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Abstract – Discretization is a process of converting 
a continuous attribute into an attribute that contains 
small number of distinct values. One of the major 
reasons for discretizing an attribute is that some of 
the machine learning algorithms perform poorly with 
continuous attribute and thus require front-end 
discretization of the input data. The paper describes 
a Fast Class-Attribute Interdependence Maximization 
(F-CAIM) algorithm that is an extension of the 
original CAIM algorithm. The algorithm works with 
supervised data by maximization of the class-
attribute interdependence. The F-CAIM’s 
improvement of the CAIM algorithm is significant 
shortening of the computational time required to 
discretize the data. It has all CAIM’s advantages like 
fully automated generation of possibly minimal 
number of discrete intervals, achieving the highest 
class-attribute interdependency when compared with 
other discretization algorithms, and improving 
performance of machine learning algorithms that are 
subsequently used on the discretized data. We present 
the results based on extensive benchmarking tests of 
F-CAIM, CAIM and six other state-of-the-art 
discretization algorithms. The tests use eight well-
known machine learning datasets consisting of 
continuous and mixed-mode attributes. They show 
that the F-CAIM’s speed is comparable to the speed 
of the simplest unsupervised algorithms and better 
than these of other supervised discretization 
algorithms. 
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1. Introduction 
In the information-based society one of the 

challenges is to automate analysis of large data 
sources. Machine learning (ML) is one of the 
most successful techniques that helps in solving 

the problem. One of the main goals of ML 
algorithms is generation of knowledge from 
class-labeled (supervised) data examples that are 
described by a set of numerical, nominal or 
continuous attributes. Some of the ML 
algorithms, like AQ algorithm [20, 15], CLIP 
algorithms [5, 6, 7], DataSqueezer algorithm 
[18], and CN2 algorithm [8, 9], can handle only 
numerical or nominal data. Some other ML 
algorithms can handle continuous attributes but 
still perform better with discrete-valued 
attributes [2, 16]. The difficulty of dealing with 
continuous attributes can be solved by 
performing discretization prior to the learning 
process [2, 11, 13, 22]. 

 
Discretization is a process of dividing a 

continuous attribute into a finite set of intervals 
to generate an attribute with small number of 
distinct values, by associating discrete numerical 
value with each of the generated intervals. More 
information about the discretization process and 
algorithms can be found in [4, 16, 13, 14, 3, 5, 6, 
17, 19]. 

 
A supervised discretization algorithm should 

automatically seek for a minimal number of 
discrete intervals since their large number slows 
the machine learning process [2]. It also should 
generate discrete intervals that are characterized 
by high interdependency with the class label. 
The proposed F-CAIM algorithm is based on our 
previous CAIM discretization algorithm [17, 19] 
and it inherits all its properties. Both CAIM and 
F-CAIM algorithms have these features: 
• discretize attributes into possibly the 

smallest number of intervals 



• maximize the class-attribute 
interdependency to improve results of the 
subsequently used machine learning 

• do not require user interaction since they 
automatically pick proper number of 
discrete intervals. 

 
The main design goal of the F-CAIM 

algorithm was to speed-up the original CAIM 
algorithm, while keeping all of its advantages, 
like the lowest number of discrete intervals, the 
highest interdependency between class labels 
and the discrete intervals, and improvement of 
classification accuracy and complexity of the 
models generated from the discretized data. 

To show the above properties, a set of 
benchmarking tests were performed using F-
CAIM and it was compared with seven well-
known discretization algorithms: 
• unsupervised algorithms: Equal Width and 

Equal Frequency [4] 
• supervised algorithms: Patterson-Niblett 

[21], Maximum Entropy [25], Information 
Entropy Maximization (IEM) [14], CADD 
[3], and CAIM [17, 19]. 

 
The results show that the F-CAIM algorithm, 

in a manner similar to CAIM, generates the 
smallest number of discrete intervals, and retains 
the highest class-attribute interdependency. The 
F-CAIM algorithm is also shown to be the 
fastest among all five supervised discretization 
algorithms. 

