 
Prediction problems call for new approaches capable 
of addressing aspects of nonlinearity and 
nonstationarity that comes inherently associated with 
the phenomena under consideration. [9]. Many 
different approaches to signal representation exist. 
Mainly, they come from linear system theory [7], 
stochastic process theory [14] and are usually typical 
for the black-box methodology [6], and dynamical 
system analysis [8].  

In this paper, we are focused on qualitative 
modeling, analysis and prediction. This means, that we 
describe given signal in qualitative terms, i.e. linguistic 

description, instead of quantitative ones, i.e. numerical. 
We combine fuzzy modeling, fuzzy cognitive maps 
and a recently introduced genetic learning algorithm in 
order to build a system that is able to model and 
predict signals on linguistic level. Reference [15] is a 
valuable introduction to fuzzy system modeling, which 
introduces an idea of distributed fuzzy modeling, 
whereas Sections 1.1 and 1.2 of this paper describe 
briefly fuzzy cognitive maps and explain the idea of its 
genetic learning using RCGA algorithm. 

 
1.1. Fuzzy Cognitive Maps: Introductory 

Remarks 
 

Fuzzy cognitive maps (FCMs) are simple, yet 
powerful tool for modeling and simulation of dynamic 
systems. They were originally introduced by Kosko 
[11] as an extension of cognitive maps [2]. 

The main advantage of FCMs lies in their 
straightforward graph representation, which consists of 
nodes connected by edges. Nodes correspond to 
concepts or variables within given domain of 
application, whereas directed edges reflect mutual 
relationship between concepts. Each edge is associated 
with a weight value from the range [-1,1] that 
expresses both the type and strength of given 
relationship. Negative value indicates prohibitory 
effect that source concept exerts on the destination 
one, Positive value indicates a promoting effect. The 
zero value denotes no causal relationship between two 
concepts. The absolute value of the weight 
corresponds to different fuzzy levels of relationships’ 
strength. The graph representation can be equivalently 
denoted by a square matrix, called connection matrix. 
It accumulates all weight values for edges between 
corresponding concepts. Figure 1 shows an example of 
FCM model that concerns public city health issues 
[12].  
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 N1 N2 N3 N4 N5 N6 N7 
N1 0 0 0.6 0.9 0 0 0 
N2 0.5 0 0 0 0 0 0 
N3 0 0.6 0 0 0.8 0 0 
N4 0 0 0 0 0 0 0.9
N5 0 0 0 0 0 -0.8 -0.9
N6 -0.3 0 0 0 0 0 0 
N7 0 0 0 0 0 0.8 0 

Figure 1. Sample FCM model and its 
connection matrix 

During simulation, FCM iteratively calculates its 
state that is represented by a state vector, which 
consists of all nodes values at given iteration. Value of 
each node is determined based on values of nodes that 
exert influence on the given node, i.e. nodes that are 
connected to this node. These values are multiplied by 
corresponding weight values and the sum of these 
products is taken as the input to a transformation 
function. The purpose of using this function is to 
normalize the node value, usually to the range [0,1]. 
As a result, each node can be defined as active (value 
of 1), inactive (value of 0), or active to a certain degree 
(value between 0 and 1). The non-linear transformation 
function makes possible to comparisons between nodes 
at the expense of quantitative analysis. Three popular 
transformation functions are bivalent, trivalent, and 
logistic. Depending on such transformation, several 
patterns of dynamic behavior are possible [10]. 

Despite of their simplicity, FCM models have been 
successfully applied to many different research and 
industrial areas. Examples of such specific applications 
include medical diagnosis [22], analysis of electrical 
circuits [21], analysis of failure modes effects [16], 
fault management in distributed network environment 
[13], modeling of software development project [17] 
[20], and many others. 

