
Semantic Mapping of XML Tags using Inductive
Machine Learning

Lukasz Kurgan 1,2, Waldemar Swiercz 1,2 and Krzysztof J. Cios 1,2,3,4

1 Department of Computer Science and Engineering, University of Colorado at Denver
2 Department of Computer Science, University of Colorado at Boulder

3 University of Colorado Health Sciences Center
4 4cData, LLC, Golden, Colorado

Abstract – In today’s data-centric world many
applications rely on data that comes from multitude
of different sources. To integrate that data two major
operations are performed: finding semantic mapping
between data sources, and transforming structure of
the data sources. One of the well-established
standards for storing and sharing structured and
semantically described data is XML. This paper
describes system called XMapper, which is used to
generate semantic mapping between two XML
sources that describe instances from the same
domain. The described system is novel in two ways. It
uses only stand-alone XML documents (without DTD
or XML schema documents) to generate the
mappings. It also utilizes machine learning to
improve accuracy of such mappings for difficult
domains. Several experiments that use artificial and
real-life domains described by XML documents are
used to test the proposed system. The results show
that mappings generated by the XMapper are highly
accurate for both types of
XML sources. The generated mappings can be used
by a data integration system to automatically merge
content of XML data sources to provide unified
information for a data processing application.

Keywords: semantic mapping, data integration,
XML, machine learning, XMapper,
DataSqueezer algorithm

1. Introduction
XML (eXtensible Markup Language) is a

markup language for documents that contain
structured information [3]. XML is a subset of
SGML [15] that uses custom-defined tags to
store and describe structured, or semi-structured,
data and its relationships. Structured information
consists of content (numbers, character strings,
images, etc.) and information of what role that
content plays (e.g., a rule is build out of
selectors, where a selector is a pair of attributes

(name, value)). The XML tags are used to
describe structure and semantic meaning of the
information. One of major advantages of XML
is ease of their automatic processing.

The XML technology is widely used in
industry to transfer and share data. Within the
computer science field, XML is widely used by
database and software engineering researchers
and practitioners. Although some of the
computer science disciplines do not use the
XML, some of them, like Data Mining and
Knowledge Discovery recognize the importance
of that technology [8].

1.1. Related research
Because of rapid growth of the structured

data that is stored using XML documents many
enterprises need to build data integration
systems that provide unified access to
semantically and structurally diverse
information sources [14]. The data integration
system has to find structural transformations and
semantic mappings that result in correct merging
of the information and allow user to query the
so-called mediated schema [21]. It is very
difficult at present to create such system because
system creators have to find transformations
between documents manually, on the case-by-
case basis. In this paper we use XML documents
as data sources.

This paper addresses problem of finding
semantic mappings between structured
documents within a given domain. The problem
of structural transformation of XML sources was
described in [30]. Majority of the approaches to
semantic mapping problem concentrate on
creation of mediated schema. The mediated
schema is a virtual schema that captures the
domain’s most important aspects by creating

mappings between it and a set of data sources
[27]. This paper describes system that is able to
generate pairs of semantically related XML tags,
which can be further mapped into a user-created
mediated schema.

Most of the schema mapping systems use
only structural and data type information about
XML documents, which is stored in either DTD
(document type definition) [13] or XML Schema
[31] files.

Several mapping systems work with XML
documents. The TransScm system [26] matches
schema based on the structure and names of the
SGML tags extracted from DTD files by using
concept of labeled graphs. The LSD system [12]
uses multistrategy learning by utilizing several
machine learning (ML) algorithms based on the
user-specified mappings to discover matching
patterns. Based on these patterns, the mappings
between leaf nodes in the DTD trees for two
XML documents are generated. We will
compare results of semantic mapping generated
by our system with the results generated by the
LSD system.

The reconciliation of relational schemas is
approached by several systems, like Artemis [1,
4] and Clio [25, 32]. The Artemis system
measures similarity of element names, data types
and structures to match schemas. Clio uses SQL
queries and data examples to derive and rank
alternative mappings between schemas. ML
based systems that use single-learner approach,
like Semint [22] and Delta [11], were used to
discover attribute mappings for relational
databases. Delta generates a text string for every
tag (attribute) that describes it and matches tags
based on the similarity between these strings.
The significant disadvantage of the Semint
system, which uses neural networks, is low
performance while working with textual
information. These systems cannot handle
hierarchical XML schemas.

Our system, called XMapper, also utilizes
ML together with constraint analysis. The main
difference between XMapper and other mapping
systems is that it uses only standalone XML
documents (DTD or Schema files are not used)
to derive the mappings. The ML component of
the XMapper system improves accuracy of
mappings for difficult domains. XML data
sources of such domains use data types that are

either identical or very similar, and their tag
names between these data sources are
significantly different. In such a case correct
mappings can be found only by using the ML
approach. ML is used to find relationships
between XML tags. Based on them
corresponding tags from different XML sources
are matched.

1.2. Problem Definition
The goal of the XMapper system is to

provide semantic mapping that enables
integration of information between two XML
data sources. Two example XML sources and
the mapping discovered by the XMapper system
are shown in Table1.

The XMapper’s assumptions are as follows:
- it generates only 1-to-1 mapping of tags
between two XML documents; the same
assumption is true in the LSD system
- it requires from the user to select one
matching tag between two documents. This tag
is used as the class label by the ML component
of the XMapper system. The user-selected tag is
not considered as part of the algorithm result
since it is treated as a user-specified mapping.
- source XML documents are assumed not to
have multiple children nodes having the same
tag name. In case of such occurrence the system
would only use one, structurally last instance.

2. The XMapper Algorithm
As said above the XMapper generates 1-to-1

mappings of XML tags between two source
documents. The XMapper system works in two
steps. First, it extracts for every tag from the two
XML documents a vector of features that
describes its properties. For every pair of tags,
which belong to different sources, distance
between their feature vectors is calculated. Next,
1-to-1 semantic mappings are generated by
sequentially finding pairs of tags with the
minimum distance. To account for a situation
when some of the tags may not have a
semantically corresponding tag in the other
XML source, a threshold value is applied to the
distance value. The idea of the XMapper is
similar to the one used in the Delta [11] system
that used text strings to describe properties of
relational attributes.

In the remaining part of the paper, term
“XML tag” will be substituted by attribute, since
from ML point of view we consider XML files

as structured datasets described by a set of
attributes (tags).

Table 1. From left: XML documents for hea1 and hea2 sources (only one instance is shown), semantic mapping generated by
the XMapper system

<hea1>
<example>

<class>1</class>
<Age>35</Age>
<Sex>0</Sex>
<ChestPainType>4</ChestPainType>
<RestingBloodPressure>138</RestingBloodPressure>
<SerumCholestoral>183</SerumCholestoral>
<FastingBloodSugar>0</FastingBloodSugar>
<RestingElectrResults>0</RestingElectrResults>
<MaxHeartRate>182</MaxHeartRate>
<ExerciseInducedAngina>0</ExerciseInducedAngina>
<Oldpeak>1.4</Oldpeak>
<SlopeOfPeakExerciseSTSegment>1</SlopeOfPeakExerciseSTSegment>
<NumberMajorVessels>0</NumberMajorVessels>
<Thal>3</Thal>

</example>
</hea1>

<hea3>
<example>

<class>2</class>
<FBSugar>0</FBSugar>
<REResults>0</REResults>
<SlopePESTS>1</SlopePESTS>
<S>1</S>
<CPT>2</CPT>
<MaxHR>141</MaxHR>
<EIA>0</EIA>
<OP>0.3</OP>
<MajVesselsNo>0</MajVesselsNo>
<Thal>7</Thal>
<Years>57</Years>
<RBPress>124</RBPress>
<SChol>261</SChol>

</example>
</hea3>

class,class
Sex,S
example,example
Thal,Thal
RestingBloodPressure,RBPress
SerumCholestoral,SChol
MaxHeartRate,MaxHR
RestingElectrResults,REResults
ChestPainType,CPT
FastingBloodSugar,FBSugar
SlopeOfPeakExerciseSTSegment,SlopePESTS
ExerciseInducedAngina,EIA
NumberMajorVessels,MajVesselsNo
Age,Years
Oldpeak,OP

2.1. The XMapper Architecture
Two XMapper system has two modules:

- constraints analysis module, which is used to
extract properties of data stored in XML
sources, like data types, length, number of null
values etc., and structural information, like
number of children nodes, data types of children
nodes etc.
- learning module, that is used to extract
information about relationship between
attributes used in both data sources.

The learning module uses inductive ML
algorithm DataSqueezer [10] to generate six
feature values from a vector of 22 features that
describe an attribute. The DataSqueezer is a
supervised algorithm that generates production
rules. In case of the XMapper, it will use flat
data stored within an XML document as its
training data, and the user-specified attribute
(tag) as a class label. To describe the
DataSqueezer algorithm we denote the set of all
training examples by S, the set of positive
examples as SP, and negative examples as SN.
Examples are described by a set of K attribute-
value pairs [23, 24]:]#[1 jj

K
j vae =∧= where aj

denotes j-th attribute with value vj ∈ dj, # is a
relation (=, <, ≈, ≤, etc.), where K is the number
of attributes. In case of the DataSqueezer
algorithm the relation is equality. An example, e,

consists of set of selectors][jjj vas == . The
DataSqueezer algorithm generates production
rules in the form of:

IF (s1∧…∧sm) THEN class = classi,
where si = [aj = vj] is a single selector, and m ≤ K

The DataSqueezer generates rules using two-

phase process. First, common selectors for
examples from Sp are found. Next, the rules are
generated and validated against SN using the
strongest found selectors. Each generated rule
has an assigned goodness value that is equal to
the percentage of positive examples from the
training data that it covers. Based on these
goodness values, a goodness for each attribute
and selector from the data is computed using a
procedure described in [9]. For detailed
description see [10]. The goodness values
computed for attributes and selectors by the
DataSqueezer algorithm are used by the
XMapper system to derive six feature values for
every attribute from both XML sources.

