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Abstract - Most of the existing machine learning 
algorithms are able to extract knowledge from 
databases that store discrete attributes (features). If 
the attributes are continuous, the algorithms can be 
integrated with a discretization algorithm that 
transforms them into discrete attributes. The paper 
describes an algorithm, called CAIM (class-attribute 
interdependence maximization), for discretization of 
continuous attributes that is designed to work with 
supervised learning algorithms. The algorithm 
maximizes the class-attribute interdependence and, at 
the same time, generates possibly minimal number of 
discrete intervals. Its big advantage is that it does not 
require the user to pre-define the number of intervals, 
in contrast to many existing discretization 
algorithms. The CAIM algorithm and five other state-
of-the-art discretization algorithms were tested on 
well-known machine learning datasets consisting of 
continuous and mixed-mode attributes. The tests 
show that the proposed algorithm generates discrete 
attributes with, almost always, the highest class-
attribute interdependency when compared with other 
algorithms, and at the same time it always generates 
the lowest number of intervals. The discretized 
datasets were used in conjunction with the CLIP4 
machine learning algorithm.  The accuracy of the 
rules generated by the CLIP4 shows that the 
proposed algorithm significantly improves 
classification performance; it also performs best in 
comparison with other five discretization algorithms. 
The CAIM algorithm’s speed is comparable to the 
simplest unsupervised algorithms and outperforms 
other supervised discretization algorithms. 
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1.  Introduction 
The process of automation of processing and 

extraction of knowledge from data becomes an 
important task that is often performed by 
machine learning (ML) algorithms. One of the 
most common tasks performed by ML 
algorithms is generation of classification rules 
from class-labeled examples. The examples are 
described by a set of numerical, nominal, or 
continuous attributes. Many existing inductive 
ML algorithms are designed expressly for 
handling numerical or nominal data, while some 
algorithms perform better with discrete-valued 
attributes despite the fact that they can also 
handle continuous attributes [1],[9]. This 
drawback can be overcome by using a 
discretization algorithm as a front-end for the 
learning algorithm.  

Discretization is a process of transforming a 
continuous attribute values into a finite number 
of intervals and associating with each interval a 
discrete, numerical value. The usual approach 
for learning tasks that use mixed-mode 
(continuous and discrete) data is to perform 
discretization prior to the learning process 
[1],[7],[8],[12]. 

The discretization process first finds the 
number of discrete intervals, and then the width, 
or the boundaries for the intervals, given the 
range of values of a continuous attribute. Most 
often the user must specify the number of 
intervals, or provide some heuristic rule to be 
used [2]. The proposed CAIM algorithm 
performs both tasks by automatically selecting 
the number of discrete intervals and finding 



width of every interval based on 
interdependency between class and attribute 
values. 

Discretization algorithms can be divided into 
two categories: 
• unsupervised (class-blind) algorithms that 

discretize attributes without taking into 
account respective class labels. The 
representative algorithms are equal-width and 
equal-frequency discretizations [3].  

• supervised algorithms discretize attributes 
by taking into account the class-attribute 
interdependence. The representative 
algorithms are: maximum entropy [16], 
Patterson-Niblett algorithm [11], which is 
built-in as a front end into a decision trees 
algorithm [13], and other information-gain or 
entropy-based algorithms [7],[18], statistics-
based algorithms like ChiMerge [9] or Chi2 
[10], class-attribute interdependency algo-
rithms like CADD algorithm [2] and 
clustering-based algorithms like K-means 
discretization algorithm [15]. 
Discretization should significantly reduce the 

