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Abstract 
 

Complexity, or in other words compactness, of models 
generated by rule learners is one of often neglected 
issues, although it has a profound effect on the success of 
any project that utilizes the rules. Researchers strive to 
propose learners that are characterized by excellent 
accuracy, and sometimes also low computational 
complexity, but the size of the data model generated by 
the learners is often not even reported. While the model 
size can be disregarded from the research point of view, 
it is very important from the end user’s perspective. Quite 
often the generated model is too complex to be manually 
analyzed or inspected, which prohibits from using it in a 
real-world setting. To fill this gap, the paper proposes a 
novel framework, which is designed to address problem 
of complexity reduction of rule based models. The 
framework is based on a Meta Mining concept, and can 
be applied to enhance several of existing rule learners. 
Its main goal is to reduce complexity, in terms of 
reducing size and number of generated rules, without 
sacrificing accuracy of the rules. The paper proposes the 
framework, and tests it on a set of benchmark datasets 
using two well known rule learners: C5.0 and 
DataSqueezer.  The results are encouraging, and show 
that 50% complexity reduction can be achieved virtually 
without any loss of accuracy. 
 
Keywords: Rule Complexity, Inductive Machine 
Learning, Data Mining, Meta Mining, Rule Learner, 
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1. Introduction 

Machine Learning (ML) field provides a number of 
very popular and highly useful tools that are used to 
perform data mining tasks. This work focuses on a class 
of ML algorithms called rule induction systems. 
Induction is a technique that infers data models, or 
knowledge, by searching for regularities among the data. 
A rule induction system takes as input a set of supervised 
training examples. The output often takes the form of IF-

THEN rules, or decision trees that can be converted into 
rules. 

 
Rule induction systems have a number of advantages, 

over other data mining methodologies, which resulted in 
attracting significant research attention: 
- They generate rules that are relatively easy for 

people to understand [5]. People often learn from the 
generated hypotheses, and even participate in the 
learning process, provided that the hypothesis is in a 
human-comprehensible form. 

- The generated rules can easily be translated to a 
first-order logic representation, or embedded within 
knowledge-based or expert systems [14]. 

- The rules can be easily inspected and modified 
because of their modularity, i.e. a single rule can be 
understood without reference to other rules [23], 
which is very important when a decision maker 
needs to understand and validate the generated rules, 
as in medicine [28] [30]. 

- Certain types of prior knowledge were found to be 
easily communicated to rule learners [13] [35]. 

 
One of the main advantages of rule induction systems 

is generation of human comprehensible and simple 
models. On the other hand most of research in the field 
of inductive ML emphasizes high correctness of the 
generated models, in terms of high accuracy, and 
sometimes also low computational complexity [14] [16] 
[32]. The issue of comprehensibility is often neglected, 
and very rarely reported in the literature. One of very 
important dimensions for rule comprehension is 
complexity expressed by the number and length of 
generated rules. As a simple quantitative measure of rule 
complexity, researchers report total number of selectors 
(logical conditions) for each rule set [10] [31] [32] [39]. 
Rule complexity has implications for ease of rule 
interpretation by domain experts, ease of implementing 
the rules via computer programming or querying 
language, and for ease of explanation to non-technical 
decision makers [39]. 

 
Obviously, having two rule based models that are 

characterized by the same accuracy, the end user would 



prefer the less complex models among them. There are 
two main reasons for that preference: 
1. Less complex model is easier to analyze and 

understand since it is more compact. 
2. Less complex model is better generalized than more 

complex model, assuming that they both achieve 
comparable accuracy. This difference is most clearly 
seen if both models are of the same type. In this case 
the more complex model contains additional 
information, over the less complex model, which 
does not improve its quality, and thus should be 
removed.  

Often the complexity of the model relates to 
overfitting, where learning method generates data models 
that agree too closely with, or in other words perfectly 
imitate, the input data. This is done with expense of 
generalization on unseen, test data, and results in either 
lowering the accuracy or generation of very complex 
models. Other properties of input data, such as 
inconsistencies and noise, may also result in overfitting. 

 
To this end, this paper proposes a novel framework 

that addresses the issue of complexity reduction. The 
framework can be used to reduce complexity of rule 
based models generated by many modern rule induction 
systems. The proposed framework is based on a Meta 
Mining concept, explained later, and provides a solution 
for the situations where low complexity models are 
necessary, e.g. in case of designing medical support 
systems that need to be manually evaluated by 
physicians. 

 
Following, first necessary background, and 

architecture of the proposed framework are described. 
Next, the framework is applied on a set of benchmarking 
datasets showing that for some rule induction systems 
reduction of complexity by as much as 50% is possible, 
virtually without any loss of accuracy. We end the paper 
with summary and conclusions. 

1.1. Meta Mining 

The proposed framework uses a Meta Mining (MM) 
concept, which is related to higher order data mining. Its 
main characteristic is generation of data models, called 
meta-models (often meta-rules), from the already 
generated data models (usually rules, called meta-data) 
[41] [43]. In general, MM based systems work in two 
main steps. First, they divide the input data into subsets 
and generate a data model for each subset. Next, they 
take the generated data models and generate the meta-
model from them. There are several advantages to using 
MM: 
- MM based systems generate results from already 

mined data models, and therefore the generated 
results are different, and often more compact, than 

results of regular mining. Some researchers argue 
that meta results provide more interesting knowledge 
than regular mining systems [1] [31] [43]. 

- Improved scalability. The MM based systems 
analyze many small datasets (i.e. subsets of original 
data, and the data models) instead of one large input 
dataset. This results in reduction of computational 
time for worse-than-linear rule induction systems, 
and most of all in ability to implement them in 
parallel or distributed fashion [31]. 

 
The MM often applies the same base-learner (rule 

induction system) on the data to produce a hypothesis, 
but performs it in two steps where the outcome is 
generated from results of the first step [31]. In contrast, 
the meta-learning aims to discover the best learning 
strategy through continuing adaptation of the learning 
algorithms at different levels of abstraction, like for 
example through dynamic selection of bias [44]. We note 
that MM already has found applications, such as in 
association rule generation [1] [40]. 

1.2. Rule Induction Systems 

The proposed framework applies standard rule 
induction systems in the MM setting. Therefore, a short 
survey of relevant systems follows. 

 
In general rule induction systems can be divided into 

rule learners, decision tree learners, and their hybrids [7]. 
Rule learners are distinct from decision trees since they 
use different induction techniques. The decision tree 
learners primarily produce a decision tree, which is used 
to extract the rules, while rule learners generate the rules 
directly. The direct generation of rules results in 
independent rules, i.e. the rules are not biased towards 
sharing selectors. In case of decision trees, rules are 
generated by traversing a tree from a leaf to a root node. 
One rule is generated for every leaf node. This implies 
that different rules share the same selectors, as illustrated 
in Figure 1. 

 
 

  
 

Figure 1. Rule generation using decision tree 
learners 
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Example decision tree learners are CART [4], C4.5 
[38], T1 [24], and C5.0 [42]. Example rule learners are 
the AQ family of algorithms [25], FOIL [37], REP [12], 
IREP [19], RISE [17], RIPPER [14] [15], SLIPPER [16], 
LAD [3], LERILS [6], and DataSqueezer [28] [31] [32]. 
Hybrid learners are represented by the CN2 [11], and 
CLIP family of algorithms [8] [10]. A survey of relevant 
inductive ML learners can be found in [20]. 

1.3. Other Relevant Work 

The proposed framework aims to reduce complexity of 
generated rule based models. This issue was usually 
tackled by researchers who develop a new standalone 
learner that provides smaller set of rules when compared 
with other learners. A good comparative paper was 
published by Lim et al. [33]. 

 
Two other related works were published. A method for 

simplifying comprehension of rules by deriving a new 
representation was proposed. The resultant representation 
was in terms of directed acyclic graph, but did not 
provide any complexity reduction [21]. An alternative 
approach for complexity reduction is to reduce the size of 
the input data. It was observed that decision tree learners 
generate much larger and no more accurate trees when 
using the entire available training data, when compared to 
trees generated by using a small subset of the training 
instances. Given the discovered strong relationship 
between tree size and training set size, the authors claim 
that any technique that removes training instances prior to 
tree construction could result in smaller trees [34]. We 
note that latter work concerns only decision tree learners, 
while the rule and hybrid learners were not considered. 

