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Abstract – In today’s data-centric world many 
applications rely on data that comes from multitude 
of different sources. To integrate that data two major 
operations are performed: finding semantic mapping 
between data sources, and transforming structure of 
the data sources. One of the well-established 
standards for storing and sharing structured and 
semantically described data is XML. This paper 
describes system called XMapper, which is used to 
generate semantic mapping between two XML 
sources that describe instances from the same 
domain. The described system is novel in two ways. It 
uses only stand-alone XML documents (without DTD 
or XML schema documents) to generate the 
mappings. It also utilizes machine learning to 
improve accuracy of such mappings for difficult 
domains. Several experiments that use artificial and 
real-life domains described by XML documents are 
used to test the proposed system. The results show 
that mappings generated by the XMapper are highly 
accurate for both types of  
XML sources. The generated mappings can be used 
by a data integration system to automatically merge 
content of XML data sources to provide unified 
information for a data processing application. 
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1.  Introduction 
XML (eXtensible Markup Language) is a 

markup language for documents that contain 
structured information [3]. XML is a subset of 
SGML [15] that uses custom-defined tags to 
store and describe structured, or semi-structured, 
data and its relationships. Structured information 
consists of content (numbers, character strings, 
images, etc.) and information of what role that 
content plays (e.g., a rule is build out of 
selectors, where a selector is a pair of attributes 

(name, value)). The XML tags are used to 
describe structure and semantic meaning of the 
information. One of major advantages of XML 
is ease of their automatic processing. 

The XML technology is widely used in 
industry to transfer and share data. Within the 
computer science field, XML is widely used by 
database and software engineering researchers 
and practitioners. Although some of the 
computer science disciplines do not use the 
XML, some of them, like Data Mining and 
Knowledge Discovery recognize the importance 
of that technology [8].  

1.1. Related research 
Because of rapid growth of the structured 

data that is stored using XML documents many 
enterprises need to build data integration 
systems that provide unified access to 
semantically and structurally diverse 
information sources [14]. The data integration 
system has to find structural transformations and 
semantic mappings that result in correct merging 
of the information and allow user to query the 
so-called mediated schema [21]. It is very 
difficult at present to create such system because 
system creators have to find transformations 
between documents manually, on the case-by-
case basis. In this paper we use XML documents 
as data sources.   

This paper addresses problem of finding 
semantic mappings between structured 
documents within a given domain. The problem 
of structural transformation of XML sources was 
described in [30]. Majority of the approaches to 
semantic mapping problem concentrate on 
creation of mediated schema. The mediated 
schema is a virtual schema that captures the 
domain’s most important aspects by creating 



mappings between it and a set of data sources 
[27]. This paper describes system that is able to 
generate pairs of semantically related XML tags, 
which can be further mapped into a user-created 
mediated schema.  

Most of the schema mapping systems use 
only structural and data type information about 
XML documents, which is stored in either DTD 
(document type definition) [13] or XML Schema 
[31] files.  

Several mapping systems work with XML 
documents. The TransScm system [26] matches 
schema based on the structure and names of the 
SGML tags extracted from DTD files by using 
concept of labeled graphs. The LSD system [12] 
uses multistrategy learning by utilizing several 
machine learning (ML) algorithms based on the 
user-specified mappings to discover matching 
patterns. Based on these patterns, the mappings 
between leaf nodes in the DTD trees for two 
XML documents are generated. We will 
compare results of semantic mapping generated 
by our system with the results generated by the 
LSD system. 

The reconciliation of relational schemas is 
approached by several systems, like Artemis [1, 
4] and Clio [25, 32]. The Artemis system 
measures similarity of element names, data types 
and structures to match schemas. Clio uses SQL 
queries and data examples to derive and rank 
alternative mappings between schemas. ML 
based systems that use single-learner approach, 
like Semint [22] and Delta [11], were used to 
discover attribute mappings for relational 
databases. Delta generates a text string for every 
tag (attribute) that describes it and matches tags 
based on the similarity between these strings. 
The significant disadvantage of the Semint 
system, which uses neural networks, is low 
performance while working with textual 
information. These systems cannot handle 
hierarchical XML schemas. 

Our system, called XMapper, also utilizes 
ML together with constraint analysis. The main 
difference between XMapper and other mapping 
systems is that it uses only standalone XML 
documents (DTD or Schema files are not used) 
to derive the mappings. The ML component of 
the XMapper system improves accuracy of 
mappings for difficult domains. XML data 
sources of such domains use data types that are 

either identical or very similar, and their tag 
names between these data sources are 
significantly different. In such a case correct 
mappings can be found only by using the ML 
approach. ML is used to find relationships 
between XML tags. Based on them 
corresponding tags from different XML sources 
are matched. 

1.2. Problem Definition 
The goal of the XMapper system is to 

provide semantic mapping that enables 
integration of information between two XML 
data sources. Two example XML sources and 
the mapping discovered by the XMapper system 
are shown in Table1. 

The XMapper’s assumptions are as follows: 
- it generates only 1-to-1 mapping of tags 
between two XML documents; the same 
assumption is true in  the LSD system 
- it requires from the user to select one 
matching tag between two documents. This tag 
is used as the class label by the ML component 
of the XMapper system. The user-selected tag is 
not considered as part of the algorithm result 
since it is treated as a user-specified mapping. 
- source XML documents are assumed not to 
have multiple children nodes having the same 
tag name. In case of such occurrence the system 
would only use one, structurally last instance.  

2. The XMapper Algorithm 
As said above the XMapper generates 1-to-1 

mappings of XML tags between two source 
documents. The XMapper system works in two 
steps. First, it extracts for every tag from the two 
XML documents a vector of features that 
describes its properties. For every pair of tags, 
which belong to different sources, distance 
between their feature vectors is calculated. Next, 
1-to-1 semantic mappings are generated by 
sequentially finding pairs of tags with the 
minimum distance. To account for a situation 
when some of the tags may not have a 
semantically corresponding tag in the other 
XML source, a threshold value is applied to the 
distance value. The idea of the XMapper is 
similar to the one used in the Delta [11] system 
that used text strings to describe properties of 
relational attributes. 



In the remaining part of the paper, term 
“XML tag” will be substituted by attribute, since 
from ML point of view we consider XML files 

as structured datasets described by a set of 
attributes (tags). 

Table 1. From left: XML documents for hea1 and hea2 sources (only one instance is shown), semantic mapping generated by 
the XMapper system 

<hea1> 
<example> 

<class>1</class>  
<Age>35</Age>  
<Sex>0</Sex>  
<ChestPainType>4</ChestPainType>  
<RestingBloodPressure>138</RestingBloodPressure>  
<SerumCholestoral>183</SerumCholestoral>  
<FastingBloodSugar>0</FastingBloodSugar>  
<RestingElectrResults>0</RestingElectrResults>  
<MaxHeartRate>182</MaxHeartRate>  
<ExerciseInducedAngina>0</ExerciseInducedAngina>  
<Oldpeak>1.4</Oldpeak>  
<SlopeOfPeakExerciseSTSegment>1</SlopeOfPeakExerciseSTSegment>  
<NumberMajorVessels>0</NumberMajorVessels>  
<Thal>3</Thal>  

</example> 
</hea1> 

<hea3> 
<example> 

<class>2</class>  
<FBSugar>0</FBSugar>  
<REResults>0</REResults>  
<SlopePESTS>1</SlopePESTS>  
<S>1</S>  
<CPT>2</CPT>  
<MaxHR>141</MaxHR>  
<EIA>0</EIA>  
<OP>0.3</OP>  
<MajVesselsNo>0</MajVesselsNo>  
<Thal>7</Thal>  
<Years>57</Years>  
<RBPress>124</RBPress>  
<SChol>261</SChol>  

</example> 
</hea3> 

class,class 
Sex,S 
example,example 
Thal,Thal 
RestingBloodPressure,RBPress 
SerumCholestoral,SChol 
MaxHeartRate,MaxHR 
RestingElectrResults,REResults 
ChestPainType,CPT 
FastingBloodSugar,FBSugar 
SlopeOfPeakExerciseSTSegment,SlopePESTS 
ExerciseInducedAngina,EIA 
NumberMajorVessels,MajVesselsNo 
Age,Years 
Oldpeak,OP 

 

2.1. The XMapper Architecture 
Two XMapper system has two modules: 

- constraints analysis module, which is used to 
extract properties of data stored in XML 
sources, like data types, length, number of null 
values etc., and structural information, like 
number of children nodes, data types of children 
nodes etc. 
- learning module, that is used to extract 
information about relationship between 
attributes used in both data sources. 