number of possible values of the continuous 
attribute since large number of possible attribute 
values contributes to slow and ineffective 
process of inductive machine learning [1]. Thus, 
a supervised discretization algorithm should 
seek possibly minimum number of discrete 
intervals, and at the same time it should not 
weaken the interdependency between the 
attribute values and the class label. The 
proposed CAIM discretization algorithm not 
only discretizes an attribute into the small 
number of intervals but also makes it easier for 
the subsequent machine learning task by 
maximizing the class-attribute interdependency. 
The CAIM algorithm does not require user 
interaction since it automatically picks proper 
number of discrete intervals. The CAIM 
algorithm is compared with five well-known 
discretization algorithms two of which are 
unsupervised (equal-width and equal frequency 
algorithms) and the remaining three are 
supervised (Patterson-Niblett, Maximum 
Entropy, and CADD) giving always the smallest 
number of discrete intervals and almost always 
the highest class-attribute interdependency. The 
CAIM algorithm and the five algorithms were 

used with the CLIP4 machine learning algorithm 
[4],[5] to generate rules. The accuracy of the 
rules generated from discretized data shows that 
the CAIM algorithm significantly improves the 
classification performance and performs best 
among all considered discretization algorithms. 

1.1.  Basic definitions of the class-
attribute interdependent discretization 

The CAIM algorithm uses the class-attribute 
dependency information as the criterion for the 
optimal discretization, which has the minimum 
number of discrete intervals and minimum loss 
of the class-attribute interdependency. After 
Ching, Wong & Chan [2] we introduce several 
basic definitions. 

For a certain classification task, let us assume 
that we have a training data set consisting of M 
examples, and that each example belongs to only 
one of the S classes. F will indicate any of the 
continuous attributes from the mixed-mode data. 
Then there exists a discretization scheme D on 
F, which discretizes the continuous domain of 
attribute F into n discrete intervals bounded by 
the pairs of numbers: 

 
]}d ,(d , ],d ,(d ],d ,{[d :D n1-n2110 …  

where d0 is the minimal value and dn is the maximal 
value of attribute F, and the values are arranged in the 
ascending order. These values constitute the boundary 
set {d0, d1, d2, …, dn-1, dn} for discretization D. 

 
In D each value belonging to attribute F can 

be classified into only one of the n intervals. 
With the change of discretization D, the 
membership of each value in a certain interval 
for attribute F may also change. The class 
variable and the discretization variable of 
attribute F can be treated as two random 
variables, thus a two-dimensional frequency 
matrix (called quanta matrix) can be set up as 
shown in Table 1. 

In Table 1, qir is the total number of 
continuous values belonging to the ith class that 
are within interval (dr-1, dr].  Mi+ is the total 
number of objects belonging to the ith  class, and 
M+r is the total number of continuous values of 
attribute F that are within the interval (dr-1, dr], 
for i=1,2…,S and, r= 1,2, …, n. 



Table 1. 2-D frequency matrix for attribute F and discretization scheme D 

Interval Class 
[d0, d1]  … (dr-1, dr] … (dn-1, dn]

Class Total 

C1 
: 

Ci 
: 

CS 

q11 
: 

qi1 
: 

qS1 

… 
… 
… 
… 
… 

q1r 
: 

qir 
: 

qSr 

… 
… 
… 
… 
… 

 q1n 
: 

qin 
: 

qSn 

M1+ 
: 

Mi+ 
: 

MS+ 

Interval Total   M+1 … M+r … M+n M 
 

Based on the quanta matrix the Class-
Attribute Interdependence Redundancy (CAIR) 
criterion [17] has been proposed. The CAIR has 
been used as a discretization criterion in the 
class-attribute dependent discretizer (CADD) 
algorithm [2]. In the nutshell, the CAIR criterion 
reflects the interdependence between classes and 
the discretized attribute, being at the same time 
independent of the number of class labels and 
the number of unique values of the continuous 
attribute. The larger the value of the CAIR the 
better correlated are the class labels and the 
discrete intervals. For details on the CAIR 
criterion the reader is referred to [6]. The CADD 
algorithm has several problems. It uses user-
specified number of intervals and the maximum 
entropy discretization method to initialize the 
intervals, which may cause the algorithm to 
remain in the worst starting point in terms of the 
CAIR criterion. Finally, experience is required 
for selection of a confidence interval for the 
significance test used in the algorithm. The 
CAIM algorithm has no disadvantages 
associated with the CADD algorithm. 