The diagram of the XMapper architecture is
shown in Figure 1. Detailed description together
with a pseudo-code of the XMapper system is
given in the next section.

1 1
2 1
… …
12 70
13 1
... …
16 5
17 1.08
… …
22 3.77

unit reg# subj crs sec …
1 10577 ANTH 211 F01 …
1 20573 ANTH 344 S01 …

0.5 10624 BIOL 431 F01 …
… … … … … …

 tag1 tag2 … tagn

tag1 0.056 0.67 … 0.67
tag2 0.65 0.32 … 0.48
… … … … …
tagm 0.65 0.37 … 0.32

1 0
2 1
… …
12 492
13 1
... …
16 4
17 0.45
… …
22 5.03

crds code Sect# days …
3 ACCO 305 2 TTH …
3 ANTH 201 1 TTH …
3 MUSI 412 1 MWF …
… … … … …

select one-to-one
tag (attribute) pairs

based on min distance

data

structure

Constraint
analysis

Learning

data

structure

Constraint
analysis

Learning

for each tag (attribute)
calculate feature vector describing it

DOMAIN A

Source XML 1

Source XML 2 {
{
{

values based on
properties of data

values based on
XML structure

ML generated
values (based on

attribute and
selector ranking

for each tag (attribute) pairs
calculate distance

Distance Table

normalization

normalization

{
{
{

values based on
properties of data

values based on
XML structure

ML generated
values (based on

attribute and
selector ranking

Figure 1 The architecture of the XMapper system

2.2. The XMapper Algorithm
The XMapper pseudocode:

Given: Two XML sources, two user-selected
class attributes (tags), one per each source

Initialize: For both XML sources extract:
- data as flat data tables where rows are data

examples and columns are attributes
- tree, in form of list of corresponding parent-

children nodes
Step1.

1.1 For both XML sources calculate feature
vectors describing their attributes

for ith XML document
 for jth attribute
 calculate 22 dimensional feature vector vi,j

1.2 Calculate distance table by calculating
distance between all attribute pairs
between the two XML sources

for ith attribute from XML document 1
 for jth attribute from XML document 2
 calculate disti,j = distance between v1,i and v2,j

Step2.
Initialize: L empty list of attribute pairs
2.1 find max = maximum value of disti,j
2.2 find min = minimum value of disti,j

2.3 if min > 0.5*max then STOP
2.4 add (i, j) pair of attributes, which

corresponds to the min, to L
2.5 set distk,j = 1

where k = 1,2,…,#attributes of XML document 1
set disti,k = 1

where k = 1,2,…,#attributes of XML document 2
2.6 until all rows or columns of distance table

contain only 1’s go to 2.2
Output: L (list of 1-to-1 attribute pairs)

In step 1, 22 dimensional feature vectors that
describe attributes from both XML sources are
calculated. Also, the distances between feature
vectors from different XML sources are
computed. The values of the feature vectors that
are calculated in step 1.1 are described in detail
in Table 2. The last six values from these vectors
are calculated using the learning module of the
XMapper. Feature vectors are normalized into
the [0; 1] range and multiplied by a weight.
Weighted sum of all feature values is scaled to
the [0; 1] range in order to compute distances
between feature vectors in step 1.2.

Table 2. 22 dimensional feature vector describing an attribute
source index description weight source index description weight

1 type of values (1 if has some numerical only values, 0 otherwise) 0.025 13 number of children attributes (nodes) all the way to leaf nodes 0.03
2 type of values (1 if has some char only values, 0 otherwise) 0.025 14 most complex children attribute type of values 0.01
3 type of values (1 if has some special char only values, 0 otherwise) 0.025 15 mean max length of all children attributes 0.01
4 type of values (1 if has some num. and char values, 0 otherwise) 0.025 16 most common children attribute type 0.01
5 type of values (1 if has some num. and special char values, 0 other.) 0.025

