

Meta Mining Architecture for Supervised Learning

Lukasz A. Kurgan1 Krzysztof J. Cios2

1 University of Alberta, Edmonton, AB, Canada

email: lkurgan@ece.ualberta.ca
2 University of Colorado at Denver, Denver, CO, U.S.A.

University of Colorado at Boulder, Boulder, CO, U.S.A.
University of Colorado Health Sciences Center, Denver, CO, U.S.A.
4cData, Golden, CO, U.S.A

email: Krys.Cios@cudenver.edu

Abstract
Compactness of a generated data model and the scalability of data
mining algorithms are important in any data mining (DM)
undertaking. This paper addresses the problems by introducing a
novel DM system called MetaSqueezer. The system is probably the
first machine-learning-based system to use a Meta Mining concept
to generate data models from already generated meta-data. The
main advantages of the system are the compactness of the
knowledge models, scalability, and suitability for parallelization.
The system generates a set of production rules that describe target
concepts from supervised data. The system was extensively
benchmarked and is shown to generate data models in a linear time,
which together with its parallelizable architecture makes it
applicable for handling large amounts of data.

Keywords
Data Mining, Machine Learning, Meta Mining, Parallel
Architectures, Production Rules, Supervised Learning,
MetaSqueezer

1 Introduction.

Machine Learning (ML) is one of the key and most popular
DM tools used in the knowledge discovery (KD) process,
defined as a nontrivial process of identifying valid, novel,
potentially useful, and ultimately understandable patterns
from large collections of data [9].

One of the frequently used ML techniques for
generation of data models is induction, which infers
generalized information, or knowledge, by searching for
regularities among the data. The output of an inductive ML
algorithm usually takes the form of production IF…
THEN… rules, or decision trees that can be converted into
rules. One of the reasons why rules or trees are very popular
(e.g. in knowledge-based systems) is that they are simple
and easy to interpret and learn from. The rules can be
modified because of their modularity; i.e. a single rule can
be understood without reference to other rules [15]. This is
why ML is very popular DM method in situations where a

decision maker needs to understand and validate the
generated model, like in medicine.

Below, we describe a novel DM system for analysis of
supervised data, which has three key features:
1. It generates compact models, in the form of production

rules. It generates small number of rules that are very
compact, in terms of the number of selectors they use,
which makes them easy to evaluate and understand.

2. It has linear complexity with respect to the number of
examples in the input data, which enables using it on
very large datasets.

3. The system’s novel architecture supports
parallelization, which results in possibility of further
performance improvements. The system is able to
naturally and profitable adapt to distributed
environments.

The architecture of the system is based on a Meta Mining
concept, explained later, which is largely responsible for
achieving the above three characteristics.

The system is an alternative to already existing parallel
implementation of many DM systems. In general two
standard parallel computation models exist: message
passing model that uses distributed memory, and shared
memory model that uses physically shared memory. The
current approach in parallelization of DM algorithms uses
both models. The message passing solutions concern a
wide range of algorithms including association rules [2]
[13] [37], clustering [7], and decision trees [12] [34]. More
recently, limited number of shared memory parallelization
solutions were developed including association rules [26]
[16], sequence mining [38], and decision trees [39]. The
system can be successfully implemented using both
paradigms, and at the same time is linear, and provides
very compact results.

2 Overview of the System.

The system uses supervised inductive ML methods and a
Meta Mining (MM) concept. MM is a generic framework
for higher order mining. Its main characteristic is generation
of data models, called meta-models (often meta-rules), from
the already generated data models (usually rules, called
meta-data) [33]. The system has three steps. First, it divides
the input data into subsets. Next, it generates a data model
for each subset. Then it takes the generated data models and
generates the meta-model from them. There are several
advantages to using MM:
• Generation of compact data models. Since a MM system

generates results from already mined data models, they
capture patterns present in meta-data. The results
generated by the MM system are different than results of
mining from the entire data. Researchers argue that meta
results better describe knowledge that can be considered
interesting [1] [30] [33].

• Scalability. Although most of ML tools are not scalable
there are some that scale well with the size of input data
[32] [11]. The recent approach to dealing with scalability
of ML algorithms is to use the MM concept [19] [21]. The
MM system analyses many small datasets (i.e. subsets of
original data, and the data models) instead of one large
input dataset. This results in reduction of computational
time, especially for systems that use non-linear algorithms
for generation of data models, and most of all in ability to
implement it in parallel or distributed fashion.

The MM model usually applies the same base-learner

(algorithm) on the data to produce a hypothesis, but
performs it in two steps where the outcome is generated
from results of the first step. In contrast, the meta-learning
aims to discover the best learning strategy through
continuing adaptation of the algorithms at different levels of
abstraction, like for example through dynamic selection of
bias [35].
The MM concept already has found some applications. It
was used to generate association rules, which resulted in
their ability to describe changes in the data rather than the
data itself [29], and for incremental discovery of meta-rules
[1].

3 Description of the System.

The system uses inductive ML techniques to generate meta-
rules from supervised data in these steps:
• Preprocessing.

o the data is validated by repairing or removing
incorrect records, and marking unknown values,

o continuous attribute are discretized by a supervised
discretization algorithm CAIM [18] [20] [23].

o the data is divided into subsets. Selection of the
proper number of subsets depends on the input data
size. The number of subsets usually should be
relatively small, so that the size of each input subset
would allow generation of quality rule sets for each
of the classes. In case of a large number of subsets
the system may generate inaccurate rules since the
amount of examples for each subset would be too
small to generate correct meta-data. The simplest
way to divide input data is to perform random
splitting. It is also possible to divide the input data in
a predefined way. For example, the system can be
used for analysis of temporal data, which can be
divided into subsets corresponding to different time
intervals. As another example, the system was
already used to analyze large medical dataset, where
the data was divided into subsets corresponding to
different stages of a disease [21] [22].

• Data Mining
o production rules are generated from data for each of

the defined subsets by the DataSqueezer algorithm
[19] [21].

o a rule table, which stores rules in a format that is
identical to the format of the original input data, is
created from the generated rules and separately for
each of the subsets. Each table stores meta-data
about one of the data subsets.

• Meta Mining
o MM generates meta-rules from rule tables. First, all

rule tables are concatenated into a single table. Next,
the meta-rules are generated by the DataSqueezer
algorithm. The meta-rules describe the most
important patterns associated with the target concept
over the entire input dataset.

3.1 The DataSqueezer Algorithm.

It is the core algorithm used in the system. The
DataSqueezer algorithm is used to generate meta-data
during the DM step, and the meta-rules in the MM step. A
survey of relevant inductive ML algorithms can be found in
[10]. DataSqueezer is an inductive ML algorithm that
generates rules by finding regularities in the data [19] [21].

Figure 1. Pseudo-code of the DataSqueezer algorithm.

Let us denote the input dataset by D, which consists of
S examples. The sets of positive examples, DP, and negative
examples, DN, must satisfy three properties: DP ∪ DN = D,
DP ∩ DN = ∅, DN ≠ ∅, and DP ≠ ∅. The positive examples
are those describing the class for which we currently
generate rules, while negative examples are the remaining
examples. Examples are described by a set of K attribute-
value pairs:]#[1 jj

K
j vae =∧= , where aj denotes jth attribute

with value vj ∈ dj (domain of values of jth attribute), # is a
relation (=, <, ≈, ≤, etc.), and K is the number of attributes.
In the DataSqueezer algorithm the relation we use is
equality. An example, e, consists of set of selectors sj = [aj =
vj]. The DataSqueezer algorithm generates production rules
in the form of: IF (s1 and … and sm) THEN class = classi,
where si = [aj = vj] is a single selector, and m is the number
of selectors in the rule. Figure 1 shows pseudo-code for the
DataSqueezer algorithm.

DP and DN are tables whose rows represent examples

and columns correspond to attributes. Table of positive
examples is denoted as POS and the number of positive
examples by NPOS, while the table and the number of
negative examples as NEG and NNEG, respectively. The POS
and NEG tables are created by inserting all positive and
negative examples, respectively, where examples are
represented by rows and attributes by columns. Positive

examples from the POS table are described by the set of
values: posi[j] where j=1,…,K, is the column number, and i
is the example number (row number in the POS table). The
negative examples are described similarly by a set of negi[j]
values. The DataSqueezer algorithm also uses tables that
store intermediate results (GPOS for POS table, and GNEG for
NEG table), which have K columns. Each cell of the GPOS
table is denoted as gposi[j], where i is a row number and j
is a column number, and similarly for GNEG table is denoted
by gnegi[j]. The GPOS table stores reduced subset of the
data from POS, and GNEG table stores reduced subset of the
data from NEG. The meaning of this reduction is explained
later. The GNEG and GPOS tables have an additional (K+1)th
column that stores number of examples from the NEG and
POS, which a particular row in GNEG and GPOS describes,
respectively. Thus, for example gpos2[K+1] stores number
of examples from POS, which are described by the 2nd row
in GPOS table.

The rule generation mechanism used by the
DataSqueezer algorithm is based on the inductive learning
hypothesis [25]. It states that any hypothesis found to
approximate the target function (target concept defined by
a class attribute) well, over a sufficiently large set of
training examples, will also well approximate the target
function over other unobserved examples. Based on this

Given: POS, NEG, K (number of attributes), S (number of examples)
Step1.
1.1 Initialize GPOS = []; i=1; j=1; k=1; tmp = pos1;
1.2.1 for k = 1 to K // for all attributes
1.2.2 if (posj[k] ≠ tmp[k] or posj[k] = ‘∗’)
1.2.3 then tmp[k] = ‘∗’; // ‘∗’ denotes missing value
1.2.4 if (number of non missing values in tmp ≥ 2)
1.2.5 then gposi = tmp; gposi[K+1] ++;
1.2.6 else i ++; tmp = posj;
1.3 set j++; and until j ≤ NPOS go to 1.2.1
1.4 Initialize GNEG = []; i=1; j=1; k=1; tmp = neg1;
1.5.1 for k = 1 to K // for all attributes
1.5.2 if (negj[k] ≠ tmp[k] or negj[k] = ‘∗’)
1.5.3 then tmp[k] = ‘∗’; // ‘∗’ denotes missing value
1.5.4 if (number of non missing values in tmp ≥ 2)
1.5.5 then gnegi = tmp; gnegi[K+1] ++;
1.5.6 else i ++; tmp = negj;
1.6 set j++; and until j ≤NNEG go to 1.5.1
Step2.
2.1 Initialize RULES = []; i=1; // where rulesi denotes ith rule stored in RULES
2.2 create LIST = list of all columns in GPOS
2.3 within every column of GPOS that is on LIST, for every non missing value a from selected column k compute sum, sak, of values of

gposi[K+1] for every row i, in which a appears (multiply every sak, by the number of values the attribute k has)
2.4 select maximal sak, remove k from LIST, add “k = a” selector to rulesi
2.5.1 if rulesi does not describe any rows in GNEG
2.5.2 then remove all rows described by rulesi from GPOS, i=i+1;
2.5.3 if GPOS is not empty go to 2.2, else terminate
2.5.4 else go to 2.3
Output: RULES describing POS

assumption, the algorithm first performs data reduction via
use of the prototypical concept learning, which is very
similar to the Find S algorithm of Mitchell [25]. It performs
data reduction to generalize information stored in the
original data. Data reduction is done for both positive and
negative data. Next, the algorithm generates rules by
performing greedy hill-climbing search on the reduced data.
A rule is generated by applying the search procedure starting
with an empty rule, and adding selectors until the
termination criterion fires. The max depth of the search is
equal to the number of attributes. Next, the examples
covered by the generated rule are removed, and the process
is repeated. Another closely related algorithm is the
Disjunctive Version Spaces (DiVS) algorithm [31]. The
DiVS algorithm also learns using both positive and negative
data, but it uses all examples to generate rules, including the
ones covered by already generated rules.

For multi-class problems the DataSqueezer algorithm

generates rules for every class, each time generating rules
that describe the currently chosen (positive) class.

The algorithm has the following features:

• it generates production rules that involve no more than
one selector per attribute. This property allows for
storing of the rules in a table that has identical structure
as the original data table. For example, for data described
by attributes A, B, and C, and describing two classes
white, and black, the following rule can be generated: IF
A=1 and C=1 THEN black. The rule can be written as
(1, ?, 1, black), following the format of the input data,
which defines values of attributes A,B, and C, and adds
class attribute. This data can be used as an input to the
same algorithm that was used to generate the rules.

• it generates rules that are very compact in terms of the
number of selectors (shown experimentally later).

• it can handle data with large number of missing values.
DataSqueezer algorithm can cope with data that has
large number of missing values. It uses only complete
data, including all examples from the original data, even
those that contain missing values. In other words it uses
all available information while ignoring missing values,
i.e. they are handled as "do not care" values.

• it has linear complexity, in respect to the number of
examples in the datasets [21].

3.2 The MetaSqueezer System.

The architecture of the MetaSqueezer systems is shown in
Figure 2. The raw data are first preprocessed and discretized
using the CAIM algorithm, since the DataSqueezer
algorithm receives only discrete numerical or nominal data
as its input. Next, data is divided into subsets that are fed
into the DM step. DM generates meta-data from the data
subsets using the DataSqueezer algorithm. In the MM step

the meta-data generated for each of the subsets is
concatenated and fed again into DataSqueezer to generate
meta-rules. The idea of splitting up the dataset, learning a
rule set on each split, and combining the results has been
previously introduced [8], but the MetaSqueezer system is
the first that combines the rule sets in a separate, second
learning phase.

Figure 2. Architecture of the MetaSqueezer system.

3.3 The MetaSqueezer System.

The architecture of the MetaSqueezer systems is shown in
Figure 2. The raw data are first preprocessed and
discretized using the CAIM algorithm, since the
DataSqueezer algorithm receives only discrete numerical or
nominal data as its input. Next, data is divided into subsets
that are fed into the DM step. DM generates meta-data
from the data subsets using the DataSqueezer algorithm. In
the MM step the meta-data generated for each of the
subsets is concatenated and fed again into DataSqueezer to
generate meta-rules. The idea of splitting up the dataset,
learning a rule set on each split, and combining the results
has been previously introduced [8], but the MetaSqueezer
system is the first that combines the rule sets in a separate,
second learning phase.

The complexity of the MetaSqueezer system is
determined by complexity of the DataSqueezer algorithm.
Assuming that S is the number of examples in the original
dataset, the MetaSqueezer system divides the data into n

subset 1 subset 2 subset n

CAIM
Discretization

DataSqueezer
Inductive ML

META RULES

RAW DATA
validation and transformation of the data

DataSqueezer
Inductive ML

Rule table n
Meta data n

SUPERVISED VALIDATED DATA

PR
EP

R
O

C
ES

SI
N

G

D
A

TA
 M

IN
IN

G

M
ET

A
- M

IN
IN

G

DataSqueezer
Inductive ML

DataSqueezer
Inductive ML

CAIM
Discretization

CAIM
Discretization

Rule table 2
Meta data 2

Rule table 1
Meta data 1

subsets of the same size, which is equal to S/n. In the DM
step the MetaSqueezer system uses DataSqueezer algorithm
n times, which gives total complexity of nO(S) = O(S). In
the MM step the DataSqueezer algorithm is run once with

the data of size O(S). Thus, complexity of the
MetaSqueezer system is O(S) + O(S) = O(S). This result is
also verified experimentally in section 4.2.

Table 1. Description of datasets used for benchmarking.

set size # classes # attrib. test data # subsets set size # classes # attrib. test data # subsets

Wisconsin breast cancer (bcw) 699 2 9 10CV 4 image segmentation (seg) 2310 7 19 10CV 6
BUPA liver disorder (bld) 345 2 6 10CV 3 attitude smoking restr. (smo) 2855 3 13 1000 4
Boston housing (bos) 506 3 13 10CV 3 thyroid disease (thy) 7200 3 21 3428 6
contraceptive method choice (cmc) 1473 3 9 10CV 7 StatLog vehicle silhouette (veh) 846 4 18 10CV 4
StatLog DNA (dna) 3190 3 61 1190 8 congressional voting rec (vot) 435 2 16 10CV 3
StatLog heart disease (hea) 270 2 13 10CV 3 waveform (wav) 3600 3 21 3000 3
LED display (led) 6000 10 7 4000 10 TA evaluation (tae) 151 3 5 10CV 2
PIMA indian diabetes (pid) 768 2 8 10CV 4 census-income (cid) 299285 2 40 99762 10
StatLog satellite image (sat) 6435 6 37 2000 10

Table 2. Accuracy results for the MetaSqueezer, DataSqueezer, CLIP4, and the other 33 ML algorithms.

Reported results [24] DataSqueezer MetaSqueezer set
max min

CLIP4 [6]
accuracy mean accuracy mean sensitivity mean specificity mean accuracy mean sensitivity mean specificity

bcw 97 91 95 94 92 98 94 97 85
bld 72 57 63 68 86 44 70 93 38
bos 78 69 71 70 70 88 71 70 86
cmc 57 40 47 44 40 73 47 43 72
dna 95 62 91 92 92 97 90 89 95
hea 86 66 72 79 89 66 79 87 70
led 73 18 71 68 68 97 69 69 97
pid 78 69 71 76 83 61 75 83 59
sat 90 60 80 80 78 96 74 73 95
seg 98 48 86 84 83 98 81 81 97
smo 70 55 68 68 33 67 67 33 69
thy 99 11 99 96 95 99 96 86 99
veh 85 51 56 61 61 88 60 59 87
vot 96 94 94 95 93 96 94 92 99
wav 85 52 75 77 77 89 77 76 89
tae 77 31 60 55 53 79 52 51 76
MEAN 83.5 54.6 74.9 75.4 74.6 83.5 74.8 74.0 82.1

set algorithm (accuracy) [reference] mean accuracy mean sensitivity mean specificity mean accuracy mean sensitivity mean specificity
cid C4.5 (95.2), C5.0 (95.3), C5.0 rules (95.3), C5.0 boosted

(95.4), Naïve-Bayes (76.8) [14] 91 94 45 90 93 49

Table 3. Number of rules and selectors for the MetaSqueezer, DataSqueezer, CLIP4, and the other 33 algorithms.