The learning module uses inductive ML 
algorithm DataSqueezer [10] to generate six 
feature values from a vector of 22 features that 
describe an attribute. The DataSqueezer is a 
supervised algorithm that generates production 
rules.  In case of the XMapper, it will use flat 
data stored within an XML document as its 
training data, and the user-specified attribute 
(tag) as a class label. To describe the 
DataSqueezer algorithm we denote the set of all 
training examples by S, the set of positive 
examples as SP, and negative examples as SN. 
Examples are described by a set of K attribute-
value pairs [23, 24]: ]#[1 jj

K
j vae =∧=  where aj 

denotes j-th attribute with value vj ∈ dj, # is a 
relation (=, <, ≈, ≤, etc.), where K is the number 
of attributes. In case of the DataSqueezer 
algorithm the relation is equality. An example, e, 

consists of set of selectors ][ jjj vas == . The 
DataSqueezer algorithm generates production 
rules in the form of: 

IF (s1∧…∧sm) THEN class = classi, 
where si = [aj = vj] is a single selector, and m ≤ K 

 
The DataSqueezer generates rules using two- 

phase process. First, common selectors for 
examples from Sp are found. Next, the rules are 
generated and validated against SN using the 
strongest found selectors. Each generated rule 
has an assigned goodness value that is equal to 
the percentage of positive examples from the 
training data that it covers. Based on these 
goodness values, a goodness for each attribute 
and selector from the data is computed using a 
procedure described in [9]. For detailed 
description see [10]. The goodness values 
computed for attributes and selectors by the 
DataSqueezer algorithm are used by the 
XMapper system to derive six feature values for 
every attribute from both XML sources. 

The diagram of the XMapper architecture is 
shown in Figure 1. Detailed description together 
with a pseudo-code of the XMapper system is 
given in the next section. 
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Figure 1 The architecture of the XMapper system 

 

2.2.  The XMapper Algorithm 
The XMapper pseudocode: 

Given:  Two XML sources, two user-selected 
class attributes (tags), one per each source 

Initialize: For both XML sources extract: 
- data as flat data tables where rows are data 

examples and columns are attributes 
- tree, in form of list of corresponding parent-

children nodes 
Step1. 

1.1 For both XML sources calculate feature 
vectors describing their attributes 

for ith XML document 
 for jth attribute 
 calculate 22 dimensional feature vector vi,j 

1.2 Calculate distance table by calculating 
distance between all attribute pairs 
between the two XML sources 

for ith attribute from XML document 1 
 for jth attribute from XML document 2 
 calculate disti,j = distance between v1,i and v2,j 

Step2. 
Initialize: L empty list of attribute pairs 
2.1 find max = maximum value of disti,j 
2.2 find min = minimum value of disti,j 

2.3 if min > 0.5*max then STOP 
2.4 add (i, j) pair of attributes, which 

corresponds to the min, to L 
2.5 set distk,j = 1  

where k = 1,2,…,#attributes of XML document 1 
set disti,k = 1 

where k = 1,2,…,#attributes of XML document 2 
2.6 until all rows or columns of distance table 

contain only 1’s go to 2.2 
Output: L (list of 1-to-1 attribute pairs) 
 

In step 1, 22 dimensional feature vectors that 
describe attributes from both XML sources are 
calculated. Also, the distances between feature 
vectors from different XML sources are 
computed. The values of the feature vectors that 
are calculated in step 1.1 are described in detail 
in Table 2. The last six values from these vectors 
are calculated using the learning module of the 
XMapper. Feature vectors are normalized into 
the [0; 1] range and multiplied by a weight. 
Weighted sum of all feature values is scaled to 
the [0; 1] range in order to compute distances 
between feature vectors in step 1.2. 



Table 2. 22 dimensional feature vector describing an attribute 
source index description weight source index description weight

1 type of values (1 if has some numerical only values, 0 otherwise) 0.025 13 number of children attributes (nodes) all the way to leaf nodes 0.03
2 type of values (1 if has some char only values, 0 otherwise) 0.025 14 most complex children attribute type of values 0.01
3 type of values (1 if has some special char only values, 0 otherwise) 0.025 15 mean max length of all children attributes 0.01
4 type of values (1 if has some num. and char values, 0 otherwise) 0.025 16 most common children attribute type 0.01
5 type of values (1 if has some num. and special char values, 0 other.) 0.025

XML 
structure

sum 0.06
6 type of values (1 if has some char and special char values, 0 other.) 0.025 17 attribute goodness 0.12
7 type of values (1 if has some num., char and spec char values, 0 other.) 0.025 28 min. goodness of attribute selectors 0.04
8 type of values (1 if has some empty values, 0 other.) 0.025 19 max. goodness of attribute selectors 0.04
9 max. length of values (0 empty, 1 single char, floor(2+max length/10)) 0.04 20 mean goodness of all children attributes 0.12
10 attribute type (0 discrete, 1 continuous) 0.04 21 mean min. goodness of all selectors of all children attributes 0.04
11 number of empty values 0.03 22 mean max. goodness of all selectors of all children attributes 0.04
12 number of distinct values 0.03 

inductive 
learning 

sum 0.4 

constrain 
analysis 

sum 0.34 

 
The distance between ith and jth attribute, 

which is calculated in step 1.2, is defined by the 
following formula: 

)1(1.01.0)(
22

1
,,, ∑

=

⋅+⋅+−=
k

kjkkikji baFwFwdist

where 

kiF , is scaled value of kth feature of ith attribute 

kw  is weight value of kth feature 


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
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During computation of the distance, the 

values of the 22 feature vectors together with 
corresponding weights are used. Distance value 
also incorporates mechanism of matching 
attribute names. The matching of attributes 
names uses two measures: 
- matching the entire attribute names using 
formula for a in (1). XMapper checks if name of 
one attribute is identical or substring of the other 
attribute name. 
- matching abbreviation of attribute names 
using formula for b in (1). XMapper checks if 
name of one attribute is an abbreviation of the 
other attribute name. 
Distance values are normalized to the [0, 1] 
range to enable comparison of distances between 
different pairs of attributes. 
 

In step 2, pairs of attributes belonging to 
different XML sources that have minimum 
distance are chosen. To decide if an attribute 
pair with the minimum distance should be output 
as a mapping, the XMapper uses in step 2.3 the 
stop threshold. The stop threshold assures that 

attributes that are not similar to any other 
attributes, which corresponds to high value of 
distance between them and other unmatched 
attributes, will not be not mapped. 

 
Since the DataSqueezer algorithm that is 

used in the learning module of the XMapper 
system work only with discrete and numerical 
data, two data transformation are performed: 
- numerical encoding. All textual attribute 
values are encoded into numerical values. Since 
the DataSqueezer is not distance sensitive, 
simple encoding scheme when a text string is 
encoded into an arbitrary value is performed 
- discretization. All attributes with high number 
of encoded values are discretized to reduce the 
number of values. 

For deciding if an attribute is continuous the 
following rule of thumb is used [5]: 

c
Nni 3

=  

where 
ni number of discrete intervals for ith attribute 
N number of distinct values of ith attribute 
c number of classes (distinct values of class attribute) 

 

The attribute is continuous, and thus need to 
be discretized, if ni > c. In another words, an 
attribute is considered continuous if the number 
of discrete intervals calculated using the above 
rule of thumb is greater than the number of 
classes. Number of classes is equal to the 
number of distinct values of the user-specified 
attribute. 

The unsupervised Equal Frequency 
discretization algorithm [6] was used to 
discretize an attribute. Unsupervised 
discretization was used because it is fast, and the 
user-specified attribute (class attribute) may not 
be meaningful (required for supervised 



discretization). In the future, we plan to test a 
supervised discretization algorithm, like CAIM 
[20] or CADD [5] to improve the results 
generated by the learning module of the 
XMapper system. 
 

One of the XMapper advantages is its 
flexibility of using any ML algorithm that 
generates ranked list of attributes and selectors, 
along with their goodness values. Example is the 
CLIP4 algorithm [7, 9], which can be used 
instead of the DataSqueezer algorithm. Also 
feature selection algorithms like the ReliefF [18] 
and the Relief [16, 17] can be used. They work 
by assigning a “relevance” weight to each 
attribute, which can be interpreted as a goodness 
measure. The disadvantage of the latter 
algorithms is that they do not provide selector 
ranking and thus the learning module of 
XMapper system would only generate first three 
out of the six feature values. 