XML
structure

sum 0.06
6 type of values (1 if has some char and special char values, 0 other.) 0.025 17 attribute goodness 0.12
7 type of values (1 if has some num., char and spec char values, 0 other.) 0.025 28 min. goodness of attribute selectors 0.04
8 type of values (1 if has some empty values, 0 other.) 0.025 19 max. goodness of attribute selectors 0.04
9 max. length of values (0 empty, 1 single char, floor(2+max length/10)) 0.04 20 mean goodness of all children attributes 0.12
10 attribute type (0 discrete, 1 continuous) 0.04 21 mean min. goodness of all selectors of all children attributes 0.04
11 number of empty values 0.03 22 mean max. goodness of all selectors of all children attributes 0.04
12 number of distinct values 0.03

inductive
learning

sum 0.4

constrain
analysis

sum 0.34

The distance between ith and jth attribute,

which is calculated in step 1.2, is defined by the
following formula:

)1(1.01.0)(
22

1
,,, ∑

=

⋅+⋅+−=
k

kjkkikji baFwFwdist

where

kiF , is scaled value of kth feature of ith attribute

kw is weight value of kth feature

=
otherwise

nametagjofsubstringaisnametagiif
a

thth

0
1

=
otherwise

nametagjofonabbreviatianisnametagiif
b

thth

0
1

During computation of the distance, the

values of the 22 feature vectors together with
corresponding weights are used. Distance value
also incorporates mechanism of matching
attribute names. The matching of attributes
names uses two measures:
- matching the entire attribute names using
formula for a in (1). XMapper checks if name of
one attribute is identical or substring of the other
attribute name.
- matching abbreviation of attribute names
using formula for b in (1). XMapper checks if
name of one attribute is an abbreviation of the
other attribute name.
Distance values are normalized to the [0, 1]
range to enable comparison of distances between
different pairs of attributes.

In step 2, pairs of attributes belonging to
different XML sources that have minimum
distance are chosen. To decide if an attribute
pair with the minimum distance should be output
as a mapping, the XMapper uses in step 2.3 the
stop threshold. The stop threshold assures that

attributes that are not similar to any other
attributes, which corresponds to high value of
distance between them and other unmatched
attributes, will not be not mapped.

Since the DataSqueezer algorithm that is

used in the learning module of the XMapper
system work only with discrete and numerical
data, two data transformation are performed:
- numerical encoding. All textual attribute
values are encoded into numerical values. Since
the DataSqueezer is not distance sensitive,
simple encoding scheme when a text string is
encoded into an arbitrary value is performed
- discretization. All attributes with high number
of encoded values are discretized to reduce the
number of values.

For deciding if an attribute is continuous the
following rule of thumb is used [5]:

c
Nni 3

=

where
ni number of discrete intervals for ith attribute
N number of distinct values of ith attribute
c number of classes (distinct values of class attribute)

The attribute is continuous, and thus need to
be discretized, if ni > c. In another words, an
attribute is considered continuous if the number
of discrete intervals calculated using the above
rule of thumb is greater than the number of
classes. Number of classes is equal to the
number of distinct values of the user-specified
attribute.

The unsupervised Equal Frequency
discretization algorithm [6] was used to
discretize an attribute. Unsupervised
discretization was used because it is fast, and the
user-specified attribute (class attribute) may not
be meaningful (required for supervised

discretization). In the future, we plan to test a
supervised discretization algorithm, like CAIM
[20] or CADD [5] to improve the results
generated by the learning module of the
XMapper system.

One of the XMapper advantages is its
flexibility of using any ML algorithm that
generates ranked list of attributes and selectors,
along with their goodness values. Example is the
CLIP4 algorithm [7, 9], which can be used
instead of the DataSqueezer algorithm. Also
feature selection algorithms like the ReliefF [18]
and the Relief [16, 17] can be used. They work
by assigning a “relevance” weight to each
attribute, which can be interpreted as a goodness
measure. The disadvantage of the latter
algorithms is that they do not provide selector
ranking and thus the learning module of
XMapper system would only generate first three
out of the six feature values.

The XMapper system extracts more
information about the XML source than is stored
within a DTD document. For example, it
extracts information about the number of null
values and the type of attributes. This is one of
the reasons why the XMapper generates more
accurate mappings than systems that use only
DTD information. In the next section we
compare the XMapper system with the LDS
system. The comparison shows that our system
generates more accurate mappings, in spite of
the fact that LSD uses several ML learners.

3. Experiments
The XMapper system was tested using

several domains that consisted of several XML
data sources. Number of XML documents per
domain varied from 2 to 5. The benchmarking
test of the XMapper system consist of two parts:
- tests that use artificially created XML based
domains
- tests that use real-life XML based domains

3.1. Domains
The domains used in the benchmarking of the

XMapper can be divided into two categories:
artificial and real. The artificial domains were
created by converting into the XML format

datasets downloaded from the UC Irvine
Machine Learning Repository [2]. Sample
dataset that shows how the original, comma-
separated format was converted into the XML is
shown in Table 1. The real domains were
downloaded from the LSD web site at
http://www.cs.washington.edu/homes/
anhai/lsd/lsd.html. The benchmarking results
obtained for the real datasets were compared
with results obtained by the LDS system.
Summary information about all datasets is given
in Table 3.