The data discretized using the F-CAIM 
algorithm and the other seven algorithms were 
used with two ML algorithms: CLIP4 [6, 7], and 
C5.0 [10] to generate the rules. The accuracy of 
the generated rules shows that the F-CAIM 
algorithm significantly improves the 
classification performance, and performs best 
among the seven discretization algorithms. 

1.1.  Some definitions of the class-
attribute interdependent discretization 

Let us assume that we have a mixed-mode 
data set consisting of M examples, and that each 
example belongs to only one of the S classes. F 
denotes continuous attributes. Then, there exists 
a discretization scheme D on F, which 
discretizes the continuous domain of attribute F 

into n discrete intervals bounded by the pairs of 
numbers (boundary points): 

 
]}d ,(d , ],d ,(d ],d ,{[d :D n1-n2110 …  

where d0 is the minimal value and dn is the maximal 
value of attribute F, and the values are arranged in the 
ascending order. These values constitute the boundary 
set {d0, d1, d2, …, dn-1, dn} for discretization D. 

 
In D each value belonging to attribute F can 

be classified into only one of the n intervals. The 
membership of each value in a certain interval 
for attribute F may change when the 
discretization intervals change. The class 
variable and the discretization variable of 
attribute F can be treated as two random 
variables defining a 2-D frequency matrix 
(called quanta matrix) that is shown in Table 1. 

Table 1. 2-D quanta matrix for attribute F and 
discretization scheme D 

Interval 
Class 

[d0, d1] … (dr-1, dr] … (dn-1, dn] 
Class 
Total 

C1 
: 

Ci 
: 

CS 

q11 
: 

qi1 
: 

qS1 

… 
… 
… 
… 
… 

q1r 
: 

qir 
: 

qSr 

… 
… 
… 
… 
… 

 q1n 
: 

qin 
: 

qSn 

M1+ 
: 

Mi+ 
: 

MS+ 

Interval 
Total   M+1 … M+r … M+n M 

 
In Table 1, qir is the total number of 

continuous values belonging to the ith class that 
are within interval (dr-1, dr].  Mi+ is the total 
number of objects belonging to the ith  class, and 
M+r is the total number of continuous values of 
attribute F that are within the interval (dr-1, dr], 
for i=1,2…,S and, r= 1,2, …, n. 

The F-CAIM algorithm discretizes the data 
using the class-attribute dependency information 
and the CAIM discretization criterion. The 
criterion measures the dependency between the 
class variable C and the discretization variable D 
for attribute F, for a given quanta matrix, and is 
defined as: 

n
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n
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where: n is the number of discrete intervals, r 
iterates through all intervals, i.e. r=1,2,...,n, maxr 
is the maximum value among all qir values 
(maximum value within the rth column of the 
quanta matrix), i=1,2,...,S, M+r is the total 
number of continuous values of attribute F that 



are within the interval (dr-1, dr]. For more 
background information the reader is referred to 
[17, 19]. 

2.  The F-CAIM Algorithm 
The main goal of the F-CAIM algorithm is to 

do the necessary computations very fast so that 
it can be applied to continuous attributes that 
have large number of unique values. The other 
goals are to minimize the number of discrete 
intervals and to maximize the dependency 
relationship between the class labels and the 
discrete intervals. 

The design of the F-CAIM algorithm is based 
on the CAIM algorithm. A weaker feature of the 
CAIM algorithm was selection of candidate 
boundary points. In the CAIM algorithm they 
were initialized with the min, max and all the 
midpoints of all the adjacent data points, so the   
number of boundary points was equal to M+1. 
The F-CAIM algorithm performs different 
initialization of the initial boundary points. It 
initializes them with the max, min, and 
midpoints of the adjacent data points, but only 
for the data points of different classes. This 
results in generation of maximum of M+1 
boundary points, when in many real-life 
problems the number can be significantly 
smaller. The above idea is based on the work of 
Fayyad and Irani [14]. They proved that for the 
discretization that use the entropy-based 
criterion the generated boundary points are 
always between two data points that belong to 
two different classes. Such selection of boundary 
points significantly speeds up the discretization 
process since fewer number of candidate 
boundary points needs to be examined. This idea 
is used in the IEM algorithm [14], and the ID3 
algorithm [23]. It is also used to speed up an 
algorithm that selects optimal partitions from 
supervised data [12]. 

In case of the CAIM algorithm, which used 
the class-attribute dependency information 
discretization criterion, we could not prove that 
boundary points would always be selected 
between two data points that belong to two 
different classes.  Although we still cannot prove 
this property we decided to treat the above 
mechanism for selection of candidate boundary 
points as a heuristic that can be incorporated into 
the algorithm. The main reason was that it will 

speed up processing time of the algorithm. Also,   
we assume that applying the heuristic will not 
worsen the quality of discretization performed 
by the CAIM algorithm; this comes from our 
observations that almost all of the boundary 
points selected by the algorithm satisfy the 
above selection mechanism. All of the above 
lead to the development of the F-CAIM 
algorithm. 

The main difference between the CAIM and 
F-CAIM algorithms is in step 1.2, where the 
initial boundary points are selected. The 
pseudocode of the F-CAIM algorithm follows:  

 
Given:  Data set of M examples, S classes, and 
continuous attributes Fi 
For every Fi do: 
Step1. 
1.1 find maximum (dn) and minimum (do) values of Fi 
1.2 form a set of all distinct values of Fi in ascending 

order and initialize all possible interval boundaries, B, 
with minimum, maximum and the midpoints of all the 
adjacent pairs in the set that belong to different classes 

1.3 set the initial discretization scheme as  
 D: {[do, dn]}, set GlobalCAIM=0 
Step2. 
2.1 initialize k=1; 
2.2 tentatively add an inner boundary, which is not 

already in D, from B, and calculate corresponding the 
CAIM criterion value 

2.3 after all the tentative additions have been tried accept 
the one with the highest value of the CAIM criterion 

2.4 if (CAIM > GlobalCAIM or k<S) then update D with 
the accepted in step 2.3 boundary and set 
GlobalCAIM=CAIM, else terminate 

2.5 set k=k+1 and go to 2.2 
Output: Discretization scheme D 
 

The expected running time of the F-CAIM 
algorithm is O(Mlog(M)). The time is calculated 
in the same way as for the CAIM algorithm [19]. 
Although the complexity did not change 
between CAIM and F-CAIM algorithms, 
experimental results show that significant 
improvement in the running time has been 
achieved, while keeping all other advantages of 
the CAIM algorithm. 

3.  Experiments 
The eight datasets used to test the F-CAIM 

algorithm are: Iris Plants (iris), Johns Hopkins 
University Ionosphere (ion), Statlog Project 
Heart Disease (hea), Pima Indians Diabetes 
(pid), Statlog Project Satellite Image (sat), 
Thyroid Disease (thy), Waveform (wav),  



Attitudes Towards Workplace Smoking 
Restrictions (smo). The first seven datasets are 
from the UC Irvine ML repository [1], and the 
last one from the StatLog repository [24]. 
Detailed description of the datasets is shown in 
the Table 2. The experimental setup was 
identical to the setup described in [19]. 

3.1. Analysis of the results 
The F-CAIM and the other seven 

discretization algorithms were used to discretize 
the eight datasets. The quality of the 
discretization was evaluated based on the CAIR 
criterion value, number of generated intervals, 
and the execution time. The CAIR criterion is 
defined as [26, 17, 19]:  
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The performance of the F-CAIM algorithm 

was compared with the six discretization 
algorithms. Also, direct comparison with the 
performance of the CAIM [19] algorithm was 
performed. 

Table 3 shows the results of discretizing the 
datasets using the F-CAIM and CAIM 
algorithms. It shows mean and standard 
deviation values for the CAIR criterion, total 

number of intervals, and the execution time. It 
also shows if the discretization generated by the 
F-CAIM and CAIM are different, and how many 
attributes were discretized differently between 
the two. The results of other algorithms can be 
found in [19]. 

The comparison shows that the F-CAIM 
algorithm achieves a little worse results in terms 
of class-attribute interdependency, as measured 
by CAIR, the same results in terms of the 
number of discrete intervals, and significantly 
better results in terms of the execution time. For 
all eight datasets, the F-AIM algorithm was 
faster than the CAIM algorithm. The overall 
quality of discretization by the F-CAIM 
algorithm is similar to that of the CAIM 
algorithm but significant improvement in the 
execution time was achieved. We also note that 
two datasets were discretized identically, while 
for the remaining datasets the discretizations 
were very similar, except for the ion and iris 
datasets. 

 
Table 4 compares results of the F-CAIM 

algorithm with the six other algorithms (all 
except the CAIM algorithm). It also shows 
evaluation for the CAIM algorithm and thus 
enables direct comparison of performance 
between the two. The table shows mean rank 
value for each of the algorithms, which is 
computed by ranking results for each of the 
datasets, and averaging the resulting scores. 

Table 2. Major properties of datasets considered in the experimentation 

Datasets Properties 
iris sat thy wav ion smo hea pid 

# of classes 3 6 3 3 2 3 2 2 
# of examples 150 6435 7200 3600 351 2855 270 768 

# of training / testing examples 10 x cross-
validation 

10 x cross-
validation 

10 x cross-
validation 

10 x cross-
validation 

10 x cross-
validation 

10 x cross-
validation 

10 x cross-
validation 

10 x cross-
validation 

# of attributes 4 36 21 21 34 13 13 8 
# of continuous attributes 4 36 6 21 32 2 6 8 

 

Table 3. Comparison of results achieved by F-CAIM and CAIM algorithms (bold indicates better result) 

Dataset Criterion Discretization 
Method iris std sat std thy std wav std ion std smo std hea std pid std 

CAIM 0.54 0.01 0.26 0 0.170 0.01 0.130 0 0.168 0 0.010 0 0.138 0.01 0.084 0 CAIR mean 
value  F-CAIM 0.52 0.01 0.26 0 0.168 0.01 0.130 0 0.164 0 0.011 0 0.138 0.01 0.084 0 

CAIM 12 0 216 0 18 0 63 0 64 0 6 0 12 0 16 0 total # of 
intervals F-CAIM 12 0 216 0 18 0 63 0 64 0 6 0 12 0 16 0 

CAIM 0.05 0.01 53.36 1.90 11.50 0.47 46.13 3.68 2.51 0.25 0.64 0.01 0.13 0.01 0.70 0.01 time [s] 
F-CAIM 0.04 0 48.59 1.14 8.44 0.23 38.31 0.68 1.56 0.02 0.62 0.02 0.12 0.01 0.54 0.01 

The same discretization NO YES NO YES NO NO NO NO 
# different attributes 2 0 1 0 24 1 1 1 



Table 4. Comparison of results achieved by F-CAIM and CAIM algorithms, and the other discretization algorithms (bold 
indicates best results) 

Criterion CAIR mean value through all 
intervals total # of intervals time [s] 

Discretization Method 
mean rank 

when comparing 
with CAIM 

mean rank 
when comparing 

with F-CAIM 

mean rank 
when comparing 

with CAIM 

mean rank 
when comparing 

with F-CAIM 

mean rank 
when comparing 

with CAIM 

mean rank 
when comparing 

with F-CAIM 
Equal Width 4.0 4.0 4.8 4.8 1.3 1.3 
Equal Frequency 5.4 5.4 4.8 4.8 1.5 1.5 
Paterson-Niblett 3.5 3.5 4.0 4.0 6.4 6.4 
Maximum Entropy 5.9 5.9 4.4 4.4 3.5 3.8 
CADD 3.4 3.4 3.6 3.6 6.6 6.6 
IEM 3.1 3.0 2.1 2.1 4.1 4.5 
CAIM / F-CAIM 1.9 1.6 1.3 1.3 4.1 3.6 

 
 
The F-CAIM and CAIM algorithms achieve 

very similar results in terms of both the CAIR 
value and the number of discretization intervals 
when compared to other algorithms. Both were 
ranked as being the best among all other 
discretization algorithms.  

The shortest execution time was obviously 
achieved by unsupervised discretization 
algorithms since they do not utilize class 
information. Among supervised algorithms the 
F-CAIM algorithm was the fastest. When 
analyzing performance of the CAIM algorithm, 
we note that it was the second fastest, with 
Maximum Entropy algorithm that was ranked 
best, and IEM algorithm that achieved the same 
result. Let us note that the F-CAIM algorithm is 
not only faster than the original CAIM algorithm 
but it also outperforms all other supervised 
discretization algorithms. This is a significant 
improvement that makes the F-CAIM algorithm 
applicable to large datasets with hundreds of 
thousands of data points and preferably small 
number of classes. 

3.2. Analysis of classification results on 
the discretized data 

The purpose of this experiment is to show the 
impact of selection of a discretization algorithm 
on performance of the subsequently used 
machine learning algorithm. The discretized 
datasets were used to generate classification 
rules by two ML algorithms: the rule algorithm 
called CLIP4 [6, 7], and the decision tree 
algorithm called C5.0 [10]. The results show 
accuracy and the number of the generated rules 

for the data discretized using the eight 
discretization algorithms, and for the original 
data in case of testing build-in discretization of 
the C5.0 algorithm. 

 
Table 5 compares the results achieved by the 

F-CAIM and CAIM algorithms. It reports mean 
and standard deviation values for the accuracy 
and number of rules for rules generated by both 
CLIP4 and C5.0 algorithms. The results 
achieved by other dicretization algorithms can 
be found in [19]. 

The comparison shows that F-CAIM and 
CAIM algorithms achieve very comparable 
results for the rules generated by the CLIP4 
algorithm. The results achieved for the C5.0 
algorithm show that the data discretized using F-
CAIM generates better results than the data 
discretized using CAIM. The accuracy of rules 
generated by C5.0 was better for three datasets 
for the data generated using F-CAIM. For five 
out of six datasets for which there was 
difference in discretization between CAIM and 
F-CAIM, the latter generates on average fewer 
number of rules. The F-CAIM generates data 
that results in generation of 75% fewer rules for 
the pid dataset, and 71% fewer rules for the hea 
dataset. This shows that the data discretized by 
F-CAIM is very well suited for decision tree 
algorithms. The main reason for this result is 
that the idea of using discretization boundaries, 
which lay on the class boundaries, which is 
applied in the F-CAIM algorithm, is also used in 
decision trees. 

 



Table 5. Comparison of results achieved by F-CAIM and CAIM algorithms for the classification task performed on the 
already discretized data (bold indicates better results) 

Datasets 
iris sat thy wav ion smo pid hea ML 

Algor. 
Discretization 

Method acc std acc std acc std acc std acc std acc std acc std acc std
CAIM 92.7 8.0 76.4 2.0 97.9 0.4 76.0 1.9 92.7 3.9 69.8 4.0 72.9 3.7 79.3 5.0 CLIP4 

accuracy F-CAIM 92.7 8.0 76.4 2.0 98.1 0.7 76.0 1.9 91.8 4.9 69.0 2.9 72.5 3.9 80.0 6.3 

CAIM 95.3 4.5 86.2 1.7 98.9 0.4 72.7 4.2 89.0 5.2 70.3 2.9 74.6 4.0 76.3 8.9 C5.0 
accuracy F-CAIM 95.3 4.5 86.2 1.7 98.8 0.3 72.7 4.2 90.0 4.6 70.3 2.3 74.7 4.6 76.9 10.5

 

CAIM 3.6 0.5 45.6 0.7 7.0 0.0 14.0 0.0 1.9 0.3 18.5 0.5 1.9 0.3 7.6 0.5 CLIP4 
# rules F-CAIM 4.5 0.9 45.6 0.7 7.0 0.0 14.0 0.0 1.9 0.3 18.8 0.4 3.3 0.7 7.8 0.4 

CAIM 3.2 0.6 332.2 16.1 10.9 1.4 58.2 5.6 7.7 1.3 1.0 0.0 20.0 2.4 31.8 2.9 C5.0 
# rules F-CAIM 3.1 0.3 332.2 16.1 9.8 0.8 58.2 5.6 7.6 0.5 2.2 1.4 5.1 0.9 9.3 0.8 

 
Table 6. Comparison of results achieved by F-CAIM and CAIM algorithms, and the other discretization algorithms on the 
classification task performed on the already discretized data (bold indicates best results) 

 

Algor. Discretization 
Method 

mean rank 
when comparing 

with CAIM 

mean rank 
when comparing 

with F-CAIM 
Equal Width 4.6 4.6 
Equal Frequency 4.8 4.8 
Paterson-Niblett 4.3 4.1 
Maximum Entropy 5.3 5.3 
CADD 3.9 3.9 
IEM 2.9 2.8 

CLIP4 
accuracy 
 

CAIM / F-CAIM 1.8 2.0 
Equal Width 5.3 5.1 
Equal Frequency 6.0 5.0 
Paterson-Niblett 4.3 4.3 
Maximum Entropy 5.6 5.6 
CADD 5.4 5.5 
IEM 3.3 3.3 
CAIM / F-CAIM 2.1 2.0 

C5.0 
accuracy 
 

Built-in 3.3 3.4  

 

Algor. Discretization 
Method 

mean rank 
when comparing 

with CAIM 

mean rank 
when comparing 

with F-CAIM 
Equal Width 3.8 3.5 
Equal Frequency 3.5 3.5 
Paterson-Niblett 2.6 2.5 
Maximum Entropy 3.6 3.6 
CADD 3.5 3.6 
IEM 3.0 2.9 

CLIP4 
# rules 
 

CAIM / F-CAIM 2.1 2.5 
Equal Width 4.9 4.9 
Equal Frequency 5.8 5.9 
Paterson-Niblett 3.3 3.3 
Maximum Entropy 5.8 5.9 
CADD 4.9 4.9 
IEM 3.5 3.6 
CAIM / F-CAIM 1.9 2.5 

C5.0 
# rules

Built-in 3.1 3.0  
 
The accuracy and number of generated rules 

was compared between the six discretization 
algorithms and the F-CAIM algorithm. The 
same comparison was performed for the CAIM 
algorithm in [19]. The results are summarized 
using the rank values in Table 6. This enables 
direct comparison of performance between the 
F-CAIM and CAIM algorithms. The F-CAIM 
and CAIM achieve very similar results in terms 
of accuracy and number of rules when compared 
to other discretization algorithms. Both are 
ranked best among the considered discretization 
algorithms.  

The results show that the F-CAIM algorithm 
generates the data that performs similarly as the 
data generated by the CAIM algorithm and 
better than the data generated by other 
discretization algorithms when subsequently 
used for supervised learning. 

4. Summary and Conclusions 
Discretization is a preprocessing step and 

thus should be characterized by very low 
complexity. To this end we proposed new 
discretization algorithm, called F-CAIM. 

The F-CAIM algorithm is an extension of the 
CAIM algorithm. It preserves all advantages of 
the CAIM algorithm, and performs significantly 
faster than its predecessor especially on larger 
datasets. The F-CAIM algorithm was shown to 
be the fastest supervised discretization algorithm 
among all considered.  

Like the CAIM algorithm, the F-CAIM 
algorithm discretizes the data in a way that 
results in the smallest number of intervals and 
the highest class-attribute interdependency when 
compared with other state-of-the-art 
discretization algorithms. The data discretized 
using F-CAIM significantly improves the 
accuracy of results achieved by the subsequently 



used ML algorithms. F-CAIM is better suited 
than CAIM to generate data for decision trees 
while both algorithms are similarly good for rule 
algorithms. Both F-CAIM and CAIM are better 
than the other discretization algorithms when 
analyzing results achieved by ML algorithms on 
the discretized data. Finally, F-CAIM, like 
CAIM, automatically selects the number of 
intervals, which is in striking contrast to many 
discretization algorithms. 

In a nutshell, the results show high 
applicability of the F-CAIM algorithm for large 
datasets. It is scalable and accurate and can be 
used to perform supervised discretization tasks 
for a variety of real life problems. 
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