The XMapper system extracts more 
information about the XML source than is stored 
within a DTD document. For example, it 
extracts information about the number of null 
values and the type of attributes. This is one of 
the reasons why the XMapper generates more 
accurate mappings than systems that use only 
DTD information. In the next section we 
compare the XMapper system with the LDS 
system. The comparison shows that our system 
generates more accurate mappings, in spite of 
the fact that LSD uses several ML learners. 

3.  Experiments 
The XMapper system was tested using 

several domains that consisted of several XML 
data sources. Number of XML documents per 
domain varied from 2 to 5. The benchmarking 
test of the XMapper system consist of two parts: 
- tests that use artificially created XML  based 
domains 
- tests that use real-life XML based domains 

3.1. Domains 
The domains used in the benchmarking of the 

XMapper can be divided into two categories: 
artificial and real. The artificial domains were 
created by converting into the XML format 

datasets downloaded from the UC Irvine 
Machine Learning Repository [2]. Sample 
dataset that shows how the original, comma-
separated format was converted into the XML is 
shown in Table 1. The real domains were 
downloaded from the LSD web site at 
http://www.cs.washington.edu/homes/ 
anhai/lsd/lsd.html. The benchmarking results 
obtained for the real datasets were compared 
with results obtained by the LDS system. 
Summary information about all datasets is given 
in Table 3.  

The reason for using both domains was that 
real domains include mostly textual data, while 
artificial domains include mostly numerical data.  

Table 3 also includes information about the 
structural and semantic difference between data 
sources belonging to the same domains. Changes 
between data sources in the artificial domains 
include changing attribute names into the new 
names or different types of abbreviations, 
reordering and deletions of attributes. Creation 
of a set of artificial data sources belonging to the 
same domain consisted of random splitting the 
original dataset into n subset and conversion of 
these subsets into the XML format. Next, the 
attribute names, order and attribute deletions 
were performed as shown in Table 3. 

 
Description of the domains follows: 

1. Contraceptive method choice (cmc) 
2. StatLog heart disease (hea) (originally from the StatLog 

project repository) 
3. Iris plant (iris) 
4. Mushrooms (mush) 
5. PIMA Indian diabetes (pid) 
6. SPECT heart imaging (spect) 
7. Thyroid disease (thy) 
8. Course listing (course) 
9. Faculty listing (faculty) 
10. Real estate (realest) 

First seven are the artificial domains. The 
course domain includes course listing from five 
universities. The faculty domain includes faculty 
listings from computer science departments from 
five universities. The realest domain includes 
house sale listings from five real estate sources. 
 
 



Table 3. Major properties of datasets considered in the experimentation 

domain # sources source files 
(datasets) 

# listings 
(# exam) 

# tags 
(# attrib) 

# non-
leaf tags 

matchable 
tags depth tag properties 

cmc1 491 11 1 100 % 2 original names, order and XML structure 
cmc2 491 10 1 100 % 2 changed: names and 1 removed 

cmc 3 

cmc3 491 11 1 100 % 2 changed: names and order in XML 
hea1 90 15 1 100 % 2 original names, order and XML structure 
hea2 90 13 1 100 % 2 changed: names and 2 removed 

hea 3 

hea3 90 15 1 100 % 2 changed: names and order in XML 
iris1 75 6 1 100 % 2 original names, order and XML structure iris 2 
iris2 75 6 1 100 % 2 changed: names and order in XML 

mush1 2806 24 1 100 % 2 original names, order and XML structure 
mush2 2806 21 1 100 % 2 changed: names and 3 removed  

mush 3 

mush3 2804 24 1 100 % 2 changed: names and order in XML 
pid1 256 10 1 100 % 2 original names, order and XML structure 
pid2 256 9 1 100 % 2 changed: names and 1 removed 

pid 3 

pid3 256 10 1 100 % 2 changed: names and order in XML 
spect1 133 24 1 100 % 2 original names, order and XML structure spect 2 
spect2 134 24 1 100 % 2 changed: names and order in XML 
thy1 3772 23 1 100 % 2 original names, order and XML structure thy 3 
thy2 3428 22 1 100 % 2 changed: names, and order in XML, 1 removed 

course 5 5 universities 703÷3924 15÷19 3÷5 58÷88 3÷5 course listing from 5 US universities (different names, order and XML structure) 
faculty 5 5 universities 33÷74 14 4 100 % 4 faculty listing from 5 US universities (same names, order and XML structure) 
realest 5 5 agencies 501÷3001 31÷53 1÷18 21÷44 2÷3 real estate listing from 5 agencies (different names, order and XML structure) 