The reason for using both domains was that
real domains include mostly textual data, while
artificial domains include mostly numerical data.

Table 3 also includes information about the
structural and semantic difference between data
sources belonging to the same domains. Changes
between data sources in the artificial domains
include changing attribute names into the new
names or different types of abbreviations,
reordering and deletions of attributes. Creation
of a set of artificial data sources belonging to the
same domain consisted of random splitting the
original dataset into n subset and conversion of
these subsets into the XML format. Next, the
attribute names, order and attribute deletions
were performed as shown in Table 3.

Description of the domains follows:

1. Contraceptive method choice (cmc)
2. StatLog heart disease (hea) (originally from the StatLog

project repository)
3. Iris plant (iris)
4. Mushrooms (mush)
5. PIMA Indian diabetes (pid)
6. SPECT heart imaging (spect)
7. Thyroid disease (thy)
8. Course listing (course)
9. Faculty listing (faculty)
10. Real estate (realest)

First seven are the artificial domains. The
course domain includes course listing from five
universities. The faculty domain includes faculty
listings from computer science departments from
five universities. The realest domain includes
house sale listings from five real estate sources.

Table 3. Major properties of datasets considered in the experimentation

domain # sources source files
(datasets)

listings
(# exam)

tags
(# attrib)

non-
leaf tags

matchable
tags depth tag properties

cmc1 491 11 1 100 % 2 original names, order and XML structure
cmc2 491 10 1 100 % 2 changed: names and 1 removed

cmc 3

cmc3 491 11 1 100 % 2 changed: names and order in XML
hea1 90 15 1 100 % 2 original names, order and XML structure
hea2 90 13 1 100 % 2 changed: names and 2 removed

hea 3

hea3 90 15 1 100 % 2 changed: names and order in XML
iris1 75 6 1 100 % 2 original names, order and XML structure iris 2
iris2 75 6 1 100 % 2 changed: names and order in XML

mush1 2806 24 1 100 % 2 original names, order and XML structure
mush2 2806 21 1 100 % 2 changed: names and 3 removed

mush 3

mush3 2804 24 1 100 % 2 changed: names and order in XML
pid1 256 10 1 100 % 2 original names, order and XML structure
pid2 256 9 1 100 % 2 changed: names and 1 removed

pid 3

pid3 256 10 1 100 % 2 changed: names and order in XML
spect1 133 24 1 100 % 2 original names, order and XML structure spect 2
spect2 134 24 1 100 % 2 changed: names and order in XML
thy1 3772 23 1 100 % 2 original names, order and XML structure thy 3
thy2 3428 22 1 100 % 2 changed: names, and order in XML, 1 removed

course 5 5 universities 703÷3924 15÷19 3÷5 58÷88 3÷5 course listing from 5 US universities (different names, order and XML structure)
faculty 5 5 universities 33÷74 14 4 100 % 4 faculty listing from 5 US universities (same names, order and XML structure)
realest 5 5 agencies 501÷3001 31÷53 1÷18 21÷44 2÷3 real estate listing from 5 agencies (different names, order and XML structure)

3.2. Results
The XMapper was tested on 10 domains that

included between 2 and 5 XML sources. The
benchmarking incorporated matching all
possible pairs of XML sources for domains. For
example, for the domain consisting of 5 sources,
10 tests were performed. The results include
mean number of correctly and incorrectly
generated mappings, and the mean accuracy. For
each source pair we checked the results versus
manually created list of correct mappings. The
results incorporate all correctly generated
mappings, which include 1-to-1 mappings and
unmatched, single attributes that had no
matching attribute in the other source. The
incorrect mappings include incorrect 1-to-1
mappings and unmatched attributes that had a
mapping. The results do not count the user-
specified attribute (class attribute), which was
not processed by the XMapper system.

Two sets of test were performed using all 10
domains:
- using the XMapper system with learning and

constraints analysis modules
- using the XMapper system without the

learning module.
This setup is intended to show the advantages

of incorporating the learning module into the
XMapper system. The test results are
summarized in Table 4. Direct comparison of

mean accuracies for all domains for both setups
is shown in Figure 2.

The XMapper system achieved high, over
85%, accuracies for 7 out of 10 domains for both
of the test setups. For these 7 domains results
between the XMapper system with and without
the learning module are comparable. Thus, for
these domains it would be computationally less
expensive to use the system without the learning
module. There are several reasons for these
results: the attribute names and types of attribute
values for the mapped attributes within these
domains and between sources were similar,
which makes the mapping easier for the system.

For the remaining 3 domains (i.e. spect, thy
and realest) the results while using the XMapper
with the learning module are much better. For
these domains the system achieved on average
62% accuracy, while without the learning
module it achieved only 31% of accuracy. These
results show the need for incorporating the
learning module within the XMapper system.