 
1.2. Genetic Learning of FCM with RCGA 

Algorithm 
 
The advantage of simplicity of development FCM 

models has a downside of subjectivity of the model 
and problems with unbiased assessment of its 
accuracy, since this process in most cases is based on 
expert(s) beliefs [1]. Given the set of nodes, the main 
difficulty is to accurately establish the weights. This 
issue can be solved by learning methods that allow for 
establishing FCM model from raw (historical) data. 
The novel approach to tackle this problem using real-
coded genetic algorithm (RCGA) has been introduced 
recently [19] [18]. In this paper, the FCM models are 
used as a part of linguistic signal prediction system. 
The FCM models are automatically generated from a 
set of fuzzy signals. 

Figure 2 shows the high-level diagram of RCGA 
learning method. 
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Figure 2. High-level diagram of the RCGA 
learning method 

This is fully automated method that does not 
involve any human interference. Based on historical 
data given as a time series, called input data, it 
establishes the FCM model, candidate FCM, which is 
able to mimic the data. The core of this method is real-
coded genetic algorithm, which is an extension to 
genetic algorithm [4] [5]. The fundamental difference 
concerns chromosome representation. In this case, each 
chromosome consists of floating point numbers that 
correspond to the problem variables. Accordingly, the 
genetic operators are redefined. This approach is 
suitable when tackling optimization problems of 
parameters with variables in continuous domains.  

The RCGA approach uses the input data to find the 
variables. In this paper, the input data are set of fuzzy 
representations of given signal and have form of time 
series. The learning objective is to find the FCM model 
that produces the same state vector sequence (input 
data). The idea behind it is to have model that 
generalizes the input data, and is able to make signal 
prediction. 

The chromosome representation is based on the 
FCM feature that any model can be fully described by 
its connection matrix, i.e. by N*N variables, where N 
refers to the number of concepts. In consequence, 
chromosome has the following structure 

[ ]TNNNN eeeeeeeee ,...,,...,,,,,...,,,ˆ 22322211131211=E , where eij 
determines the value of an edge weight from ith to jth 
concept node. The role of fitness function is to assess 



the quality of the model represented by its connection 
matrix. It takes advantage of a specific aspect of FCM 
theory, i.e. that the current state of FCM model C(t+1) 
depends only on the system state in the immediately 
preceding iteration C(t). Assuming that the input data 
length is K, this feature allows for rearranging the 
given learning data set into the form of K-1 different 
pairs by grouping each two adjacent state vectors 

1,...,0)1()( −=∀+→ KttCtC  
In each pair, C(t) is called initial vector, and C(t+1) 

is called system response. The fitness function is based 
on error between system response from input data set 
and from candidate FCM for all {initial vector, system 
response} pairs, which is calculated as follows: 
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Other RCGA parameters, which are based on [18], 
include: recombination method (single-point 
crossover), mutation method (randomly chosen from 
random mutation, non-uniform mutation, and 
Mühlenbein’s mutation), selection method (randomly 
chosen from roulette wheel and tournament), 
probability of recombination equal to 0.9, probability 
of mutation equal to 0.5, population_size equal to 100 
chromosomes, max_generation size equal to 10000, 
and max_fitness value equal to 0.999. 

 
2. Framework of Proposed Prediction 

Method 
 

The proposed method’s goal is linguistic prediction 
of signal, in terms of its amplitude and change. It uses 
fuzzy sets theory to convert the input signal into 
linguistic description. After fuzzification, given signal 
expressed in fuzzy terms is used to learn FCM model, 
which can be used for prediction. High-level diagram 
of the proposed approach is shown in Figure 3. The 
connectors (arrows) illustrate the typical routine that 
leads to establish FCM model. The test phase, i.e. 
prediction, is marked by dashed line. 
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Figure 3. High-level diagram of the proposed prediction method 

 
Proposed system architecture includes five main 
elements. 
 
The role of pre-processing module is twofold. First, it 
accepts a raw signal, called amplitude, and determines 
its changes; we will be referring to such signal as a, 
change. In other words, this signal describes the input 
signal changes in time. Second, the role of this module 
is to normalize both signals. The normalization is done 

linearly and it brings the original signals to the unit 
interval. In case of change signal, this procedure is 
slightly different. Based on minimum and maximum 
value of input signal, the maximum change value is 
determined. The change signal is linearly scaled with 
respect to this maximum value, i.e. the set of all 
change signal value is a subset of [0,1]. This procedure 
allows avoiding artificial enlargements of small signal 
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changes, which may happen when all changes for a 
given signal are small. 
 
Fuzzification module represents both signals, i.e. 
amplitude and change, in terms of fuzzy sets. Based on 
given linguistic descriptors that are fuzzy sets defined 
by their membership functions, this module calculates 
membership values for each point of the two signals. 
As a result, the two input time series are transformed 
into N1+N2 time series, in which N1 corresponds to 
number of linguistic descriptors of amplitude signal, 
and N2 to change signal, respectively. 
 
Data divider module (optional) separates data that are 
used for learning FCM, i.e. training data, from those 
that are used for testing model accuracy, i.e. test data 
according to given parameters.  
 
RCGA module applies the real-coded genetic 
algorithm learning method in order to establish 
candidate FCM model from given dataset that mimic 
these data, see Section 1.2 for details. Set of nodes 
correspond to all possible combinations of signals 
linguistic descriptions, e.g. Node 1 – amplitude Small 
and change High.  
 
Prediction module simulates the candidate FCM 
model and chooses predicted linguistic description of 
signal in terms of amplitude and change based on 
fuzzy operations. By changing maximum number of 
iterations in simulation FCM one obtains prediction of 
different length, i.e. different number of steps ahead. 
 
3. Experimental Setup 

 
The goal of the experiments is to assess quality of 

the proposed signal prediction system. The tests are 
carried out with this method and are divided into two 
groups: tests performed with synthetic, and with real-
life data. The former group uses synthetic input data, 
which are generated from given type of function with 
random parameters. The latter one uses real-life input 
data, i.e. time series that come from a real system. 
Each input data set is divided into training and test set. 
The first one is exploited to learn FCM model that is 
able to generalize the data. Subsequently, this model is 
used to prediction.  

 
All experiments are performed with three linguistic 

descriptors, i.e. Small, Medium, and High, for both 
amplitude and change signals in fuzzification module. 
All descriptors are defined as fuzzy sets with triangular 

membership functions that overlap at the value of 0.5, 
see Figure 4. 
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Figure 4. Membership functions of the 

linguistic terms 

Consequently, the number of nodes of candidate 
FCM model is equal to 9, which corresponds to a 
number of all possible linguistic combinations of both 
amplitude and change signals descriptions at given 
point. Each node represents one linguistic description 
combination. 

Prediction module carries out prediction uses 
simple max operator, i.e. it chooses the highest value 
among all nodes and predicts the linguistic description 
that is associated with this node.  

 Since the quality of learning FCM models with 
RCGA approach was reported to be dependent on 
input data length [19], experiments with varying length 
of training data are performed. For each type of input 
signal 10 independent experiments, each using 
different input signal of the same type, are performed 
and the average values and standard deviations are 
reported. 

 
3.1. Setup for Experiments with Synthetic 

Data 
 
Two sets of input data are generated. The first one is 
based on hyperbolic function, whereas the second one 
uses sinus function. 
 
The input data for the hyperbolic function is generated 
based on the following formula 

bax
xh

+
=

1)(1
, where 

values for two variables a and b are chosen randomly 
as a  floating point value from [0,10] interval. 
Similarly, the sinus function is generated by 



)sin()(2 cbxaxh += , where the three variables a, b and 
c are random floating point values from [0,10] range 

Thus, in each case two sets consisting of 10 time 
series are generated. Considering the length of data 
used for experiments with real-life data, see Section 
3.2, the length of each time series were set to 36. 
Sample input signals to the system in both cases are 
shown in Figure 5. 
 
3.2. Setup for Experiments with Real-life Data 
 

The data set of IBM common stock closing prices: 
daily, May 17, 1961 – November 2, 1962 [3] is used 
for this part of experiments. This set consists of 369 
observations, see Figure 6. After removing last 9 
observations, the data set was divided evenly into ten 
subsets. Each of them is used separately for 
experiments. 

 
4. Analysis of experimental results 
 

Figure 7 presents sample plots of signals obtained in 
different stages of prediction process. A signal 
generated from sinus type function was taken as 
example. Figure 7a shows the input signal, whereas 
Figure 7b depicts processed signal. Figures 7c and 7d 
plot fuzzy signals from original input and from 
simulation of candidate FCM, respectively. The 
abbreviations located on plots legend are as follows. 
Letter a refers to amplitude signal, letter b to change 

signal, whereas letters S, M, and H correspond to 
different linguistic signal descriptors, i.e. Small, 
Medium, and High, respectively. For example, notation 
aM&cH means that amplitude signal is medium, and 
the change signal is high. 
 

The results from Figure 7 show that candidate FCM 
is able to mimic the given fuzzy signal. Even though a 
certain level of inaccuracy is observable, trends and 
dependency between signals are preserved. Moreover, 
one has to take into account that the FCM model in this 
case should mimic the “behavior” of fuzzy signal 
rather than match its individual values. This avoids 
overfitting the training data, which could have negative 
impact on prediction accuracy. 
 

The overall results obtained from all experiments 
are shown in  

Table 1. The three sections of the table correspond 
to different types of input signal, i.e. hyperbolic, sinus, 
and IBM stock closing prices. Each section has four 
rows that stores results for varying training data length, 
i.e. 5, 10, 15 and 20. Columns correspond to number of 
predicted steps. Each cell includes two values. The 
first value is the average accuracy of prediction, 
whereas the second value in smaller font is the 
corresponding standard deviation. Figure 8 shows 
relationships between prediction accuracy and the 
number of prediction steps for each dataset and each 
length of input data. 
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c) fuzzy signal d) fuzzy signal from candidate FCM simulation 

 
Figure 7. Sample simulation result 

 

Table 1. Experimental results 

Number of prediction steps Training data 
length 1 2 3 4 5 6 7 8 9 10 

5 80.00±40.00 85.00±22.91 86.67±22.09 87.50±23.04 86.00±23.75 86.67±24.47 85.71±25.55 86.25±25.88 85.56±26.78 86.00±26.91

10 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

15 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

hy
pe

rb
ol

ic
 

20 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00 100.00±0.00

5 60.00±48.99 45.00±41.53 33.33±33.33 30.00±33.17 26.00±25.38 25.00±20.05 22.86±18.28 20.00±16.00 17.78±14.21 19.00±13.75

10 50.00±50.00 55.00±41.53 46.67±37.11 37.50±32.11 34.00±31.05 30.00±29.61 27.14±24.27 25.00±20.15 22.22±17.89 23.00±17.35

15 80.00±40.00 80.00±33.17 70.00±31.43 60.00±32.02 54.00±28.35 45.00±23.62 40.00±21.93 40.00±20.00 40.00±19.97 38.00±18.87si
nu

s 

20 100.00±0.00 80.00±24.49 73.33±24.94 62.50±27.95 56.00±26.53 50.00±24.72 45.71±24.58 45.00±25.73 43.33±25.55 43.22±25.58

5 30.00±45.83 30.00±40.00 36.67±37.85 37.50±39.13 34.00±36.93 35.00±35.31 31.43±32.45 28.75±30.64 26.67±27.75 26.00±24.98

10 40.00±48.99 45.00±35.00 50.00±37.26 50.00±38.73 46.00±36.93 40.00±32.65 37.14±28.71 38.75±24.64 37.78±23.41 37.55±24.02

15 70.00±45.83 55.00±41.53 46.67±33.99 45.00±26.93 42.00±26.00 40.00±27.07 37.14±27.24 35.00±27.84 33.33±28.53 32.00±29.26

IB
M

 s
to

ck
 

20 100.00±0.00 85.00±22.91 73.33±29.05 70.00±31.22 68.00±33.70 68.33±32.86 65.71±33.32 63.75±35.10 60.00±32.65 55.00±34.00
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Figure 8. Average accuracy of prediction  

 
We note that the quality of prediction for the first 

type of signal, i.e. hyperbolic one, is very high 
regardless of training data length and number of 
prediction step. This fact stems from simplicity and 
regularity of this type of signal. 

 
 However, two other cases are more interesting, 

since the input signals are more irregular. It can be 
seen that the accuracy of prediction depends on 
training data length and is higher for longer learning 
data set. In other words, the more information about 
the signal the system has, the more accurate model can 
be built, which agrees with our conclusions shown in 
[19]. For training data length equal to 5, the accuracy 
is in the 30% range and does not change significantly 
for bigger number of prediction steps. In order to put 
this number into perspective, we note that the baseline 
for prediction accuracy in this particular prediction 
problem, computed as a randomly chosen prediction, is 
approximately 11%. By increasing the training data 
length to 20, accuracy of 100% is obtained for one step 
prediction. This number slowly decreases along with 
increasing the prediction steps number until 40%-60% 
for training data length equal to 20. Considering the 
baseline, this result has very good quality showing 
applicability of the proposed methods to perform 
linguistic term prediction tasks. 
 
5. Conclusions and Future Work 
 

The paper introduces the framework for signal 
prediction on linguistic level using Fuzzy Cognitive 
Maps. Proposed approach incorporates recently 
introduced FCM learning method using genetic 
algorithm’s based, RCGA algorithm.  

Performed experiments are promising and show 
high quality of the proposed method. Prediction 
accuracy rate is very high in cases when the training 
signal length is long enough and the number of 

prediction steps is relatively low. The quality of 
prediction decreases gradually with the shorter input 
data length and the bigger number of prediction steps. 

 
Future work will be focused on improving the 

prediction accuracy. One interesting research direction 
could be modification signal fuzzy representation, i.e. 
number of linguistic descriptors and/or their 
membership functions. The other area of exploration 
will be oriented towards application of this system to 
predict signal values instead of its linguistic 
descriptions, which involves adding defuzzification 
module. 

 
Acknowledgments 

This research was supported in part by the Natural 
Sciences and Engineering Research Council of 
Canada. 

 
References 
 
[1] J. Aguilar, “A Survey About Fuzzy Cognitive Maps 

Papers,” International Journal of Computational 
Cognition, 3:2, 27-33, 2005 

[2] R. Axelrod, Structure of Decision: The Cognitive Maps 
of Political Elites, Princeton University Press, 1976 

[3] G.E.P. Box, G.M. Jenkins, and G.C. Reinsel, Time 
Series Analysis: Forecasting and Control, Prentice 
Hall, 3rd Edition, 1994 

[4] D.E. Goldberg, Genetic Algorithms in Search, 
Optimization, and Machine Learning, Addison-Wesley, 
1989 

[5] F. Herrera, M. Lozano, and J.L. Verdegay, “Tackling 
Real-coded Genetic Algorithms: Operators and Tools 
for Behavioural Analysis,” Artificial Intelligence 
Review, vol. 12, no. 4, pp. 265-319, 1998 

[6] A. Juditski, Q. Zhang, B. Delyon, P.Y. Clorennee, and 
A. Benvniste, “Wavelets in Identification: Wavelets, 
Splines, Neurons, Fuzzies,: How Good for 
Identification?”, INRIA reports, No 2315, 1994 

[7] T. Kailath, Linear Systems, Prentice Hall, 1980 



[8] D. Kaplan, and L. Glass, Understanding Nonlinear 
Dynamics, Springer Verlag, 1995 