DataSqueezer MetaSqueezer CLIP4 [6]

set

Reported
median # of
leaves/rules

[24] mean # rules mean #
selectors # selectors per rule

mean # rules mean #
selectors

selectors
per rule mean # rules mean #

selectors
selectors

per rule

bcw 7 4.2 121.6 29.0 4.5 12.8 2.8 6.3 12.3 1.9
bld 10 9.7 272.4 28.1 3.4 14.0 4.1 2.6 7.7 3.0
bos 11 10.5 133.5 12.7 19.8 107 5.4 17.9 56.3 3.1
cmc 15 8 60.7 7.6 20.2 70.5 3.5 17.4 42.1 2.4
dna 13 8 90 11.3 39.0 97.0 2.5 34.0 53.0 1.6
hea 6 11.6 192.3 16.6 4.7 17.1 3.6 1.9 3.7 1.9
led 24 41 189 4.6 51 194 3.8 51 141 2.8
pid 7 4 64.1 16.0 1.8 8.0 4.4 2.1 9.3 4.4
sat 63 61 3199 52.4 57 257 4.5 55 104 1.9
seg 39 39.2 1169.9 29.8 57.3 219 3.8 50.7 89.3 1.8
smo 2 18 242 13.4 6 12 2.0 3 10 3.7
thy 12 4 119 29.8 7 28 4.0 6 6 1.0
veh 38 21.3 380.7 17.9 23.7 80.2 3.4 22.4 41.4 1.8
vot 2 9.7 51.7 5.3 1.4 1.6 1.1 1 1 1.0
wav 16 9 85 9.4 22 65 2.9 17 18 1.0
tae 20 9.3 273.2 29.4 21.2 57.2 2.7 14.7 27.8 1.9
MEAN 17.8 16.8 415.3 19.6 21.3 77.5 3.4 18.9 38.9 2.2

cid --- --- --- 15 95 6.3 6 34 5.7

The architecture of the system allows natural
implementation in a parallel or distributed manner.
Generation of each of the data models from a subset of the
original data, which is performed in the DM step, can be
handled by a distinct serial program. The generated data
models can be easily combined and fed back to compute the
MM step. Although the experimental results shown in this
paper are based on a non-parallel implementation, it is
important to note that this architecture has a potential to be
implemented applying grid computing resources, in contrast
to most of the inductive ML algorithms.

4 Experiments.

The Meta Squeezer system was tested on 17 datasets
characterized by the size of training datasets (between 151
and 200K examples), the size of testing datasets (between 15
and 100K examples), the number of attributes: (between 5
and 61), and the number of classes (between 2 and 10).
The datasets were obtained from the UCI ML repository [3],
and from StatLog project datasets repository [36]. The
datasets were randomly divided into a number of equal size
subsets, depending on the size of the data, to be used as an
input to the DM step. The description of the datasets and
number of subsets is shown in Table 1.

We compare the benchmarking results in terms of

accuracy of the rules, number of rules and selectors used, and
the execution time. The system was compared to CLIP4
algorithm [5] [6], DataSqueezer algorithm, and 33 other ML
algorithms, for which the results are available [24]. The first
16 datasets were used to perform the comparison. The last,
cid, dataset was primarily used to experimentally analyze
complexity of the system.

The test procedure of the DataSqueezer algorithm was
the same as test procedures used in [24] to enable direct and
fair comparison between the algorithms. As in [24] some of
the tests were performed using k-fold cross validation.

4.1 Discussion of the Results.

The benchmarking results, shown in Table 2, compare
accuracy of the MetaSqueezer system with other ML
algorithms. For the 33 algorithms used, we show maximum
and minimum accuracy. Only the MetaSqueezer algorithm
uses the MM concept while the other algorithms use the
entire datasets (not divided into subset) as their input.
By far the most popular in the ML field for comparison of
the results is the accuracy test, however, more precise
verification test results are reported for the MetaSqueezer
and DataSqueezer. The verification test is a standard used in
medicine where sensitivity and specificity analysis is used to
evaluate confidence in the results [4], and is related to ROC
analysis of classifier performance [28]. For multi-class
problems, the sensitivity and specificity are computed for

each class separately (each class being treated as positive
class in turn), and the average values are reported.

The mean accuracy of the MetaSqueezer system for the
16 datasets is 74.8%. For comparison, the POLYCLASS
algorithm [17] achieved the highest mean accuracy of
80.5%. The [24] calculated statistical significance of error
rates. It shows that a difference between the mean
accuracies of two algorithms is statistically significant at the
10% level if they differ by more than 5.9%. They reported
that 26 out of 33 algorithms were not statistically
significantly different from POLYCLASS. The difference
in error rates between the MetaSqueezer and POLYCLASS
also fells within the same category. The same conclusion
can be drawn for the CLIP4 [6], and the DataSqueezer
algorithms.