2.  The CAIM Algorithm 
The CAIM’s algorithm goal is to maximize 

the dependency relationship between the class 
labels and the continuous-valued attribute, and at 
the same time to minimize the number of 
discrete intervals. Additional goal is to design an 
algorithm that performs the discretization at 
reasonable computational cost so that it can be 
applied to continuous attributes that have large 
number of unique values. 

2.1.  The Discretization Criterion 
Given the quanta matrix defined in Table 1, 

the Class-Attribute Interdependency Maximi-
zation (CAIM) criterion that measures the 
dependency between the class variable C and the 

discretization variable D for attribute F is 
defined as: 

n
MFDCCAIM

n

i ir

i∑
== 1
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where: n is the number of intervals 
i iterates through all intervals, i.e. i=1,2,...,n 
maxi is the maximum value among all qir values 
(maximum value within the ith column of the quanta 
matrix), r=1,2,...,S 
Mir is the total number of continuous values of attribute F 
that are within the interval (dr-1, dr] 

The CAIM criterion is used as a discretization 
criterion in the proposed class-attribute 
interdependency maximization algorithm, also 
called CAIM. The CAIM criterion is a heuristic 
measure that quantifies the interdependence 
between classes and the discretized attribute. 
The criterion is independent of the number of 
classes and the number of unique values of the 
continuous attribute.  
The CAIM criterion has the following 
properties: 
• The larger the value of the CAIM the better 

correlated are the class labels and the discrete 
intervals  

• The algorithm favors discretization schemes 
where each interval has all of its values 
grouped within a single class label. This 
observation was our motivation for using the 
maxi values within each of the n intervals, and 
summing them for all intervals. 

• The squared maxi value is scaled by the Mir 
to eliminate negative impact that the values 
belonging to other classes have on the class 
with the maximum number of values on the 
discretization scheme (all values other than the 
max value for the ith column of the quanta 
matrix) 

• The summed value is divided by the number 
of intervals n because then the criterion favors 
discretization schemes with smaller number of 



intervals, which is one of the goals of the 
CAIM algorithm 
The value of the CAIM criterion is calculated 

with a single pass over the quanta matrix. The 
CAIM criterion maximizes the class-attribute 
interdependency. 

2.2.  The CAIM Algorithm 
Since the problem of finding discretization 

scheme with globally optimal value of the class-
attribute interdependency is highly 
combinatorial the CAIM algorithm uses greedy 
approach, which finds local maximum values of 
the CAIM criterion. Although the CAIM does 
not guarantee finding the global maximum it is 
computationally efficient and effective, as 
shown in the experimental section. The 
pseudocode of the CAIM algorithm follows:  

 
Given:  Data consisting of M examples, S 

classes, and continuous attributes Fi 
For every Fi do: 
Step1. 

1.1 find maximum (dn) and minimum (do) 
values of Fi 

1.2 form a set of all distinct values of Fi in 
ascending order, and initialize all possible 
interval boundaries B with minimum, 
maximum and all the midpoints of all the 
adjacent pairs in the set 

1.3 set the initial discretization scheme as 
]}d,{[d :D n0 , set GlobalCAIM=0 

Step2. 
2.1 initialize k=1; 
2.2 tenatively add an inner boundary, which 

is not already in D, from B, and calculate 
corresponding CAIM value 

2.3 after all the tentative addition have been 
tried accept the one with the highest value of 
CAIM 

2.4 if (CAIM > GlobalCAIM or k<S) then 
update D with the accepted in step 2.3 
boundary and set GlobalCAIM=CAIM, else 
terminate 

2.5 set k=k+1 and go to 2.2 
Output: Discretization scheme D 

 
The CAIM algorithm works in a greedy top-

down manner. It starts with a single interval and 
divides it iteratively, using for the division the 
boundary that gave the highest values of the 
CAIM criterion. The algorithm assumes that 
every discretized attribute needs at least number 
of intervals equal to the number of classes. 

