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Abstract 

This paper addresses in silico prediction of protein 
structural classes as defined in the SCOP database. The SCOP 
defines total of 11 classes, while majority of proteins are 
classified to the 4 classes: all-α, all-β, α/β, and α+β. The main 
goals of this paper are to experimentally evaluate the impact of 
predicted protein secondary structure content on the structural 
class prediction and to develop a novel protein sequence 
representation. The experiments include application of three 
protein sequence representations and four classifiers to 
prediction of both 4 and 11 structural classes. The predictions 
are performed using a large dataset of low homology (twilight 
zone) sequences. The proposed sequence representation 
includes the predicted structural content, which provides the 
strongest contribution towards classification, composition and 
composition moment vectors, hydrophobic autocorrelations, 
chemical group composition and molecular weight of the 
protein. The predicted content values are shown on average to 
improve the prediction accuracy by 3.3% and 4.2% for the 4 
and 11 classes, respectively, when compared to sequence 
representation that does not utilize this information. Finally, we 
propose a very compact, 20 dimensional sequence 
representation that is shown to improve the prediction accuracy 
by 5.1-8.5% when compared with recently published results. 

1. Introduction 
At a basic level, a protein is composed of an ordered 

chain of amino acids (AAs), which locally folds into three 
types of secondary structures: α-helices, β-sheets and 
coils. In 1976, Levitt and Chothia defined four structural 
classes for globular proteins [1]: 1) all-α class, which 
contains proteins with small amount of strands, 2) all-β 
class with proteins with small amount of helices, 3) α/β 
class that includes proteins with helices and mostly 
parallel strands, and 4) α+β class with proteins that 
include helices and mostly antiparallel strands. 
Nowadays, proteins are manually assigned to one of the 
eleven Structural Classification of Proteins (SCOP) 
structural classes based on their structural information [5]. 

Protein structure prediction based on its sequence 
receives significant attention due to the increasing 
difference between the number of known protein 
sequences (nearly 2.5 millions) and experimentally 
determined structures (about 37,000). A priori knowledge 
of structural classes allows to improve protein secondary 
structure prediction [2] and reduces the search space of 
possible configurations of the tertiary structure [3,4].  

Although majority of the structure prediction methods 
utilize multiple sequence alignment, the structural class 
prediction is performed based on classification of the 

sequences, which are converted into a feature-based 
representation [6-20] [29,30]. The prediction of structural 
classes for low homology sequences is of special 
importance since sequence alignment requires at least 
~30% homology between the query protein and protein(s) 
used to predict its structure [31]. The proteins 
characterized by lower, 20-30% homology with 
sequences that are used to predict their structure are called 
twilight zone proteins [32]. More than 95% of all 
sequence pairs detected in the twilight zone have different 
structures [32], which significantly impacts quality of the 
structure prediction. For instance, prediction of the 
secondary structure for homologous sequences by the 
state-of-the-art alignment secondary structure prediction 
methods yields about 80% accuracy [33], while for the 
twilight zone sequences it drops to 65-68% [34]. 
Similarly, in case of the structural class prediction 
accuracies for highly homologous protein datasets reach 
over 90%, while they drop to 57% in case of the twilight 
zone sequences [20]. 

To this end, this paper aims to improve accuracy of 
structural class prediction for the twilight zone proteins. 
The proposed approach is based on a novel idea that uses 
a predicted secondary structure content to improve the 
accuracy of protein structural class prediction. The 
secondary structural content is defined as a percentage 
amount of α-helices and β-strands in a protein, and can be 
accurately predicted using multiple linear regression 
models [23,24].  
2. Related Work 

Prediction of the protein structural classes is 
performed in two steps. First, the protein sequences of 
various lengths are converted into a fixed size feature 
vector. Second, the feature vectors are fed into a classifier 
to obtain predicted class. Majority of prediction methods 
use a simple composition vector (20-dimensional vector 
that represents the occurrence frequencies of the 20 AAs) 
as the feature based sequence representation. These 
methods apply a wide range of classifiers including 
maximum component coefficient algorithm [6], least 
correlation angle algorithm [7], fuzzy clustering [8,29], 
artificial neural network [9,10,11], vector decomposition 
[12], component coupled geometric algorithm [13], 
Bayesian classification [14], and most recently support 
vector machines [15] and boosting [30]. The most 
noticeable progress among these algorithms was obtained 
by including the coupling effect among different AAs [3, 
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13]. Some of the most recent works apply alternative 
sequence representation that include auto-correlation 
functions based on non-bonded AA energy [16], 
polypeptide composition [17,18], functional domain 
composition [19] and most recently chemical composition 
and hydrophobic autocorrelations [20]. 

Similarly to structural class prediction, the content 
prediction is performed using the same two steps. The 
sequence representation usually consists of the 
composition vector and hydrophobic autocorrelations. 
Only two prediction algorithms, i.e., multiple linear 
regression method (MLR) [21] and neural networks [22], 
were applied. Recent research shows that MRL gives the 
most accurate results [23,24].  

We note that to the best of our knowledge these two 
prediction methods were never combined together. 

3. Background 

3.1. Dataset of the Twilight Zone Sequences 

To evaluate the classification accuracy, a dataset of 
twilight zone sequences was selected based on the 
25%PDBSELECT list [25]. This list includes proteins that 
were scanned with high resolution and with low, on 
average 25% homology (the homology ranges between 
22% and 45%). Using PDB release as of February 2005, 
2340 sequences and domains were extracted based on this 
list. Among them there are 443 all-α, 443 all-β, 346 α/β 
and 441 α+β sequences, while for the remaining 246 
sequences the SCOP classes are missing and 421 
sequences belong to the remaining seven SCOP classes. 
Two datasets, one that includes the 4 major structural 
classes and another that includes all 11 classes were 
created. The final datasets with 4 classes (denoted as 
25PDB-4) contains 1673 proteins/domains. The second 
dataset (denoted as 25PDB-11) consists of 2094 
sequences/domains, which in addition to the 4 main 
classes include 26 multi-domain proteins (denoted as e), 
52 membrane and cell surface proteins (denoted as f), 227 
small proteins (denoted as g), 40 coiled coils proteins 
(denoted as h), 7 low resolution proteins (denoted as i), 62 
peptides (denoted as j) and 7 designed proteins (denoted 
as k).  
3.2. Sequence Representation 

The proposed sequence representation includes 
features introduced in a recent structural class prediction 
method [20], which are combined with features used to 
predict structural content [23,24]. The dataset that 
includes sequences encoded using the corresponding 67 
dimensional feature vector is denoted as 25PDB67. This 
sequence representation was enhanced by adding 
predicted secondary structure content. Two prediction 
methods [23,24], which predict the α-helix and β-strand 
content, were used to compute the four additional 

features. The corresponding datasets that includes total of 
71 features is denoted as 25PDB71 and includes:  
− Composition vector (CV) 
− First order composition moment vector (CMV) 
− Autocorrelations based on Fauchere and Pliska’s 
hydrophobicity index (ACH) 
− Autocorrelations based on side-chain mass (ACM) 
− Molecular weight of the protein (MW) 
− Chemical group composition (CG) 
− Secondary structural content for α-helix (H) and β-
strand (E) based on method by Zhang, Sunt and Zhang 
[23] and Lin and Pan [24] (CE-ZSH, CE-LP, CH-ZSH, 
CH-LP) 

The composition and composition moment vectors are 
defined as [26]: 
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where i=1,2,…,20 is the AA index, k is the order of the composition 
moment vector (for k=0 it reduces to CV), N is the length of the protein 
sequence, nij is the jth position of the ith AA, and ci is the count 
(composition) of the ith AA in a sequence. 

Autocorrelation function ACn, which is calculated 
based on Fauchere and Pliska’s hydrophobicity index is 
defined as [27]: 
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where hij is the index value (shown in Table 1) for the ith AA at the jth 
position in the sequence, and n=1,2,…,10 is the lag that equals to the 
number of autocorrelations. 

Similarly, autocorrelations of relative side-chain 
masses are defined as [23]: 
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where n=1,2,…,6 and  smij values are shown in Table 1. 
The molecular weight of the protein is defined as: 
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where mi is the atomic weight of AAs in the sequence, see Table 1. 
Chemical group composition is defined based on the 

chemical composition of the side chains. There are 19 
chemical groups, and of them are associated with multiple 
different side chains – for details see [20].  

The four features related to the predicted content were 
computed based on four MLR models (two methods 
[23,24] were used to generate models for α-helix and for 
β-strand). 
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Table 1. Hydrophobic index, relative side-chain masses and molecular weight of AAs 

 

4. