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Abstract. Prediction of binding of small organic ligands to proteins based on the knowledge of protein 
structures finds applications in rational drug discovery and elucidation of various cellular-level processes. 
Recent work shows that predictive quality of computational predictors of these binding events can be 
improved with the use of a consensus-based approach that combines predictions from several base predictors. 
We designed a novel type of a consensus, called ConSitePred, which uses a regression-based meta-predictor 
to (re)rank predictions from four well-performing base methods. The regression uses a vector of six custom-
designed and empirically selected features that quantify atomic composition of the protein nearby the 
predicted binding site and presence and quality of other binding site predictions that are close to the predicted 
site. We empirically show that ConSitePred’s predictions improve over the predictions of a comprehensive 
set of ten existing predictors, including its four base methods. Our method provides an alternative to other 
consensuses-based approaches that are based on clustering predictions from the base methods.  
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1. Introduction 

The past two decades observed a substantial interest in computational studies of interactions between 
proteins and other molecules. These include investigations that have analysed and characterized protein-
protein [1-3], protein-DNA [4], protein-RNA [4,6], and protein-small ligand [7-9] interactions. Numerous 
computational methods that predict binding (interaction) sites on the protein surface were also developed 
[10-13].  

In this work we focus on computational prediction of interactions with small (less than 100 non-
hydrogen atoms) organic molecules. These molecules constitute nearly 90% of the drugs approved by the 
U.S. Food and Drug Administration [14]. Moreover, they are of particular interest because they are involved 
in numerous cellular activities, such as cellular signalling, growth of neurons, and regulation of cell cycles 
[15-17]. Knowledge of binding sites of these small molecules is important for rational drug discovery [18,19]. 
Here, we use “ligand” and “binding site” terms to refer to the small organic compounds and the sites on the 
protein structure where they bind, respectively. 

The field of structure-based prediction of ligand binding sites was recently reviewed in [11]. There are 
three types of predictive approaches that are based on geometrical analysis, calculation of binding energy, 
and threading using structural templates. The geometry-based predictors include SURFNET [20], 
PocketFinder [21], PASS [22], LIGSITEcsc [23], PocketPicker [24], ConCavity [25], and Fpocket [26]. The 
representative energy-based and threading-based approaches are Q-SiteFinder [27] and Findsite [28], 
respectively. The review [11] included a large-scale comparative evaluation of several publicly available 
predictors, and suggested that improved predictive quality can be obtained by building consensus-based 
methods, i.e., meta-methods that combine predictions from several base methods. MetaPocket [29] is a 
consensus approach that combines four base methods: LIGSITEcsc, PASS, Q-SiteFinder, and SURFNET. 

                                                           
+  Corresponding author. Tel.: + 1 780 494-5488; fax: + 1 780 492-1811 
   E-mail address: lkurgan@ece.ualberta.ca 

DOI: 10.7763/IPCBEE.2014.V70.7 

2014 International Conference on Bioinformatics and Biomedical Technology (ICBBT 2014) 

Gdansk, 14-16 May, 2014, pp. 37-42  

IPCBEE vol. 70 (2014) IACSIT Press, Singapore 

 



MetaPocket perform predictions in three steps: (1) it collects top three predictions (represented by predicted 
positions of the center of ligand) from each of the four methods; (2) it clusters these 12 predictions using 
hierarchical clustering according to their spatial similarity (distance); and (3) it ranks all clusters based on the 
sum of the (normalized) z-scores of the predicted pockets included in the cluster. The result is a ranked list of 
(new) predictions that are computed based on center of mass of each cluster.   

We investigate an alternative design of a consensus. Similarly as in MetaPocket, we empirically select 
four base methods but instead of using clustering and generating new predictions, we use a meta-predictor to 
(re)rank predictions collected from the four base methods. Our meta-predictor, named ConSitePred, 
represents each prediction from each base method using a vector of numerical descriptors (features). We 
considered features that quantify certain structural properties of the input protein nearby the predicted 
binding site, atomic and amino acid (AA) composition of the predicted binding site, and certain geometric 
properties of the input protein and the predicted binding site in relation to predictions from other base 
methods. An empirically selected (well-performing) subset of these features is inputted into a prediction 
model that provides a score, which in turn is used to rank the predictions from the base methods. We 
carefully designed our ConSitePred including feature selection (from over 200 considered features) and 
selection of predictive model (out of two possible choices). 

2. Materials and methods 

2.1. Datasets and evaluation protocols 
We use the high-quality benchmark dataset proposed in [11]. Three proteins in that dataset could not be 

processed by DSSP [30], which we need to generate the features, and thus were excluded. Some of the 
considered predictors could not perform predictions for another 32 proteins, which were also excluded. We 
randomly divided the remaining 216 proteins into two similarly-sized subsets, one that was used for training 
the meta-predictor (TRAINING dataset with 110 proteins) and the other that was used to perform out-of-
sample testing (TEST dataset with 106 proteins). All design steps of the meta-predictor were performed 
based on five-fold cross validation on the TRAINING dataset; the final design was tested and compared with 
other predictors on the TEST dataset.  