 

3.2. Results 
The XMapper was tested on 10 domains that 

included between 2 and 5 XML sources. The 
benchmarking incorporated matching all 
possible pairs of XML sources for domains. For 
example, for the domain consisting of 5 sources, 
10 tests were performed. The results include 
mean number of correctly and incorrectly 
generated mappings, and the mean accuracy. For 
each source pair we checked the results versus 
manually created list of correct mappings. The 
results incorporate all correctly generated 
mappings, which include 1-to-1 mappings and 
unmatched, single attributes that had no 
matching attribute in the other source. The 
incorrect mappings include incorrect 1-to-1 
mappings and unmatched attributes that had a 
mapping. The results do not count the user-
specified attribute (class attribute), which was 
not processed by the XMapper system. 

Two sets of test were performed using all 10 
domains: 
- using the XMapper system with learning and 

constraints analysis modules 
- using the XMapper system without the 

learning module. 
This setup is intended to show the advantages 

of incorporating the learning module into the 
XMapper system. The test results are 
summarized in Table 4. Direct comparison of 

mean accuracies for all domains for both setups 
is shown in Figure 2. 

The XMapper system achieved high, over 
85%, accuracies for 7 out of 10 domains for both 
of the test setups. For these 7 domains results 
between the XMapper system with and without 
the learning module are comparable. Thus, for 
these domains it would be computationally less 
expensive to use the system without the learning 
module. There are several reasons for these 
results: the attribute names and types of attribute 
values for the mapped attributes within these 
domains and between sources were similar, 
which makes the mapping easier for the system. 

For the remaining 3 domains (i.e. spect, thy 
and realest) the results while using the XMapper 
with the learning module are much better. For 
these domains the system achieved on average 
62% accuracy, while without the learning 
module it achieved only 31% of accuracy. These 
results show the need for incorporating the 
learning module within the XMapper system. 

There are several reasons for low 
performance of the XMapper system without the 
learning module for the three domains. The 
spect domain created using the spect dataset [19] 
had attributes with completely different names 
between the two sources. Also, all attributes 
were binary and thus only the relationship 
between attributes could be used as indicator for 
mapping them correctly. 



Table 4. From left: benchmarking results for the Xmapper system using the leraning module, and without using the learning 
module 

 

domain sources # experiments 
(source pairs) 

mean # 
correct 

mean # 
incorrect

mean 
acc. %

cmc 3 3 10 0 100.0
hea 3 3 12.3 1.7 88.1 
iris 2 1 5 0 100.0
mush 3 3 19.7 3.3 85.5 
pid 3 3 7.7 1.3 85.1 
spect 1 1 15 8 65.2 
thy 1 1 12 10 60.0 

mean for artificial domains 83.4 
course 5 10 15.5 2.8 85.2 
faculty 5 10 13 0 100.0
realest 5 10 28.6 18.7 60 

mean for real-life domains 81.7 
total mean 82.6 

 

domain sources # experiments 
(source pairs) 

mean # 
correct 

mean # 
incorrect 

mean 
acc. %

cmc 3 3 10 0 100.0
hea 3 3 13.3 0.7 95.2 
iris 2 1 5 0 100.0
mush 3 3 20.3 2.7 88.4 
pid 3 3 8.3 0.7 92.6 
spect 1 1 5 18 21.8 
thy 1 1 3 19 13.6 

mean for artificial domains 73.1 
course 5 10 15.6 2.3 87.5 
faculty 5 10 100 0 100.0
realest 5 10 27.4 20 57.2 

mean for real-life domains 81.6 
total mean 77.3 

 
Similarly, the thy domain created using the 

thyroid dataset [28, 29] includes attributes that 
have very different attribute names, and very 
similar attribute values between the two sources.  
92 percent of the examples from that domain 
belong to the same class. In case of the realest 
domain, only between 21 and 44% of attributes 
could be mapped. Also, there were many 
mappings that were very hard to distinguish 
between being semantically correct, and only 
similar in terms of structure and content. That 
resulted in higher number of incorrect mappings.  

Using learning module resulted in improving 
accuracy of mappings for these hard domains. 
The ML component of the learning module 
improves the accuracy of results by 
incorporating information about the relationship 
between the attributes. This additional 
information is shown to improve the mapping 
accuracy. The total average accuracy results 

show that using the learning module improves 
the results by over 5%. It is important to notice 
that using the learning module improves the 
results for both artificial and real domains. 

