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Abstract 
Compactness of a generated data model and the scalability of data 
mining algorithms are important in any data mining (DM) 
undertaking. This paper addresses the problems by introducing a 
novel DM system called MetaSqueezer. The system is probably the 
first machine-learning-based system to use a Meta Mining concept 
to generate data models from already generated meta-data. The 
main advantages of the system are the compactness of the 
knowledge models, scalability, and suitability for parallelization. 
The system generates a set of production rules that describe target 
concepts from supervised data. The system was extensively 
benchmarked and is shown to generate data models in a linear time, 
which together with its parallelizable architecture makes it 
applicable for handling large amounts of data. 
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1 Introduction. 

Machine Learning (ML) is one of the key and most popular  
DM tools used in the knowledge discovery (KD) process, 
defined  as a nontrivial process of identifying valid, novel, 
potentially useful, and ultimately understandable patterns 
from large collections of data [9]. 
 

One of the frequently used ML techniques for 
generation of data models is induction, which infers 
generalized information, or knowledge, by searching for 
regularities among the data. The output of an inductive ML 
algorithm usually takes the form of production IF… 
THEN… rules, or decision trees that can be converted into 
rules. One of the reasons why rules or trees are very popular 
(e.g. in knowledge-based systems) is that they are simple 
and easy to interpret and learn from. The rules can be 
modified because of their modularity; i.e. a single rule can 
be understood without reference to other rules [15]. This is 
why ML is very popular DM method in situations where a 

decision maker needs to understand and validate the 
generated model, like in medicine. 

Below, we describe a novel DM system for analysis of 
supervised data, which has three key features: 
1. It generates compact models, in the form of production 

rules. It generates small number of rules that are very 
compact, in terms of the number of selectors they use, 
which makes them easy to evaluate and understand.  

2. It has linear complexity with respect to the number of 
examples in the input data, which enables using it on 
very large datasets.  

3. The system’s novel architecture supports 
parallelization, which results in possibility of further 
performance improvements. The system is able to 
naturally and profitable adapt to distributed 
environments. 

The architecture of the system is based on a Meta Mining 
concept, explained later, which is largely responsible for 
achieving the above three characteristics. 
 

The system is an alternative to already existing parallel 
implementation of many DM systems. In general two 
standard parallel computation models exist: message 
passing model that uses distributed memory, and shared 
memory model that uses physically shared memory. The 
current approach in parallelization of DM algorithms uses 
both models. The message passing solutions concern a 
wide range of algorithms including association rules [2] 
[13] [37], clustering [7], and decision trees [12] [34]. More 
recently, limited number of shared memory parallelization 
solutions were developed including association rules [26] 
[16], sequence mining [38], and decision trees [39]. The 
system can be successfully implemented using both 
paradigms, and at the same time is linear, and provides 
very compact results. 



2 Overview of the System. 

The system uses supervised inductive ML methods and a 
Meta Mining (MM) concept. MM is a generic framework 
for higher order mining. Its main characteristic is generation 
of data models, called meta-models (often meta-rules), from 
the already generated data models (usually rules, called 
meta-data) [33]. The system has three steps. First, it divides 
the input data into subsets. Next, it generates a data model 
for each subset. Then it takes the generated data models and 
generates the meta-model from them. There are several 
advantages to using MM: 
• Generation of compact data models. Since a MM system 

generates results from already mined data models, they 
capture patterns present in meta-data. The results 
generated by the MM system are different than results of 
mining from the entire data. Researchers argue that meta 
results better describe knowledge that can be considered 
interesting [1] [30] [33]. 

• Scalability. Although most of ML tools are not scalable 
there are some that scale well with the size of input data 
[32] [11]. The recent approach to dealing with scalability 
of ML algorithms is to use the MM concept [19] [21]. The 
MM system analyses many small datasets (i.e. subsets of 
original data, and the data models) instead of one large 
input dataset. This results in reduction of computational 
time, especially for systems that use non-linear algorithms 
for generation of data models, and most of all in ability to 
implement it in parallel or distributed fashion. 