Table 3 shows the number of rules, and the number of
selectors. The MetaSqueezer system is compared with the
results of the 33 algorithms reported in [24], and with
results of the CLIP4 [6], and DataSqueezer algorithms. For
the 33 algorithms the median number of rules (the authors
reported the number of tree leaves for 21 decision tree
algorithms) is reported. Additionally, for the MetaSqueezer,
DataSqueezer, and CLIP4 algorithms we report number of
selectors per rule. The last measure enables direct
comparison of complexity of the generated rules. The mean
number of rules generated by the MetaSqueezer system is
18.9. In [24] the median number of tree leaves, equivalent
to the number of rules, for the 21 tested decision tree
algorithms was 17.8. The number of rules generated by the
CLIP4 algorithm was 16.8, and by the DataSqueezer
algorithm 21.3. We also note that the DataSqueezer
generates more rules than the MetaSqueezer system.

An important advantage of the MetaSqueezer system
can be seen by analyzing the number of selectors and the
number of selectors per rule; for the 16 datasets it is 2.2.
That means that on average each rule generated by the
system involves only 2.2 attribute-values pairs in the
condition part of the rule. This is significantly less than the
number of selectors per rule achieved by the DataSqueezer
algorithm (35% less), and the CLIP4 algorithm (almost 90%
less). This is primarily due to using the MM concept where
the meta-rules are generated from the meta-data. All other
algorithms generate rules directly from input data.

We note that the execution times of the 33 algorithms
are either higher or at best similar to execution time of the
MetaSqueezer system. For example, the POLYCLASS
algorithm had a mean execution time of 3.2 hours, while
both DataSqueezer and MetaSqueezer, and best algorithms
among the 33 had the execution time of about 5 seconds
when comparing the results on a common hardware
platform [24].

To summarize, two main advantages of the

MetaSqueezer system are the compactness of the generated
rules and low computational cost. The experimental results
show that the system is fast and generates very low number
of selectors per rule. The difference in accuracy between the
system and the best among all tested ML algorithms is not
statistically significant.

4.2 Scalability Analysis.

The MetaSqueezer system and the DataSqueezer algorithm
are tested to experimentally show their linear complexity.
The tests are performed using the cid dataset. The dataset has
40 attributes and 300K samples. The training part of the
original dataset was used to derive training sets for the
complexity analysis. The training datasets were derived by
selecting a number of first records from the original training
dataset. Standard procedure of using training datasets of
doubled size to verify if the execution time is also doubled
was followed. Figure 3 visualizes the results as a graph of
relation between execution time and the size of data. It uses
logarithmic scale on both axes to help visualize data points
with low values. The results show linear relationship
between the execution time and the size of the input data for
both algorithms that agrees with theoretical complexity
analysis. The time ratio is always close to the data size ratio.
The graph also shows that the MetaSqueezer algorithm has
additional overhead caused by division of data into subsets,
but it becomes insignificant with the growing size of input
data. This property is exhibited by initially lower execution
time of the DataSqueezer algorithm, while the difference in
execution time between the two algorithms shrinks with
growth of data size.

cid dataset

10

100

1000

10000

100000

100 1000 10000 100000 1000000

train data size

time [msec] MetaSqueezer

DataSqueezer

Figure 3. Relation between execution time and input data
size for the MetaSqueezer system and the DataSqueezer

algorithm.

5 Summary and Conclusions.

Often data mining and, in particular, machine learning tools
lack scalability for generation of potentially new and useful
knowledge. Most of the ML algorithms do not scale well

with the size of the input data and may generate very
complex rules. In this work we introduced a novel Machine
Learning system, called MetaSqueezer, which was designed
using the Meta Mining (MM) concept. The system
generates a set of meta-rules from supervised data and can
be used for data analysis tasks in various domains. The
main advantages of the system are high compactness of the
generated meta-rules, low computational cost, and ability to
implement it in a parallel or distributed fashion. The
extensive tests showed that the system is fast and generates
the least complex data models, as compared with other
systems, while at the same time generating very good
results.

The main reason for compactness of the results is the
use of the MM concept. While many other Machine
Learning algorithms generate rules directly from input data,
the MetaSqueezer generates meta-rules from previously
generated meta-data. Our results, as well the results of other
researchers [1], indicate that MM concept helps to generate
rules more focused on the target concept. The main benefit
of the reduced complexity of the models is increased
comprehension of the generated knowledge.