Another important advantage of the 
XMapper is that it returns ordered, in terms of 
confidence, set of mappings. The attribute pairs 
with the highest confidence are first. The 
confidence level directly corresponds to the 
distance calculated between attribute pairs. 

Using results from the benchmarking tests 
we performed a set of tests that validate the 
usefulness of the ordering generated by the 
XMapper system. The error distribution versus 
the returned position of the mapped attributes 
was computed for the four discrete intervals: 0-
25%, 25-50%, 50-75%, and 75-100%. The 0-
25% interval corresponds to the first 25% 
percent of the returned mappings. The results are 
shown in Figure 3. 
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Figure 2. Comparison of results for the XMapper system 
with and without using the learning module 
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Figure 3. The error distribution for the ordered set of 
mappings returned by the XMapper system 

 



The results show that the confidence measure 
used to order mappings generated by the 
XMapper provides valuable information to the 
user. The 71% of erroneous mappings are 
generated with the second half of the returned 
mappings, and over 40% for the last 25% of 
them. On the other hand, only 8% of errors are 
made within the first 25% of returned mappings. 
Also, since the XMapper made on average only 
6% (Figure 3) of errors for attributes that were 
returned unmatched, the mechanism of using the 
stop threshold to generate unmatched attributes 
is also a robust solution. 

The XMapper system was compared with the 
LSD system [12]. Both systems used ML to 
generate mappings. Only the real domains were 
used for the comparison since the LSD system 
was tested only on them. The comparison results 
are shown in Table 5. The main difference 
between the XMapper and LDS is that the LDS 
generated mappings into the mediated schema, 
which makes the task of finding mappings 
easier, while XMapper generated mappings 
directly between two sources. For course and 
faculty domains the XMapper generated 
mappings with higher accuracy. For the realest 
the XMapper results were worse than the LDS 
results. One of the reasons why the XMapper 
mapping were less accurate is that it could on 
average map only between 21 and 44% of 
attributes in this domain, since the matching 
were performed between the XML sources. The 
LDS on average could map between 84 and 
100% of attributes since it maps attributes 
between a source and a mediated schema. 

 

Table 5 Comparison of results between XMapper and 
LSD systems 

 course Faculty Realest 
LSD 76%, 92% 71% 
XMapper 85% 100% 60% 
 
The average accuracy comparison between 

the LSD and XMapper shows that XMapper 
generates mapping with higher (81.7%) 
accuracy than LSD (79.6%). The XMapper 
generates more accurate mappings despite 
solving more complex problem of direct 
mapping between sources, and using only source 
XML files, while LDS uses both DTD and 
source data information. 

4. Future Work  
Future work will include investigating the 

advantages of using DTD or XML schema 
information to reduce computational complexity 
of feature extraction by the constraint analysis 
module of the XMapper system. The XMapper 
currently extracts more information than is 
stored in a DTD document, and thus we will use 
the XML Schema, which is a relatively new and 
thus not yet widely used standard. Also, we are 
planning to enhance capabilities of the XMapper 
system by analysis and discovery of complex 
schema mapping using a data driven approach 
framework [32]. 

5. Summary and Conclusions 
We introduced a new system, called 

XMapper, which generates semantic mapping of 
XML tags between two source documents. The 
XMapper uses both the structure and data 
information to generate the mappings. 

The proposed system has several advantages. 
It can generate mappings in fully automated 
manner, without involving the user, except for 
input information that consists of a single pair of 
tags that correctly maps between the two 
sources. The XMapper system uses standalone 
XML only, and thus eliminates the need for 
creating DTD or Schema files that describe the 
XML sources. It generates mappings between 
all, including non-leaf, tags in contrast to other 
mapping systems, like the LDS system.  

The XMapper system generates mappings 
with high degree of accuracy. Another 
advantage of the XMapper is that it returns 
ordered, in terms of confidence, mappings that 
can significantly help the user to discover 
incorrect mappings. It is also capable of 
returning both matched and unmatched tags. 

In the nutshell, the XMapper system 
generates ordered set of semantic mappings 
between two XML source documents with high 
degree of accuracy. The developed system can 
help in building data integration system by 
automatically providing the system designer 
with easy to verify information, which can be 
used to merge the content of information coming 
from different sources. 
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