 
The MM model usually applies the same base-learner 

(algorithm) on the data to produce a hypothesis, but 
performs it in two steps where the outcome is generated 
from results of the first step. In contrast, the meta-learning 
aims to discover the best learning strategy through 
continuing adaptation of the algorithms at different levels of 
abstraction, like for example through dynamic selection of 
bias [35].  
The MM concept already has found some applications. It 
was used to generate association rules, which resulted in 
their ability to describe changes in the data rather than the 
data itself [29], and for incremental discovery of meta-rules 
[1]. 

3 Description of the System. 

The system uses inductive ML techniques to generate meta-
rules from supervised data in these steps: 
• Preprocessing. 

o the data is validated by repairing or removing 
incorrect records, and marking unknown values, 

o continuous attribute are discretized by a supervised 
discretization algorithm CAIM [18] [20] [23]. 

o the data is divided into subsets. Selection of the 
proper number of subsets depends on the input data 
size. The number of subsets usually should be 
relatively small, so that the size of each input subset 
would allow generation of quality rule sets for each 
of the classes. In case of a large number of subsets 
the system may generate inaccurate rules since the 
amount of examples for each subset would be too 
small to generate correct meta-data. The simplest 
way to divide input data is to perform random 
splitting. It is also possible to divide the input data in 
a predefined way. For example, the system can be 
used for analysis of temporal data, which can be 
divided into subsets corresponding to different time 
intervals. As another example, the system was 
already used to analyze large medical dataset, where 
the data was divided into subsets corresponding to 
different stages of a disease [21] [22].  

• Data Mining 
o production rules are generated from data for each of 

the defined subsets by the DataSqueezer algorithm 
[19] [21]. 

o a rule table, which stores rules in a format that is 
identical to the format of the original input data, is 
created from the generated rules and separately for 
each of the subsets. Each table stores meta-data 
about one of the data subsets. 

• Meta Mining 
o MM generates meta-rules from rule tables. First, all 

rule tables are concatenated into a single table. Next, 
the meta-rules are generated by the DataSqueezer 
algorithm. The meta-rules describe the most 
important patterns associated with the target concept 
over the entire input dataset. 

3.1 The DataSqueezer Algorithm. 

It is the core algorithm used in the system. The 
DataSqueezer algorithm is used to generate meta-data 
during the DM step, and the meta-rules in the MM step. A 
survey of relevant inductive ML algorithms can be found in 
[10]. DataSqueezer is an inductive ML algorithm that 
generates rules by finding regularities in the data [19] [21]. 



 

 
 

Figure 1. Pseudo-code of the DataSqueezer algorithm. 
 

Let us denote the input dataset by D, which consists of 
S examples. The sets of positive examples, DP, and negative 
examples, DN, must satisfy three properties: DP ∪ DN = D, 
DP ∩ DN = ∅, DN ≠ ∅, and DP ≠ ∅. The positive examples 
are those describing the class for which we currently 
generate rules, while negative examples are the remaining 
examples. Examples are described by a set of K attribute-
value pairs: ]#[1 jj

K
j vae =∧= , where aj denotes jth attribute 

with value vj ∈ dj (domain of values of jth attribute), # is a 
relation (=, <, ≈, ≤, etc.), and K is the number of attributes. 
In the DataSqueezer algorithm the relation we use is 
equality. An example, e, consists of set of selectors sj = [aj = 
vj]. The DataSqueezer algorithm generates production rules 
in the form of: IF (s1 and … and sm) THEN class = classi, 
where si = [aj = vj] is a single selector, and m is the number 
of selectors in the rule. Figure 1 shows pseudo-code for the 
DataSqueezer algorithm. 