There are several reasons for low
performance of the XMapper system without the
learning module for the three domains. The
spect domain created using the spect dataset [19]
had attributes with completely different names
between the two sources. Also, all attributes
were binary and thus only the relationship
between attributes could be used as indicator for
mapping them correctly.

Table 4. From left: benchmarking results for the Xmapper system using the leraning module, and without using the learning
module

domain sources # experiments
(source pairs)

mean #
correct

mean #
incorrect

mean
acc. %

cmc 3 3 10 0 100.0
hea 3 3 12.3 1.7 88.1
iris 2 1 5 0 100.0
mush 3 3 19.7 3.3 85.5
pid 3 3 7.7 1.3 85.1
spect 1 1 15 8 65.2
thy 1 1 12 10 60.0

mean for artificial domains 83.4
course 5 10 15.5 2.8 85.2
faculty 5 10 13 0 100.0
realest 5 10 28.6 18.7 60

mean for real-life domains 81.7
total mean 82.6

domain sources # experiments
(source pairs)

mean #
correct

mean #
incorrect

mean
acc. %

cmc 3 3 10 0 100.0
hea 3 3 13.3 0.7 95.2
iris 2 1 5 0 100.0
mush 3 3 20.3 2.7 88.4
pid 3 3 8.3 0.7 92.6
spect 1 1 5 18 21.8
thy 1 1 3 19 13.6

mean for artificial domains 73.1
course 5 10 15.6 2.3 87.5
faculty 5 10 100 0 100.0
realest 5 10 27.4 20 57.2

mean for real-life domains 81.6
total mean 77.3

Similarly, the thy domain created using the

thyroid dataset [28, 29] includes attributes that
have very different attribute names, and very
similar attribute values between the two sources.
92 percent of the examples from that domain
belong to the same class. In case of the realest
domain, only between 21 and 44% of attributes
could be mapped. Also, there were many
mappings that were very hard to distinguish
between being semantically correct, and only
similar in terms of structure and content. That
resulted in higher number of incorrect mappings.

Using learning module resulted in improving
accuracy of mappings for these hard domains.
The ML component of the learning module
improves the accuracy of results by
incorporating information about the relationship
between the attributes. This additional
information is shown to improve the mapping
accuracy. The total average accuracy results

show that using the learning module improves
the results by over 5%. It is important to notice
that using the learning module improves the
results for both artificial and real domains.

Another important advantage of the
XMapper is that it returns ordered, in terms of
confidence, set of mappings. The attribute pairs
with the highest confidence are first. The
confidence level directly corresponds to the
distance calculated between attribute pairs.

Using results from the benchmarking tests
we performed a set of tests that validate the
usefulness of the ordering generated by the
XMapper system. The error distribution versus
the returned position of the mapped attributes
was computed for the four discrete intervals: 0-
25%, 25-50%, 50-75%, and 75-100%. The 0-
25% interval corresponds to the first 25%
percent of the returned mappings. The results are
shown in Figure 3.

0
10
20
30
40
50
60
70
80
90

100

cmc hea ir is mush pid spect t hy cou f ac estdomain

ac
cu

ra
cy

 [%
]

XM apper with M L component
XM apper without M L component

Figure 2. Comparison of results for the XMapper system
with and without using the learning module

0

10

20

30

40

50

unmat ched 0-25 25-50 50-75 75-100

returned match position [% total number]

er
ro

rs
 [%

]

Figure 3. The error distribution for the ordered set of
mappings returned by the XMapper system

The results show that the confidence measure
used to order mappings generated by the
XMapper provides valuable information to the
user. The 71% of erroneous mappings are
generated with the second half of the returned
mappings, and over 40% for the last 25% of
them. On the other hand, only 8% of errors are
made within the first 25% of returned mappings.
Also, since the XMapper made on average only
6% (Figure 3) of errors for attributes that were
returned unmatched, the mechanism of using the
stop threshold to generate unmatched attributes
is also a robust solution.

The XMapper system was compared with the
LSD system [12]. Both systems used ML to
generate mappings. Only the real domains were
used for the comparison since the LSD system
was tested only on them. The comparison results
are shown in Table 5. The main difference
between the XMapper and LDS is that the LDS
generated mappings into the mediated schema,
which makes the task of finding mappings
easier, while XMapper generated mappings
directly between two sources. For course and
faculty domains the XMapper generated
mappings with higher accuracy. For the realest
the XMapper results were worse than the LDS
results. One of the reasons why the XMapper
mapping were less accurate is that it could on
average map only between 21 and 44% of
attributes in this domain, since the matching
were performed between the XML sources. The
LDS on average could map between 84 and
100% of attributes since it maps attributes
between a source and a mediated schema.