2.  Proposed Framework 

There are three main requirements for application of a 
rule induction system within the proposed framework:  
1. Rule induction system has to be able to cope with 

large amount of missing data. This is necessary to 
generate the meta-rules in the second step of a MM 
procedure; see requirement #3 for explanation. 

2. Rule induction system should not apply so called 
default hypothesis. Some learners, such as RIPPER, 
SLIPPER, and C5.0 apply default hypothesis. In this 
case, examples that are not covered by any rule are 
assigned to the class with the highest frequency in 
the training dataset (default class). This means that 
each example is always classified. On the other hand 
for highly skewed datasets, where one of the classes 
is in significant majority, it may lead to generation of 
the default hypothesis as the only “artificial” rule. 
This, in turn, may results in inability to execute the 
second step of a MM procedure. 

3. Each rule generated by a rule induction system 
should involve no more than one selector (logical 
condition) per attribute. Some learners, such as 
CLIP, generate rule with multiple selectors per one 
attribute, while decision tree learners and for 
example DataSqueezer learner satisfy this condition. 
This property allows storing generated rules (meta-
data) in a table that has identical structure as the 
original data table. This, in turn, allows using the 
same learner in the second step of the MM 
procedure. For example, for data described by 
attributes A, B, C, and D, and describing two classes 
1, and 2, the following rule can be generated: IF A=1 
and C=1 THEN 2. The rule can be written as (1, *, 1, 
*, 2), following the format of the input data, which 
defines values of attributes A,B, C, and D, and adds 
class attribute as the last attribute. The “*” symbol 
stands for a missing value (attributes B and D were 
not used in the rule). 

 
We also note that if decision trees were to be used in a 

MM setting, the generated meta-rules can be possibly 
biased towards the shared selectors. Therefore, using 
decision trees may have some disadvantages when 
compared to rule learners, which generate independent 
rules. We note that there are several learners that satisfy 
requirements of the proposed framework, such as C4.5 
and all other decision tree learners, C5.0 for all non-
skewed datasets, RIPPER, SLIPPER, and DataSqueezer.  

 
With the above assumptions in mind, details of the 

proposed framework are explained. The architecture of 
the proposed framework is shown in Figure 2. The 
framework applies a rule induction system within a MM 
setting. Meta-rules are generated from input supervised 
data in these two steps: 
1. Data Mining step. 
- First, the input data is divided into subsets. Selection 

of the proper number of subsets depends on the input 
data size. The number of subsets usually should be 
relatively small, so that the size of each input subset 
would allow generation of rule sets for each of the 
classes. In case of a large number of small subsets, 
the rule induction system may generate inaccurate 
rules because the amount of examples would be too 
small to generate correct data model. The simplest 
way to divide input data is to split it randomly. The 
input data can be also divided in a predefined way. 
For example, in case of temporal data, it can be 
divided into subsets corresponding to different time 
intervals, as it was performed in [30]. 

- Second, rules are generated for data in each of the 
subsets by a rule induction system. 

- Third, a rule table, which stores the generated rules 
(meta-data) in a format that is identical to the format 



of the original input data, is created from the 
generated rules. 

2. Meta Mining step 
- Meta-rules are generated using the rule table are the 

input. The meta-rules are generated by the same rule 
induction system, which was used in the Data 
Mining step. The meta-rules describe the most 
important patterns associated with the target concept 
over the entire original input dataset 

 

 
 

Figure 2. Architecture of the proposed 
framework 

 
The idea of splitting the dataset, learning a rule set on 

each split, and combining the results has been previously 
introduced [18], but the proposed framework is the first 
that combines the rule sets in a separate, second learning 
phase. The proposed framework was previously used 
with the DataSqueezer learner to propose a MetaSqueezer 
learning system [31]. 

 
Next, a set of benchmarking tests that verify 

usefulness of the proposed framework is presented. The 
tests aim to show the complexity reduction when using 
the proposed framework vs. using a standalone rule 
induction system. At the same time accuracy of the 
generated rules is also recorded and compared. 

3. Experiments 

The proposed framework was tested with two rule 
induction systems: a rule learner DataSqueezer, and a 

decision tree learner C5.0. The test were performed using 
six publicly available benchmarking datasets, 
characterized by the size of training datasets between 600 
and 200K examples, the size of testing datasets between 
1190 and 100K examples, the number of attributes 
between 7 and 61, and the number of classes between 2 
and 10. They constitute a set of larger datasets selected 
from the UCI ML repository [2]. The testing uses a 
single split of the input data into training and testing 
subsets, which is identical to the data submitted by the 
owners (donors). We note that 10 fold cross validation 
experiments will be performed, as a future work, to 
validate of the presented results. The datasets were 
randomly divided into a number of equal size subsets, 
depending on the size of the data, to be used as an input 
to the DM step. All continuous attribute were discretized 
by a supervised discretization algorithm CAIM [26] [27] 
[29] before they were applied in the tests. The main 
reason is that the DataSqueezer learner receives only 
discrete numerical or nominal data as its input. To make 
the comparison fair, the C5.0 also uses the discretized 
data. The complete description of the datasets is shown 
in Table 1. 

 
Table 1. Major properties of datasets considered 

in the benchmarking tests 
 

Datasets Properties 
cid dna led sat thy wav 

# classes 2 3 10 6 3 3 
# examples 299285 3190 6000 6435 7200 3600 

# test examples 99762 1190 4000 2000 3428 3000 
# attributes 40 61 7 37 21 21 
# subsets 10 8 10 10 6 3 

 
The results, in term of accuracy of the rules, and the 

number of rules and selectors, are compared between the 
standalone learner, and the learner used in the proposed 
framework. The DataSqueezer within the framework is 
called MetaSqueezer, while the C5.0 is called MetaC5.0. 
In addition, sensitivity and specificity are also reported. 
These are a standard used in medicine where sensitivity 
and specificity analysis is used to evaluate confidence in 
the results [9]. For multi-class problems, the sensitivity 
and specificity are computed for each class separately, 
and the average values are reported. Table 2 shows the 
accuracy, sensitivity, and specificity comparison for both 
DataSqueezer, and C5.0 learners, while Table 3 shows 
comparison in terms of the rule complexity. The latter is 
measured in terms of the number of rules, the numbers of 
selectors, and the number of selectors per single rule.  
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Table 2. Comparison of accuracy, sensitivity, and specificity for the benchmarking tests 
 

Reported DataSqueezer MetaSqueezer C5.0 MetaC5.0 set max min ref. accuracy sensitiv. specific. accuracy sensitiv. specific. accuracy sensitiv. specific. accuracy sensitiv. specific.
dna 95 62 [33] 92 92 97 90 89 95 94 94 97 53 33 67 
led 73 18 [33] 68 68 97 69 69 97 74 74 97 62 61 96 
sat 90 60 [33] 80 78 96 74 73 95 85 82 97 42 48 88 
thy 99 11 [33] 96 95 99 96 86 99 98 89 98 98 86 99 
wav 85 52 [33] 77 77 89 77 76 89 75 75 88 52 51 76 
cid 95 77 [22] 91 94 45 90 93 49 95 99 32 94 99 17 

MEAN 89.5 46.7 --- 84.0 84.0 87.2 82.7 81.0 87.3 86.8 85.5 84.8 66.8 63.0 73.8 
 

Table 3. Comparison of rule complexity for the benchmarking tests 
 

Reported DataSqueezer MetaSqueezer C5.0 MetaC5.0 
set median # 

of rules ref. # rules # select # select / 
rule # rules # select # select / 

rule # rules # select # select / 
rule # rules # select # select / 

rule 
dna 13 [33] 39.0 97.0 2.5 34.0 53.0 1.6 40 107 2.7 0 0 0 
led 24 [33] 51 194 3.8 51 141 2.8 20 79 4.0 10 21 2.1 
sat 63 [33] 57 257 4.5 55 104 1.9 118 413 3.5 4 4 1.0 
thy 12 [33] 7 28 4.0 6 6 1.0 5 9 1.8 4 4 1.0 
wav 16 [33] 22 65 2.9 17 18 1.0 37 128 3.5 2 2 1.0 
cid --- --- 15 95 6.3 6 34 5.7 146 412 2.8 14 14 1.0 

MEAN --- --- 31.8 122.7 4.0 28.2 59.3 2.3 61.0 191.3 3.1 5.7 7.5 1.3 
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Figure 3. Side-by-side comparison between DataSqueezer and MetaSqueezer induction system 
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Figure 4. Side-by-side comparison between C5.0 and MetaC5.0 induction system 

 
To easy the analysis, the results are also presented in 

Figure 3 and Figure 4. Figure 3 shows side-by-side 
comparison between DataSqueezer and MetaSqueezer, 
while Figure 4 shows the comparison between C5.0 and 
MetaC5.0 induction system. The results, in case of both 
MetaSqueezer and MetaC5.0, show significant reduction 
of rule complexity when compared with standalone 
learners. The 12% reduction in the number of rules and 

52% reduction in the number of selectors were achieved 
by MetaSqueezer. This significant complexity reduction 
was achieved with only marginal loss of accuracy by 
1.3%. The loss of accuracy was caused by 3% loss of 
sensitivity, and without any loss in terms of specificity. 
The 91% reduction in the number of rules and 96% 
reduction in the number of selector were achieved by the 
MetaSqueezer. Although a very significant complexity 



reduction was achieved, it came with large costs. The 
20% loss of accuracy, 22.5% loss of sensitivity, and 11% 
loss of specificity resulted from applying the proposed 
framework. The main reasons for the weak performance 
of MetaC5.0 are generation of default hypothesis, as in 
case of dna dataset (zeros in Table 3 mean that only the 
default hypothesis was generated), problems with 
handling large amounts of missing data [32], and rule 
dependency that resulted in generation of too compact 
rule sets. Despite these flaws, for some datasets where 
underlying data models rely on only a few attributes, such 
as thy, led, and cid, the results are encouraging.  

 
To summarize, the benchmarking results show that the 

proposed framework in tandem with some of rule 
induction systems can provide significant rule complexity 
reduction. Most importantly, we expect that for some 
learners, especially those that satisfy requirements stated 
in section 2, the rule complexity reduction will come with 
virtually no loss of accuracy, as it is shown in case of the 
DataSqueezer learner. 

4. Summary and Conclusions 

The paper introduces a novel framework that aims to 
reduce complexity of rule base models generated by rule 
induction systems. The framework is situated within the 
state-of-the-art in the inductive ML field. While many 
standalone ML learners generate rules directly from input 
data, the framework is based on the Meta Mining concept 
and generates meta-rules from previously generated meta-
data. The main benefit of the reduced complexity is 
increased comprehension of the generated knowledge. 
Application of the Meta Mining concept also results in 
ability to successfully devise efficient parallel or 
distributed DM solutions to the rule induction process. 
The framework works by merging partial knowledge 
extracted from subsets of data, which can be computed in 
parallel by distinct serial programs on (possibly disjoint) 
subsets of the training data set [36]. The biggest 
advantage of the described system is that the application 
of the distributed approach to the rule generation does not 
result in penalizing accuracy of the results.  

 
The framework was tested on a set of larger size, 

publicly available benchmarking datasets showing very 
promising results. Using the framework with a rule 
learner reduction by over 50% of rule complexity was 
achieved with virtually no penalty on the accuracy of the 
generated model. Application of the framework with a 
decision tree learner resulted in reduction by over 90%, 
but with a 20% loss of accuracy. A set of requirements, 
stated in section 2, was developed to select rule induction 
systems that are suitable to be applied within the proposed 
framework. Since the tested decision tree learner did not 
adhere to some of these requirements, the complexity 

reduction resulted in the accuracy loss. We expect that 
learners adhering to the requirements, such as 
DataSqueezer, will benefit the complexity reduction with 
only marginal loss of accuracy.  

 
We note that this work shows preliminary results on a 

limited number of datasets. Future work will include more 
comprehensive analysis, which will accommodate more 
datasets, and incorporate cross validation experiments and 
t-test based comparison between relevant methods, to 
validate the presented results. We also note that although 
the proposed framework gives a desirable solution to 
problem of rule complexity, many questions remain open. 
Psychological studies of the nature of comprehensibility 
of generated knowledge structures are necessary to give 
substance to the intuitions that lie behind the work 
reported in this paper. The analysis to determine whether 
the meta-rules or rules generated by the standard 
inductive ML learners make sense to the user is outside of 
the scope of this paper. 
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