 
DP and DN are tables whose rows represent examples 

and columns correspond to attributes. Table of positive 
examples is denoted as POS and the number of positive 
examples by NPOS, while the table and the number of 
negative examples as NEG and NNEG, respectively. The POS 
and NEG tables are created by inserting all positive and 
negative examples, respectively, where examples are 
represented by rows and attributes by columns. Positive 

examples from the POS table are described by the set of 
values: posi[j] where j=1,…,K, is the column number, and i 
is the example number (row number in the POS table). The 
negative examples are described similarly by a set of negi[j] 
values. The DataSqueezer algorithm also uses tables that 
store intermediate results (GPOS for POS table, and GNEG for 
NEG table), which have K columns. Each cell of the GPOS 
table is denoted as gposi[j], where i is a row number and j 
is a column number, and similarly for GNEG table is denoted 
by gnegi[j]. The GPOS table stores reduced subset of the 
data from POS, and GNEG table stores reduced subset of the 
data from NEG. The meaning of this reduction is explained 
later. The GNEG and GPOS tables have an additional (K+1)th 
column that stores number of examples from the NEG and 
POS, which a particular row in GNEG and GPOS describes, 
respectively. Thus, for example gpos2[K+1] stores number 
of examples from POS, which are described by the 2nd row 
in GPOS table. 
 

The rule generation mechanism used by the 
DataSqueezer algorithm is based on the inductive learning 
hypothesis [25]. It states that any hypothesis found to 
approximate the target function (target concept defined by 
a class attribute) well, over a sufficiently large set of 
training examples, will also well approximate the target 
function over other unobserved examples. Based on this 

Given: POS, NEG, K (number of attributes), S (number of examples) 
Step1. 
1.1 Initialize GPOS = []; i=1; j=1; k=1; tmp = pos1; 
1.2.1 for k = 1 to K      // for all attributes 
1.2.2    if (posj[k] ≠ tmp[k] or posj[k] = ‘∗’) 
1.2.3       then tmp[k] = ‘∗’;      // ‘∗’ denotes missing value 
1.2.4 if (number of non missing values in tmp ≥ 2) 
1.2.5       then gposi = tmp; gposi[K+1] ++; 
1.2.6    else i ++; tmp =  posj; 
1.3 set j++; and until j ≤ NPOS go to 1.2.1 
1.4 Initialize GNEG = []; i=1; j=1; k=1; tmp = neg1; 
1.5.1 for k = 1 to K      // for all attributes 
1.5.2    if (negj[k] ≠ tmp[k] or negj[k] = ‘∗’) 
1.5.3       then tmp[k] = ‘∗’;      // ‘∗’ denotes missing value 
1.5.4 if (number of non missing values in tmp ≥ 2) 
1.5.5       then gnegi = tmp; gnegi[K+1] ++; 
1.5.6    else i ++; tmp =  negj; 
1.6 set j++; and until j ≤NNEG go to 1.5.1 
Step2. 
2.1 Initialize RULES = []; i=1;     // where rulesi denotes ith rule stored in RULES 
2.2 create LIST = list of all columns in GPOS  
2.3 within every column of GPOS that is on LIST, for every non missing value a from selected column k compute sum, sak, of values of 

gposi[K+1] for every row i, in which a appears (multiply every sak, by the number of values the attribute k has) 
2.4 select maximal sak, remove k from LIST, add “k = a” selector to rulesi 
2.5.1 if rulesi does not describe any rows in GNEG 
2.5.2       then remove all rows described by rulesi from GPOS, i=i+1; 
2.5.3          if GPOS is not empty go to 2.2, else terminate 
2.5.4    else go to 2.3 
Output: RULES describing POS 



assumption, the algorithm first performs data reduction via 
use of the prototypical concept learning, which is very 
similar to the Find S algorithm of Mitchell [25]. It performs 
data reduction to generalize information stored in the 
original data. Data reduction is done for both positive and 
negative data. Next, the algorithm generates rules by 
performing greedy hill-climbing search on the reduced data. 
A rule is generated by applying the search procedure starting 
with an empty rule, and adding selectors until the 
termination criterion fires. The max depth of the search is 
equal to the number of attributes. Next, the examples 
covered by the generated rule are removed, and the process 
is repeated. Another closely related algorithm is the 
Disjunctive Version Spaces (DiVS) algorithm [31]. The 
DiVS algorithm also learns using both positive and negative 
data, but it uses all examples to generate rules, including the 
ones covered by already generated rules. 

 
For multi-class problems the DataSqueezer algorithm 

generates rules for every class, each time generating rules 
that describe the currently chosen (positive) class. 

 
The algorithm has the following features: 

• it generates production rules that involve no more than 
one selector per attribute. This property allows for 
storing of the rules in a table that has identical structure 
as the original data table. For example, for data described 
by attributes A, B, and C, and describing two classes 
white, and black, the following rule can be generated: IF 
A=1 and C=1 THEN black. The rule can be written as 
(1, ?, 1, black), following the format of the input data, 
which defines values of attributes A,B, and C, and adds 
class attribute. This data can be used as an input to the 
same algorithm that was used to generate the rules.  

• it generates rules that are very compact in terms of the 
number of selectors (shown experimentally later). 

• it can handle data with large number of missing values. 
DataSqueezer algorithm can cope with data that has 
large number of missing values. It uses only complete 
data, including all examples from the original data, even 
those that contain missing values. In other words it uses 
all available information while ignoring missing values, 
i.e. they are handled as "do not care" values. 

• it has linear complexity, in respect to the number of 
examples in the datasets [21]. 

3.2 The MetaSqueezer System. 

The architecture of the MetaSqueezer systems is shown in 
Figure 2. The raw data are first preprocessed and discretized 
using the CAIM algorithm, since the DataSqueezer 
algorithm receives only discrete numerical or nominal data 
as its input. Next, data is divided into subsets that are fed 
into the DM step. DM generates meta-data from the data 
subsets using the DataSqueezer algorithm. In the MM step 

the meta-data generated for each of the subsets is 
concatenated and fed again into DataSqueezer to generate 
meta-rules. The idea of splitting up the dataset, learning a 
rule set on each split, and combining the results has been 
previously introduced [8], but the MetaSqueezer system is 
the first that combines the rule sets in a separate, second 
learning phase. 
 

 
 

Figure 2. Architecture of the MetaSqueezer system. 

3.3 The MetaSqueezer System. 

The architecture of the MetaSqueezer systems is shown in 
Figure 2. The raw data are first preprocessed and 
discretized using the CAIM algorithm, since the 
DataSqueezer algorithm receives only discrete numerical or 
nominal data as its input. Next, data is divided into subsets 
that are fed into the DM step. DM generates meta-data 
from the data subsets using the DataSqueezer algorithm. In 
the MM step the meta-data generated for each of the 
subsets is concatenated and fed again into DataSqueezer to 
generate meta-rules. The idea of splitting up the dataset, 
learning a rule set on each split, and combining the results 
has been previously introduced [8], but the MetaSqueezer 
system is the first that combines the rule sets in a separate, 
second learning phase. 
 

The complexity of the MetaSqueezer system is 
determined by complexity of the DataSqueezer algorithm. 
Assuming that S is the number of examples in the original 
dataset, the MetaSqueezer system divides the data into n 
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subsets of the same size, which is equal to S/n. In the DM 
step the MetaSqueezer system uses DataSqueezer algorithm 
n times, which gives total complexity of nO(S) = O(S). In 
the MM step the DataSqueezer algorithm is run once with 

the data of size O(S). Thus, complexity of the 
MetaSqueezer system is O(S) + O(S) = O(S). This result is 
also verified experimentally in section 4.2. 

 
Table 1. Description of datasets used for benchmarking. 

 
set size # classes # attrib. test data # subsets set size # classes # attrib. test data # subsets

Wisconsin breast cancer (bcw) 699 2 9 10CV 4 image segmentation (seg) 2310 7 19 10CV 6 
BUPA liver disorder (bld) 345 2 6 10CV 3 attitude smoking restr. (smo) 2855 3 13 1000 4 
Boston housing (bos) 506 3 13 10CV 3 thyroid disease (thy) 7200 3 21 3428 6 
contraceptive method choice (cmc) 1473 3 9 10CV 7 StatLog vehicle silhouette (veh) 846 4 18 10CV 4 
StatLog DNA (dna) 3190 3 61 1190 8 congressional voting rec (vot) 435 2 16 10CV 3 
StatLog heart disease (hea) 270 2 13 10CV 3 waveform (wav) 3600 3 21 3000 3 
LED display (led) 6000 10 7 4000 10 TA evaluation (tae) 151 3 5 10CV 2 
PIMA indian diabetes (pid) 768 2 8 10CV 4 census-income (cid) 299285 2 40 99762 10 
StatLog satellite image (sat) 6435 6 37 2000 10  

 
Table 2. Accuracy results for the MetaSqueezer, DataSqueezer, CLIP4, and the other 33 ML algorithms. 

 
Reported results [24] DataSqueezer MetaSqueezer set 
max min 

CLIP4 [6] 
accuracy mean accuracy mean sensitivity mean specificity mean accuracy mean sensitivity mean specificity 

bcw 97 91 95 94 92 98 94 97 85 
bld 72 57 63 68 86 44 70 93 38 
bos 78 69 71 70 70 88 71 70 86 
cmc 57 40 47 44 40 73 47 43 72 
dna 95 62 91 92 92 97 90 89 95 
hea 86 66 72 79 89 66 79 87 70 
led 73 18 71 68 68 97 69 69 97 
pid 78 69 71 76 83 61 75 83 59 
sat 90 60 80 80 78 96 74 73 95 
seg 98 48 86 84 83 98 81 81 97 
smo 70 55 68 68 33 67 67 33 69 
thy 99 11 99 96 95 99 96 86 99 
veh 85 51 56 61 61 88 60 59 87 
vot 96 94 94 95 93 96 94 92 99 
wav 85 52 75 77 77 89 77 76 89 
tae 77 31 60 55 53 79 52 51 76 
MEAN 83.5 54.6 74.9 75.4 74.6 83.5 74.8 74.0 82.1 

set algorithm (accuracy) [reference] mean accuracy mean sensitivity mean specificity mean accuracy mean sensitivity mean specificity 
cid C4.5 (95.2), C5.0 (95.3), C5.0 rules (95.3), C5.0 boosted 

(95.4), Naïve-Bayes (76.8) [14] 91 94 45 90 93 49 

 
Table 3. Number of rules and selectors for the MetaSqueezer, DataSqueezer, CLIP4, and the other 33 algorithms. 

 
DataSqueezer MetaSqueezer CLIP4 [6] 

set 

Reported  
median # of 
leaves/rules 

[24] mean # rules mean # 
selectors # selectors per rule 

mean # rules mean # 
selectors 

# selectors 
per rule mean # rules mean # 

selectors 
# selectors 

per rule 

bcw 7 4.2 121.6 29.0 4.5 12.8 2.8 6.3 12.3 1.9 
bld 10 9.7 272.4 28.1 3.4 14.0 4.1 2.6 7.7 3.0 
bos 11 10.5 133.5 12.7 19.8 107 5.4 17.9 56.3 3.1 
cmc 15 8 60.7 7.6 20.2 70.5 3.5 17.4 42.1 2.4 
dna 13 8 90 11.3 39.0 97.0 2.5 34.0 53.0 1.6 
hea 6 11.6 192.3 16.6 4.7 17.1 3.6 1.9 3.7 1.9 
led 24 41 189 4.6 51 194 3.8 51 141 2.8 
pid 7 4 64.1 16.0 1.8 8.0 4.4 2.1 9.3 4.4 
sat 63 61 3199 52.4 57 257 4.5 55 104 1.9 
seg 39 39.2 1169.9 29.8 57.3 219 3.8 50.7 89.3 1.8 
smo 2 18 242 13.4 6 12 2.0 3 10 3.7 
thy 12 4 119 29.8 7 28 4.0 6 6 1.0 
veh 38 21.3 380.7 17.9 23.7 80.2 3.4 22.4 41.4 1.8 
vot 2 9.7 51.7 5.3 1.4 1.6 1.1 1 1 1.0 
wav 16 9 85 9.4 22 65 2.9 17 18 1.0 
tae 20 9.3 273.2 29.4 21.2 57.2 2.7 14.7 27.8 1.9 
MEAN 17.8 16.8 415.3 19.6 21.3 77.5 3.4 18.9 38.9 2.2 

cid  --- --- --- 15 95 6.3 6 34 5.7 

 



The architecture of the system allows natural 
implementation in a parallel or distributed manner. 
Generation of each of the data models from a subset of the 
original data, which is performed in the DM step, can be 
handled by a distinct serial program. The generated data 
models can be easily combined and fed back to compute the 
MM step. Although the experimental results shown in this 
paper are based on a non-parallel implementation, it is 
important to note that this architecture has a potential to be 
implemented applying grid computing resources, in contrast 
to most of the inductive ML algorithms. 