As proposed in [11,28], we use the center-to-center distance (Dcc) between predicted and native (true) 
positions of the ligand, to assess predictive quality. For a given protein with n ligand binding sites we assess 
the top n predictions (based on a ranking generated by a given method, including our ConSitePred), and we 
aggregate this assessment over the entire dataset. Next, we compute a success rate for a given distance cutoff, 
i.e., predictions for which Dcc is smaller than cutoff are assumed correct and we compute ratio of these 
correct predictions among all native ligand binding sites in the entire dataset. We use cutoff ranging from 1Å 
to 20Å, with step of 1Å. The success rates are plotted against the cutoff values forming the success rate curve 
(Fig. 1). Finally, we compute normalized area under the success rate curve (AUS) when considering 
distances between 1Å and 10Å (AUS10) and between 1Å and 20Å (AUS20). We normalize the area under the 
success rate curve by the highest attainable value, which is 10 and 20 for AUS10 and AUS20, respectively. 
Higher AUS values correspond to more accurate predictions. AUS10 focuses on predictions that are closer to 
the native binding site; AUS20 gives a more comprehensive evaluation of a larger set of predictions. 

2.2. Design of the meta-predictor 

The score generated by the meta-predictor is a predicted distance to the native binding site. The true 
distance (i.e., Euclidian distance between a given prediction and the closest native binding site) is 
transformed with the help of logistic function: –1+2/(1+e –0.5*distance). This transformation forces the predictor 
to focus on minimizing the errors for small distances, i.e., to obtain higher quality predictions closer to the 
native binding site, rather than to minimize errors irrespective of the distance. Based on empirical 
comparison of predictive quality of ten predictors (SURFNET, PocketFinder, PASS, LIGSITEcsc, 
PocketPicker, ConCavity, Fpocket, Q-SiteFinder, Findsite, and MetaPocket) on the TRAINING dataset, we 
selected the top four performing methods to include in our meta-predictors. They include Findsite, Concavity, 
Q-SiteFinder, and MetaPocket. This result agrees with the results in [11].  

We generated total of 242 features: 



• features based on the input protein structure and sequence 
o solvent accessibility (generated with DSSP) of AA closest the predicted binding site, grouped by 

AA types; sum of solvent accessibilities of AAs that are within a radius of 4, 6, 8, and 10Å from the 
predicted site; count of AAs with solvent accessibility > 0.25 (solvent exposed AAs) that are within 
the radius of 4, 6, 8, and 10Å from the predicted site, including their type; (105 features)  

o secondary structure (helix/strand/coil; generated with DSSP) of AAs that are within the radius of 4, 
6, 8, and 10Å from the predicted site; min. distance between the predicted site and the closest 
helix/strand/coil; composition of helix/strand/coil conformations in the entire protein; (18 features)  

o AA composition of the entire protein; (20 features) 
o composition of the predicted binding site including min. distance between a given binding site 

prediction and a particular AA type; atom type (H, C, N, O, and S) closest to the predicted site with 
the cutoff of 4 and 6Å; min. distance between the predicted site and closest H, C, N, O, and S atoms 
of the protein; count of H, C, N, O, and S atoms within a radius of 4, 6, 8, and 10Å from the 
predicted site; (56 features) 

o shape of the input protein fold, expressed by its radius of gyration; (1 feature) 
• features based on the predicted binding site including average and min. distances between the 

considered predicted site and all sites predicted by the other base methods; count of other predictions 
within a radius of 4, 6, 8, and 10Å from the predicted site, also aggregated by the base method name; 
name of the method that generated the considered predicted site; and scores generated by the base 
methods for a given predicted site, e.g., from Findsite we used fraction of templates that shared this 
pocket, number of templates used to evaluate this pocket, and max., min. and average TM-scores and 
RMSDs.  (42 features) 

Next, we performed empirical feature selection to select a subset of features that are relevant to our 
objective. First, we removed low quality features that do not correlate with the output of the prediction (the 
transformed distance to the native binding site) using Pearson correlation coefficient (PCC). We calculated 
PCC for every considered feature for each training fold from the 5-fold cross validation on the TRAINING 
dataset. We only consider features with the average (over the five folds) PCC > 0.2; other features were 
removed. Next, we performed greedy, wrapper-based feature selection to remove redundant features. We 
sorted the remaining features by their average absolute PCC in the descending order and used two predictors: 
linear regression (LR) and the support vector regression (SVR). We performed two greedy search types: 

• Forward (FFS) where we start with the top-ranked feature and we add the next-ranked feature if it 
improves the prediction quality based on the 5-fold cross validation on the TRAINING dataset. 

• Backward (BFS) where we start with all features and we remove the next-lower-ranked feature 
(starting with lowest-ranked feature) if the prediction quality (based on the 5-fold cross validation on 
the TRAINING dataset) does not deteriorate due to the removal. 