The use of the MM concept results in ability to
implement the MetaSqueezer’s in parallel or distributed
fashion. The algorithm works by merging partial knowledge
extracted from subsets of data, which can be computed in
parallel on (possibly disjoint) subsets of training data [27].
The biggest advantage of the described system is that the
application of the distributed or parallel approach for rule
generation does not result in lower accuracy of the results.
These features make it applicable in many domains that use
grid computing resources for working on very large
datasets.

Low computational cost of the MetaSqueezer system
stems from the fact that the execution time grows linearly
with linear growth of the size of input data thus making it
applicable for very large datasets. Good application
domains for the system are those that involve temporal or
ordered data. In that case the rules are generated for
particular time intervals first and only then the meta-
knowledge is generated.

In the future we plan to develop a parallel
implementation of the algorithm in the message passing
environment. The goal is to develop an algorithm suitable to
efficiently analyze massive datasets.

Acknowledgments

The authors thank anonymous reviewers for their
comments.

Reference

[1] Abraham, T., & Roddick, J. F., Incremental Meta-mining
from Large Temporal Data Sets, Advances in Database
Technologies, Proceedings of the 1st International Workshop
on Data Warehousing and Data Mining (DWDM'98), pp.41-
54, 1999

[2] Agrawal, R., & Shafer, J., Parallel mining of association
rules. IEEE Transactions on Knowledge and Data
Engineering, 8:6, pp.962-969, 1996

[3] Blake, C.L. & Merz, C.J., UCI Repository of ML Databases,
http://www.ics.uci.edu/~mlearn/MLRep ository.html, Irvine,
CA: University of California, Department of Information
and Computer Science, 1998

[4] Cios, K.J., & Moore, G., Uniqueness of Medical Data
Mining, Artificial Intelligence in Medicine, 26:1-2, pp.1-24,
2002

[5] Cios K. J. & Kurgan L., Hybrid Inductive Machine
Learning: An Overview of CLIP Algorithms, In: Jain L.C.,
& Kacprzyk, J., (Eds.) New Learning Paradigms in Soft
Computing, Physica-Verlag (Springer), pp. 276-322, 2001

[6] Cios, K.J., & Kurgan, L., CLIP4: Hybrid Inductive Machine
Learning Algorithm that Generates Inequality Rules,
Information Sciences, special issue on Soft Computing Data
Mining, in print, 2004

[7] Dhillon, I., & Modha, D., A Data-Clustering Algorithm on
Distributed Memory Multiprocessors, Proceedings of
Workshop on Large-Scale Parallel Knowledge Discovery in
Databases Systems, with ACM SIGKDD-99, pp.47–56, 1999

[8] Domingos, P., Using Partitioning to Speed up Specific-to-
General Rule Induction, Proceedings of the AAAI-96
Workshop on Integrating Multiple Learned Models for
Improving and Scaling Machine Learning Algorithms,
Portland, OR, 1996

[9] Fayyad, U.M., Piatesky-Shapiro, G., Smyth, P., &
Uthurusamy, R., Advances in Knowledge Discovery and
Data Mining, AAAi/MIT Press, 1996

[10] Furnkranz, J., Separate-and-conquer Rule Learning,
Artificial Intelligence Review, 13:1, pp. 3-54, 1999

[11] Gehrke, J., Ramakrishnan, R., and Ganti, V., RainForest - a
Framework for Fast Decision Tree Construction of Large
Datasets, Proceedings of the 24th International Conference
on Very Large Data Bases, San Francisco, pp. 416-427,
1998

[12] Goil, S., & Choudhary, A., Efficient Parallel Classification
Using Dimensional Aggregates, Proceedings of Workshop
on Large-Scalable Parallel Knowledge Discovery in
Databases Systems, with ACM SIGKDD-99, 1999

[13] Han, E, Karypis, G, & Kumar, V, Scalable Parallel Data
Mining for Association Rules, IEEE Transactions on
Knowledge and Data Engineering, 12:3, pp.337-352, 2000

[14] Hettich, S. & Bay, S. D., The UCI KDD Archive,
http://kdd.ics.uci.edu, Irvine, CA: University of California,
Department of Information and Computer Science, 1999

[15] Holsheimer, M., & Siebes, A.P., Data Mining: The Search
for Knowledge in Databases, Technical report CS-R9406,
1994

[16] Jin, R., & Agrawal, G., Shared Memory Parallelization of
Data Mining Algorithms: Techniques, Programming

Interface, and Performance, Proceedings of the 2nd SIAM
Conference on Data Mining, 2002

[17] Kooperberg, C., Bose, S. & Stone, C.J., Polychotomous
Regression, Journal of the American Statistical
Association, 92, pp.117-127, 1997