4 Experiments. 

The Meta Squeezer system was tested on 17 datasets 
characterized by the size of training datasets (between 151 
and 200K examples), the size of testing datasets (between 15 
and 100K examples), the number of attributes: (between 5 
and 61), and the number of classes (between 2 and 10). 
The datasets were obtained from the UCI ML repository [3], 
and from StatLog project datasets repository [36]. The 
datasets were randomly divided into a number of equal size 
subsets, depending on the size of the data, to be used as an 
input to the DM step. The description of the datasets and 
number of subsets is shown in Table 1. 

 
We compare the benchmarking results in terms of 

accuracy of the rules, number of rules and selectors used, and 
the execution time. The system was compared to CLIP4 
algorithm [5] [6], DataSqueezer algorithm, and 33 other ML 
algorithms, for which the results are available [24]. The first 
16 datasets were used to perform the comparison. The last, 
cid, dataset was primarily used to experimentally analyze 
complexity of the system. 

The test procedure of the DataSqueezer algorithm was 
the same as test procedures used in [24] to enable direct and 
fair comparison between the algorithms. As in [24] some of 
the tests were performed using k-fold cross validation.  

4.1 Discussion of the Results. 

The benchmarking results, shown in Table 2, compare 
accuracy of the MetaSqueezer system with other ML 
algorithms. For the 33 algorithms used, we show maximum 
and minimum accuracy. Only the MetaSqueezer algorithm 
uses the MM concept while the other algorithms use the 
entire datasets (not divided into subset) as their input. 
By far the most popular in the ML field for comparison of 
the results is the accuracy test, however, more precise 
verification test results are reported for the MetaSqueezer 
and DataSqueezer. The verification test is a standard used in 
medicine where sensitivity and specificity analysis is used to 
evaluate confidence in the results [4], and is related to ROC 
analysis of classifier performance [28]. For multi-class 
problems, the sensitivity and specificity are computed for 

each class separately (each class being treated as positive 
class in turn), and the average values are reported. 
 

The mean accuracy of the MetaSqueezer system for the 
16 datasets is 74.8%. For comparison, the POLYCLASS 
algorithm [17] achieved the highest mean accuracy of 
80.5%. The [24] calculated statistical significance of error 
rates. It shows that a difference between the mean 
accuracies of two algorithms is statistically significant at the 
10% level if they differ by more than 5.9%. They reported 
that 26 out of 33 algorithms were not statistically 
significantly different from POLYCLASS. The difference 
in error rates between the MetaSqueezer and POLYCLASS 
also fells within the same category. The same conclusion 
can be drawn for the CLIP4 [6], and the DataSqueezer 
algorithms.  
 

Table 3 shows the number of rules, and the number of 
selectors. The MetaSqueezer system is compared with the 
results of the 33 algorithms reported in [24], and with 
results of the CLIP4 [6], and DataSqueezer algorithms. For 
the 33 algorithms the median number of rules (the authors 
reported the number of tree leaves for 21 decision tree 
algorithms) is reported. Additionally, for the MetaSqueezer, 
DataSqueezer, and CLIP4 algorithms we report number of 
selectors per rule. The last measure enables direct 
comparison of complexity of the generated rules. The mean 
number of rules generated by the MetaSqueezer system is 
18.9. In [24] the median number of tree leaves, equivalent 
to the number of rules, for the 21 tested decision tree 
algorithms was 17.8. The number of rules generated by the 
CLIP4 algorithm was 16.8, and by the DataSqueezer 
algorithm 21.3. We also note that the DataSqueezer 
generates more rules than the MetaSqueezer system. 
 

An important advantage of the MetaSqueezer system 
can be seen by analyzing the number of selectors and the 
number of selectors per rule; for the 16 datasets it is 2.2. 
That means that on average each rule generated by the 
system involves only 2.2 attribute-values pairs in the 
condition part of the rule. This is significantly less than the 
number of selectors per rule achieved by the DataSqueezer 
algorithm (35% less), and the CLIP4 algorithm (almost 90% 
less). This is primarily due to using the MM concept where 
the meta-rules are generated from the meta-data. All other 
algorithms generate rules directly from input data. 
 