The CAIM algorithm uses trade-off between 
finding a discretization with the highest possible 
class-attribute interdependency, and a reasonable 
computational cost. The main advantage of 
CAIM algorithm is that it finds small number of 
discretization intervals, which gives the low 
computational cost, and at the same time high 
class-attribute interdependency. 

3.  Experiments 
The four datasets used to test the CAIM 

algorithm are: 
1. Statlog Project Heart Disease dataset (hea) 
2. Pima Indians Diabetes dataset (pid) 
3. Thyroid Disease dataset (thy) 
4. Waveform dataset (wav) 

The datasets were obtained from the UCI 
Irvine ML repository [14]. Detailed description 
of the datasets is shown in the Table 2. 

The CAIM algorithm performance was 
compared with five state-of-the-art discretization 
algorithms. Two were unsupervised: equal-width 
and equal frequency algorithms, and three 
supervised: Patterson-Niblett, Maximum 
Entropy, and CADD. All the algorithms were 
used to discretize all four datasets. The quality 
of the discretization was evaluated based on the 
CAIR criterion value, number of generated 
intervals, and the time of execution. The CAIM 
algorithm performance was compared with the 
five discretization algorithms. 

Later, the discretized datasets were used to 
generate classification rules by the CLIP4 
machine algorithm [4],[5] and the accuracy of 
generated rules was compared among the six 
discretization algorithms over all datasets. 

 

 



Table 2. Major properties of datasets considered in the experimentation 

Dataset # of classes #  of examples #  of  training / testing examples # of attributes # of continuous attributes
hea 2 270 10 x cross-validation 13 6 
pid 2 768 10 x cross-validation 8 8 
thy 3 7200 3772 / 3428 21 6 
wav 3 3600 600 / 3000 21 21 

 

Table 3. Comparison of the six discretization schemes using four continuous and mixed-mode datasets (bolded values show the 
best results) 

Dataset Criterion Discretization 
Method thy wav hea pid 

Equal Width 0.07 0.07 0.09 0.06 
Equal Frequency 0.04 0.06 0.08 0.05 
Paterson-Niblett 0.14 0.14 0.09 0.05 
Maximum Entropy 0.03 0.06 0.08 0.05 
CADD 0.03 0.07 0.09 0.06 

CAIR  
(mean value through all 
intervals) 

CAIM 0.17 0.13 0.14 0.08 
Equal Width 126 630 57 106 
Equal Frequency 126 630 57 106 
Paterson-Niblett 45 252 47 59 
Maximum Entropy 126 630 57 97 
CADD 80 627 56 96 

total # 
of intervals 

CAIM 18 63 12 16 
Equal Width 6.78 9.77 0.09 0.31 
Equal Frequency 6.52 9.48 0.08 0.30 
Paterson-Niblett 218.88 4808.66 1.79 21.87 
Maximum Entropy 51.39 299.27 0.34 2.47 
CADD 628.64 8287.80 2.03 27.86 

time 
[s] 

CAIM 103.47 1143.91 0.31 4.95 
 
 

3.1. Analysis of the results 
First, the four datasets were discretized using 

the six discretization methods mentioned above, 
and the quality of the discretization was 
evaluated based on the CAIR criterion value, the 
number of generated intervals, and time of 
execution. The CAIR criterion was used to 
evaluate different discretization algorithms since 
the goal of discretization is to maximize the 
class-attribute interdependence redundancy. 
After [2] this can be done by finding a 
discretization scheme, DMAX, out of all possible 
discretization schemes, D, such that:  

CAIR(DMAX) ≥ CAIR(Di) ∀(Di∈D) 
Although the CAIM criterion has the same 

goal, it is a new heuristic measure and thus the 
CAIR criterion was used to evaluate the 
discretization schemes. 

Table 3 shows the results of discretizing the 
datasets using all considered discretization 
schemes. The CAIM algorithm achieved the 
highest class-attribute interdependency for 3 out 
of 4 datasets, and for wav datasets was the 
second highest. That verifies that the greedy 
approach and the CAIM criterion work in 
practice, and results in higher interdependence 
between class and attribute variables than the 
interdependence achieved by other algorithms.  