Table 5 Comparison of results between XMapper and
LSD systems

 course Faculty Realest
LSD 76%, 92% 71%
XMapper 85% 100% 60%

The average accuracy comparison between

the LSD and XMapper shows that XMapper
generates mapping with higher (81.7%)
accuracy than LSD (79.6%). The XMapper
generates more accurate mappings despite
solving more complex problem of direct
mapping between sources, and using only source
XML files, while LDS uses both DTD and
source data information.

4. Future Work
Future work will include investigating the

advantages of using DTD or XML schema
information to reduce computational complexity
of feature extraction by the constraint analysis
module of the XMapper system. The XMapper
currently extracts more information than is
stored in a DTD document, and thus we will use
the XML Schema, which is a relatively new and
thus not yet widely used standard. Also, we are
planning to enhance capabilities of the XMapper
system by analysis and discovery of complex
schema mapping using a data driven approach
framework [32].

5. Summary and Conclusions
We introduced a new system, called

XMapper, which generates semantic mapping of
XML tags between two source documents. The
XMapper uses both the structure and data
information to generate the mappings.

The proposed system has several advantages.
It can generate mappings in fully automated
manner, without involving the user, except for
input information that consists of a single pair of
tags that correctly maps between the two
sources. The XMapper system uses standalone
XML only, and thus eliminates the need for
creating DTD or Schema files that describe the
XML sources. It generates mappings between
all, including non-leaf, tags in contrast to other
mapping systems, like the LDS system.

The XMapper system generates mappings
with high degree of accuracy. Another
advantage of the XMapper is that it returns
ordered, in terms of confidence, mappings that
can significantly help the user to discover
incorrect mappings. It is also capable of
returning both matched and unmatched tags.

In the nutshell, the XMapper system
generates ordered set of semantic mappings
between two XML source documents with high
degree of accuracy. The developed system can
help in building data integration system by
automatically providing the system designer
with easy to verify information, which can be
used to merge the content of information coming
from different sources.

References
[1] Bergamaschi, S., Castano, S., Vimeracati S.D.C.D. &
Vincini, M., An Intelligent Approach to Information
Integration, Proceedings of the International Conference
on Formal Ontology in Information Systems (FOIS-98),
pp.253-267, Trento, Italy, 1998

[2] Blake, C.L. & Merz, C.J., UCI Repository of machine
learning databases [http://www.ics.uci.edu/~mlearn/
MLRepository.html], Irvine, CA: University of California,
Department of Information and Computer Science, 1998

[3] Bray, T., Paoli, J., and Maler E., Extensible Markup
Language (XML) 1.0 (Second Edition), W3C
Recommendation, http://www.w3.org/TR/ 2000/REC-xml-
20001006, October 2000

[4] Castano, S. & Antonellis, V.D., A Schema Analysis
and Reconciliation Tool Environment for Heterogeneous
Databases, Proceedings of the International Database
Engineering and Applications Symposium (IDEAS-99), pp.
53-62, Montreal, Canada, 1999

[5] Ching, J.Y., Wong, A.K.C., & Chan, K.C.C., Class-
Dependent Discretization for Inductive Learning from
Continuous and Mixed Mode Data, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 17:7, pp. 641-
651, 1995

[6] Chiu, D., Wong, A., & Cheung, B., Information
Discovery through Hierarchical Maximum Entropy
Discretization and Synthesis, In: Piatesky-Shapiro, G., &
Frowley, W.J., (Eds.) Knowledge Discovery in Databases,
MIT Press, 1991

[7] Cios K. J. & Kurgan L., Hybrid Inductive Machine
Learning: An Overview of CLIP Algorithms, In: Jain L.C.
& Kacprzyk J. (Eds.) New Learning Paradigms in Soft
Computing, Physica-Verlag (Springer), pp.276-322, 2001

[8] Cios K. J. & Kurgan L., Trends in Data Mining and
Knowledge Discovery, In: Pal N.R., Jain, L.C. &
Teoderesku, N. (Eds.), Knowledge Discovery in Advanced
Information Systems, Physica-Verlag (Springer), accepted,
2002

[9] Cios K.J. & Kurgan L., Hybrid Inductive Machine
Learning Algorithm that Generates Inequality Rules,
Information Sciences, Special Issue on Soft Computing
Data Mining, accepted, 2002

[10] Cios K. J. & Kurgan L., DataSqueezer Algorithm that
Generates Small Number of Short Rules, submitted, 2002

[11] Clifton, C., Housman, E. & Rosenthal, A., Experience
with a Combined Approach to Attribute-Matching Across
Heterogeneous Databases, Proceedings of the IFIP
Working Conference on Data Semantics (DS-7), Leysin,
Switzerland. 1997