We note that the execution times of the 33 algorithms 
are either higher or at best similar to execution time of the 
MetaSqueezer system. For example, the POLYCLASS 
algorithm had a mean execution time of 3.2 hours, while 
both DataSqueezer and MetaSqueezer, and best algorithms 
among the 33 had the execution time of about 5 seconds 
when comparing the results on a common hardware 
platform [24]. 



 
To summarize, two main advantages of the 

MetaSqueezer system are the compactness of the generated 
rules and low computational cost. The experimental results 
show that the system is fast and generates very low number 
of selectors per rule. The difference in accuracy between the 
system and the best among all tested ML algorithms is not 
statistically significant. 

4.2 Scalability Analysis. 

The MetaSqueezer system and the DataSqueezer algorithm 
are tested to experimentally show their linear complexity. 
The tests are performed using the cid dataset. The dataset has 
40 attributes and 300K samples. The training part of the 
original dataset was used to derive training sets for the 
complexity analysis. The training datasets were derived by 
selecting a number of first records from the original training 
dataset. Standard procedure of using training datasets of 
doubled size to verify if the execution time is also doubled 
was followed. Figure 3 visualizes the results as a graph of 
relation between execution time and the size of data. It uses 
logarithmic scale on both axes to help visualize data points 
with low values. The results show linear relationship 
between the execution time and the size of the input data for 
both algorithms that agrees with theoretical complexity 
analysis. The time ratio is always close to the data size ratio. 
The graph also shows that the MetaSqueezer algorithm has 
additional overhead caused by division of data into subsets, 
but it becomes insignificant with the growing size of input 
data. This property is exhibited by initially lower execution 
time of the DataSqueezer algorithm, while the difference in 
execution time between the two algorithms shrinks with 
growth of data size.  
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Figure 3. Relation between execution time and input data 
size for the MetaSqueezer system and the DataSqueezer 

algorithm. 

5 Summary and Conclusions. 

Often data mining and, in particular, machine learning tools 
lack scalability for generation of potentially new and useful 
knowledge. Most of the ML algorithms do not scale well 

with the size of the input data and may generate very 
complex rules. In this work we introduced a novel Machine 
Learning system, called MetaSqueezer, which was designed 
using the Meta Mining (MM) concept. The system 
generates a set of meta-rules from supervised data and can 
be used for data analysis tasks in various domains. The 
main advantages of the system are high compactness of the 
generated meta-rules, low computational cost, and ability to 
implement it in a parallel or distributed fashion. The 
extensive tests showed that the system is fast and generates 
the least complex data models, as compared with other 
systems, while at the same time generating very good 
results. 
 

The main reason for compactness of the results is the 
use of the MM concept. While many other Machine 
Learning algorithms generate rules directly from input data, 
the MetaSqueezer generates meta-rules from previously 
generated meta-data. Our results, as well the results of other 
researchers [1], indicate that MM concept helps to generate 
rules more focused on the target concept. The main benefit 
of the reduced complexity of the models is increased 
comprehension of the generated knowledge. 
 

The use of the MM concept results in ability to 
implement the MetaSqueezer’s in parallel or distributed 
fashion. The algorithm works by merging partial knowledge 
extracted from subsets of data, which can be computed in 
parallel on (possibly disjoint) subsets of training data [27]. 
The biggest advantage of the described system is that the 
application of the distributed or parallel approach for rule 
generation does not result in lower accuracy of the results. 
These features make it applicable in many domains that use 
grid computing resources for working on very large 
datasets. 
 

Low computational cost of the MetaSqueezer system 
stems from the fact that the execution time grows linearly 
with linear growth of the size of input data thus making it 
applicable for very large datasets. Good application 
domains for the system are those that involve temporal or 
ordered data. In that case the rules are generated for 
particular time intervals first and only then the meta-
knowledge is generated. 
 

In the future we plan to develop a parallel 
implementation of the algorithm in the message passing 
environment. The goal is to develop an algorithm suitable to 
efficiently analyze massive datasets. 
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