For all datasets the CAIM algorithm 
generated discretization scheme with 
significantly smaller number of intervals than 
schemes generated by other discretization 
algorithms. It is a very significant advantage that 
helps to better understand the meaning of the 
discretized attributes, and reduces the size of 
data. 

 



Table 4. Comparison of the accuracies achieved by the CLIP4 algorithm for the four datasets using the six discretization 
schemes (bolded are the best results, hea and pid results are averaged over 10CV) 

Dataset Accuracy Discretization Method thy wav hea pid RANK 

Equal Width 86.0 50.7 65.5 64.5 4 
Equal Frequency 98.2 42.9 63.3 72.6 3.3 
Paterson-Niblett 96.7 62.8 72.7 68.5 3.0 
Maximum Entropy 96.8 42.4 63.4 62.6 4.8 
CADD 76.9 42.1 65.5 72.2 4.5 

CLIP4 accuracy 
[%] 

CAIM 98.1 74.1 72.9 79.3 1.3 
 
 
The shortest execution time obviously was 

achieved for unsupervised discretization 
algorithms. Within the group of supervised 
algorithms the CAIM and Maximum Entropy 
algorithms achieved comparable execution time, 
outperforming the CADD and Paterson-Niblett 
algorithms, in particular for the wav dataset. 

After we discretized the datasets they were 
used as input to the CLIP4 algorithm to generate 
classification rules. The purpose of this 
experiment was to show the impact of the 
selection of a good discretization algorithm on 
the accuracy of the subsequently used machine 
learning algorithm. Thus, again the accuracy 
was compared for the six discretization 
algorithms, over all discretized datasets. The 
results can be easily compared by looking at the 
RANK column that defines each algorithm’s 
rank for a particular dataset among the six 
algorithms, averaged over all four datasets. 
Table 4 shows the accuracy results. 

The best accuracy was achieved for the data 
that was discretized using the CAIM algorithm. 
The difference between the rank of the CAIM 
algorithm (1.3) and the next best algorithm 
(Paterson-Niblett with rank 3.0) is substantial. 
The accuracy results show that the CAIM 
algorithm generates the data that performs better 
then the data generated by the other 
discretization algorithms when subsequently 
used for supervised learning. 

In a nutshell the CAIM algorithm discretized 
the datasets in a way that resulted in the smallest 
number of intervals, and the highest class-
attribute interdependency when compared with 
other state-of-the-art discretization algorithms. 
The CAIM algorithm has execution time that 
assures its applicability for real-life problems. In 
addition, the use of the CAIM algorithm 

significantly improves the accuracy of results 
achieved by a subsequently used machine 
learning algorithm. The results show high 
applicability of the CAIM algorithm since it 
outperformed the other five discretization 
algorithms. The future work will include more 
extensive experimental work. 

4.  Summary and Conclusions 
We proposed a new algorithm, called CAIM, 

for discretization of continuous attributes. The 
CAIM algorithm can be used with any class-
labeled data. The CAIM maximizes mutual 
interdependence of the class labels and the 
attribute intervals, and at the same time 
generates possibly the smallest number of 
intervals for a given continuous attribute. The 
tests performed using the CAIM algorithm show 
that it generates discretization schemes with 
almost always the highest dependence between 
the class labels and the discrete intervals, and 
always with significantly lower number of 
intervals, when compared with other state-of-
the-art discretization algorithms. The use of the 
CAIM algorithm as a preprocessing step for a 
machine learning algorithm significantly 
improves the results in terms of the accuracy, 
which are better than by using other 
discretization algorithms.  

An important feature of the CAIM algorithm 
is that it automatically selects the number of 
intervals, in contrast to many existing 
discretization algorithms. The CAIM 
algorithm’s execution time is comparable to the 
time of the simplest unsupervised discretization 
algorithms, and outperforms some supervised 
algorithms. The above advantages make the 
CAIM algorithm suitable for discretization of 
data representing a variety of real life problems. 
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