[9] A. Karkanis, D. Karras, and B. Mertzios, "1-D Signal 
Prediction Using Wavelets", Proc. of the 5th 
International Conference on Systems, Signals and 
Image Processing, pp.20-23, Zagreb, Croatia, 1998 

[10] M. Khan, and M. Quaddus, “Group Decision Support 
Using Fuzzy Cognitive Maps for Causal Reasoning”, 
Group Decision and Negotiation Journal, vol. 13, no. 5, 
2004, in print 

[11] B. Kosko, “Fuzzy Cognitive Maps”, International 
Journal of Man-Machine Studies, vol. 24, pp. 65-75, 
1986 

[12] K.C. Lee, W.J. Lee, O.B. Kwon, J.H. Han, and P.I. Yu, 
“Strategic Planning Simulation Based on Fuzzy 
Cognitive Map Knowledge and Differential Game”, 
Simulation, vol. 75, no. 5, pp. 316-327, 1998 

[13] T.D. Ndousse, and T. Okuda, “Computational 
Intelligence for Distributed Fault Management in 
Networks Using Fuzzy Cognitive Maps,” Proc. of IEEE 
Int. Conf on Communications Converging Techn. for 
Tomorrow’s Application, 1558-1562, 1996 

[14] A. Papoulis, Probability, Random Variables and 
Stochastic Processes, McGraw Hill, 1991 

[15] W. Pedrycz, P.C.F. Lam, and A.F. Rocha, “Distributed 
Fuzzy System Modeling”, IEEE Transactions on 
Systems, Man and Cybernetics, vol. 25, no. 5, pp. 769-
780 

[16] C.E. Pelaez, and J.B. Bowles, “Applying Fuzzy 
Cognitive Maps Knowledge Representation to Failure 

Modes Effects Analysis,” Proc. of the IEEE Annual 
Symposium on Reliability and Maintainability, pp. 450-
456, 1995 

[17] W. Stach, and L. Kurgan, “Modeling software 
development project using fuzzy cognitive maps,” Proc. 
of the 4th ASERC Workshop on Quantitative and Soft 
Software Engineering (QSSE'04), pp. 55-60, 2004 

[18] W. Stach, L. Kurgan, W. Pedrycz, and M. Reformat, 
“Genetic Learning of Fuzzy Cognitive Maps”, Fuzzy 
Sets and Systems, accepted, 2005 

[19] W. Stach, L. Kurgan, W. Pedrycz, and M. Reformat, 
“Learning Fuzzy Cognitive Maps with Required 
Precision Using Genetic Algorithm Approach,” 
Electronics Letters, vol. 40, no. 24, pp. 1519-1520, 
2004 

[20] W. Stach, L. Kurgan, W. Pedrycz, and M. Reformat, 
“Parallel Fuzzy Cognitive Maps as a Tool for Modeling 
Software Development Project,” Proc. of the 2004 
North American Fuzzy Information Processing Society 
Conference (NAFIPS’04), pp. 28-33, Banff, AB, 2004 

[21] M.A. Styblinski, and B.D. Meyer, “Signal Flow Graphs 
vs. Fuzzy Cognitive Maps in Application to Qualitative 
Circuit Analysis,” International J. of Man-Machine 
Studies, vol. 35, pp. 175-186, 1991 

[22] R. Taber, “Knowledge Processing with Fuzzy Cognitive 
Maps,” Expert Systems with Applications, vol. 2, pp. 83-
87, 1991 

 

 


	Introduction
	Fuzzy Cognitive Maps: Introductory Remarks
	Genetic Learning of FCM with RCGA Algorithm

	Framework of Proposed Prediction Method
	Experimental Setup
	Setup for Experiments with Synthetic Data
	Setup for Experiments with Real-life Data

	Analysis of experimental results
	Conclusions and Future Work
	Acknowledgments
	References