[12] Doan, A., Domingos, P. & Levy A., Reconciling
Schemas of Disparate Data Sources: A Machine Learning
Approach, Proceedings of the SIGMOD Conference, pp.
509-520, Santa Barbara, CA, 2001

[13] DTD Guide, Guide to the W3C XML Specification
("XMLspec") DTD, Version 2.1 http://www.w3.org/XML/
1998/06/xmlspec-report-v21.htm, 2000

[14] Garcia-Molina, H., Papakinstantinou, Y., Quass, D.,
Rajaraman,, A., Sagiv, Y., Ullman, J. & Widom, J., The
TSIMMIS Project: Integration of Heterogeneous
Information Sources, Journal of Intelligent Information
Systes, 8:2, pp.117-132, 1997

[15] ISO, ISO 8879:1986. Information processing - Text
and office systems - Standard Generalized Markup
Language (SGML), 1986

[16] Kira, K. & Rendell, L.A., The Feature Selection
Problem: Traditional Methods and a New Algorithm,
Proceedings of the 10th National Conference on Artificial
Intelligence, pp. 129-134, MIT Press, 1992

[17] Kira, K. & Rendell, L.A., A Practical Approach to
Feature Selection, Proceedings of the Ninth International
Workshop on Machine Learning, pp. 249-256, Aberdeen,
Scotland, Morgan-Kaufmann, 1992

[18] Kononenko, I., Estimating Attributes: Analysis and
Extensions of Relief, Proceedings of the 1994 European
Conference on Machine Learning, pp. 171-182, Catania,
Italy, 1994

[19] Kurgan, L.A., Cios, K.J., Tadeusiewicz, R., Ogiela, M.
& Goodenday, L.S., Knowledge Discovery Approach to
Automated Cardiac SPECT Diagnosis, Artificial
Intelligence in Medicine, 23:2, pp 149-169, 2001

[20] Kurgan L. & Cios K.J., Discretization Algorithm that
Uses Class-Attribute Interdependence Maximization,
Proceedings of the 2001 International Conference on
Artificial Intelligence (IC-AI 2001), pp. 980-987, Las
Vegas, Nevada, 2001

[21] Levy, A.Y., Rajaraman,, A. & Ordille, J., Querying
Heterogeneous Information Sources Using Source
Descriptions, Proceedings of 22nd International Conference
on Very Large Data Bases (VLDB), pp. 251-262 , Bombay,
India, 1996

[22] Li, W. & Clifton, C., SEMINT: A Tool for Identifying
Attribute Correspondence in Heterogeneous Databases
Using Neural Networks, Data and Knowledge Engineering,
33, pp. 49-84, 2000

[23] Michalski, R. S., Discovering Classification Rules
Using Variable-Valued Logic System VL1, Proceedings of
the 3rd International Joint Conference on Artificial
Intelligence, 162-172, 1973

[24] Michalski, R. S., A Theory and Methodology of
Inductive Learning. In Michalski, R., Carbonell, J., &
Mitchell, T.M. (Eds.), Machine Learning, Tioga Press,
1983

[25] Miller, R., Haas, L. & Hernandez, M., Schema
Mapping as Query Discovery, Proceedings of 26rd
International Conference on Very Large Data Bases
(VLDB), pp. 77-88, Cairo, Egypt, 2000

[26] Milo, T. & Zohar, S., Using Schema Matching to
Simplify Heterogeneous Data Translation, Proceedings of

24rd International Conference on Very Large Data Bases
(VLDB), pp.122-133, New York City, New York, 1998

[27] Ram, S. & Ramesh, H., Schema Integration: Past,
Current and Future, In: Elmagarmid, A. et al. (Eds.)
Management of Heterogenous and Autonomous Database
Systems, pp.119-155, Morgan Kaufmann, 1999

[28] Schimann, W., Joost, M. & Werner, R., Synthesis and
Performance Analysis of Multilayer Neural Network
Architectures. Technical Report 16/1992, University of
Koblenz, Institute of Physics, 1992.

[29] Schimann, W., Joost, M. & Werner, R., Optimization
of the Backpropagation Algorithm for Training Multilayer
Perceptrons, Technical Report, Institute of Physics,
University of Koblenz, 1994

[30] Su, H., Kuno, H. & Rundensteiner, E.A., Automating
the Transformation of XML Documents, Proceedings of
the 2001 Workshop on Web Information and Data
Management (WIDM'01), pp.68-75, Atlanta, GA, 2001

[31] XML Schema, World Wide Web Consortium, XML
Schema: Structures and Datatypes, http://www.w3.org/TR/
xmlschema-1/ and http://www.w3.org/TR/xmlschema-2,
May 2001

[32] Yan, L.L., Miller, R.J., Haas, L. & Fagin R., Data
Driven Understanding and Refinement of Schema
Mappings, Proceedings of the SIGMOD Conference, pp.
485-496, Santa Barbara, CA, 2001