[18] Kurgan, L., & Cios, K.J., Discretization Algorithm that
Uses Class-Attribute Interdependence Maximization,
Proceedings of the 2001 Inter. Conf. on Artificial
Intelligence (IC-AI 2001), Las Vegas, Nevada, pp.980-987,
2001

[19] Kurgan, L. & Cios, K.J., DataSqueezer Algorithm that
Generates Small Number of Short Rules, IEE Proceedings:
Vision, Image and Signal Processing, submitted, 2003

[20] Kurgan, L., & Cios, K.J., Fast Class-Attribute
Interdependence Maximization (CAIM) Discretization
Algorithm, Proceedings of the 2003 International
Conference on Machine Learning and Applications
(ICMLA'03), Los Angeles, pp.30-36, 2003

[21] Kurgan, L., Meta Mining System for Supervised Learning,
Ph.D dissertation, the University of Colorado at Boulder,
Department of Computer Science, 2003

[22] Kurgan, L., Cios, K.J., Sontag, M., & Accurso, F.J.,
Mining the Cystic Fibrosis Data, In: Zurada, J., &
Kantardzic, M. (Eds.), Novel Applications in Data Mining,
IEEE Press, accepted, 2003

[23] Kurgan, L., & Cios, K.J., CAIM Discretization Algorithm,
IEEE Transactions of Knowledge and Data Engineering,
16:2, pp.145-153, 2004

[24] Lim, T.-S., Loh, W.-Y. & Y.-S. Shih, A Comparison of
Prediction Accuracy, Complexity, and Training Time of
Thirty-three Old and New Classification Algorithms,
Machine Learning, 40, pp.203-228, 2000

[25] Mitchell T.M., Machine Learning, McGraw-Hill, 1997
[26] Parthasarathy, S., Zaki, M., Ogihara, M., & Li, W., Parallel

Data Mining for Association Rules on Shared-Memory
Systems, Knowledge and Information Systems, 3:1, pp.1-
29, 2001

[27] Prodromidis, A., Chan, P., & Stolfo, S., Meta-Learning in
Distributed Data Mining Systems: Issues and Approaches,
In: Kargupta H. & Chan P. (Eds.), Advances in Distributed
and Parallel Knowledge Discovery, AAAI/MITPress, 2000

[28] Provost, F., & Fawcett, T., Analysis and Visualization of
Classifier Performance: Comparison Under Imprecise Class
and Cost Distribution, Proceedings of the 3rd International
Conference on Knowledge Discovery and Data Mining,
pp.43-48, 1997

[29] Rainsford, C.P., & Roddick, J.F., Adding Temporal
Semantics to Association Rules, Proceeding of the 3rd
European Conf. on Principles and Practice of Knowledge
Discovery in Databases (PKDD'99), pp.504-509, 1999

[30] Roddick, J.F., & Spiliopoulou, M., A Survey of Temporal
Knowledge Discovery Paradigms and Methods, IEEE
Transactions on Knowledge and Data Engineering, 14:4,
pp.750-767, 2002

[31] Sebag, M., Delaying the Choice of Bias: A Disjunctive
Version Space Approach, Proceedings of the 13th
International Conference on Machine Learning, pp.444-
452, 1996

[32] Shafer, J., Agrawal, R., and Mehta, M., SPRINT: A Scalable
Parallel Classifier for Data Mining, Proceedings of the 22nd
International Conference on Very Large Data Bases, San
Francisco, pp. 544-555, 1996

[33] Spiliopoulou, M., & Roddick, J. F., Higher Order Mining:
Modelling and Mining the Results of Knowledge Discovery,
Data Mining I: Proceedings of the Second International
Conference on Data Mining Methods and Databases,
pp.309-320, 2000

[34] Srivastava, A., Han, E., Kumar, V., & Singh, V., Parallel
Formulations of Decision-Tree Classification Algorithms,
Data Mining and Knowledge Discovery, 3:3, pp.237-261,
1999

[35] Vilalta, R., & Drissi, Y., A Perspective View and Survey of
Meta-Learning, Artificial Intelligence Review, 18:2, pp.77-
95, 2002

[36] Vlachos, P., StatLib Project Repository,
http://lib.stat.cmu.edu, 2000

[37] Zaki, M., Parallel and Distributed Association Mining: A
Survey, IEEE Concurrency, 7:4, pp.14-25, 1999

[38] Zaki, M., Parallel Sequence Mining on Shared-Memory
Machines, In Kumar, Ranka, & Singh, (Eds), Journal of
Parallel and Distributed Computing, special issue on High
Performance Data Mining, 61, pp.401-426, 2001

[39] Zaki, M., Ho, C., & Agrawal, R., Parallel Classification for
Data Mining on Shared Memory Multiprocessors, IEEE
International Conference on Data Engineering, pp.198–205,
1999