We parameterized the SVR model before and after the second step of the feature selection. We 
considered Gaussian kernel with complexity parameter = 2-5, 2-4,… 25 and gamma = 2-10, 2-8, … 24 and 
selected the parameter values that provided the highest predictive quality based on the 5-fold cross validation 
on the TRAINING dataset.  

The AUS10 and AUS20 values of the resulting 4 setups based on the 5-fold cross validation on the 
TRAINING dataset are: 0.43 and 0.63 for LR model and FFS (6 features); 0.38 and 0.57 for LR and BFS (30 
features); 0.40 and 0.59 for SVR and FFS (7 features); 0.41 and 0.59 for SVR and BFF (33 features). To 
compare, AUS10 and AUS20 values of the four base methods on the TRAINING datasets are: 0.39 and 0.59 
for Findsite; 0.33 and 0.55 for ConCavity; 0.29 and 0.51 for Q-SiteFinder; and 0.27 and 0.52 for MetaPocket. 
These empirical results reveal that the LR with FFS provides the highest predictive performance and that this 
meta-predictor outperforms the base methods. This setup was used to implement our ConSitePred method.  

3. Results and discussion 

The proposed ConSitePred is empirically compared with a comprehensive set of ten existing predictors, 
including SURFNET, PocketFinder, PASS, LIGSITEcsc, PocketPicker, ConCavity, Fpocket, Q-SiteFinder, 
Findsite, and MetaPocket, on the TEST dataset (Fig. 1). The results show that the proposed consensus-based 



approach generates promising results that improve over the results of the other predictors, including the four 
base methods. The success rates of ConSitePred are higher across the entire range of the distance cutoff 
values. This means that ConSitePred provides good predictive performance when the user is interested in 
predictions that are both very close to the native site and possibly farther away. Using the cutoff of 4Å, 
which was suggested in [28] since this value is similar to the radius of gyration of considered ligands, 
ConSitePred correctly predicts 42% of binding sites compared to the 35% obtained by the second best 
Findsite. The areas under the success rate curve AUS10 and AUS20 of ConSitePred are 0.46 and 0.63, 
respectively. These values are larger by 100%*(0.46-0.39)/0.39 = 18% and 100%*(0.63-0.57)/0.57 = 11% 
than the corresponding area values of the second best Findsite.  

 

 

 

 

Method AUS10 AUS20 

ConSitePred 0.46 0.63 

Findsite 0.39 0.57 

ConCavity 0.35 0.54 

MetaPocket 0.35 0.55 

Q-SiteFinder 0.34 0.54 

PocketPicker 0.34 0.55 

Ligsite
CSC

 0.31 0.51 

PASS 0.31 0.49 

Fpocket 0.29 0.50 

PocketFinder 0.28 0.48 

SURFNET 0.25 0.51 
 

Fig. 1: Predictive quality of ConSitePred and other considered predictors on the TEST dataset measures using the 

success rate curves and the corresponding AUS10 and AUS20 values. The methods are sorted by the AUS10 value. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Features used by ConSitePred (listed on the right). The y-axis shows average values of a given feature computed 

over all predicted sites in the TRAINING dataset for a given range of values of the distance given in x-axis; some value 

were scaled, as explained in the legend. Markers show the average values; lines show linear fit into the relation between 

the average values and the distance with the corresponding values of Pearson correlation coefficients (PCCs). 

We attribute these improvements to the use of a well-performing set of novel features that were 
empirically selected from the considered comprehensive feature set. Instead of combining the predictions of 
the four base methods together through clustering, like in the other meta-method Meta-Pocket [29], we rank 



the predictions (from Findsite, Concavity, Q-SiteFinder, and MetaPocket) using linear regression with six 
features that were empirically selected using the TRAINING dataset. The selected features quantify several 
different aspects of each predicted binding site and are highly correlated with the distance from the predicted 
to the native binding site (|PCC| ≥ 0.78), see Figure 2; the latter suggests that they provide useful predictive 
input. Three features (shown using black markers in Fig. 2) consider the quality of the predicted and nearby 
predictions from Findsite, e.g., black + markers denote feature that quantifies fraction of structural template 
used by Findsite’s threading that is higher for the predictions that are closer to the native site (that have lower 
distance). This is a credible relationship since higher number of available templates usually results in higher 
quality of threading. Two other features consider location and number of predictions from ConCavity (red 
markers) and MetaPocket (green markers) that are nearby the predicted binding site. These features reveal 
that when more of these predictions are closer to the predicted site then this site is more likely to be correct 
(distance is lower). Finally, the last feature (blue markers) shows that distance is lower (i.e., prediction is 
more accurate) when the number of nitrogen atoms in the input protein that are close to the predicted site 
(<10Å away) is higher. This is likely related to the fact that nitrogen atoms may form covalent bonds with 
the considered ligands [7]. Moreover, besides the use of novel features, another reason for the favorable 
success rates of ConSitePred is the careful, empirical design that included selection of well-performing base 
methods and prediction model.  

To conclude, our results demonstrate that the quality of the prediction of binding sites of small organic 
compounds in protein structures can be improved with a consensus-based approach that (re)ranks predictions 
generated by well-performing predictors using a meta-predictor.  
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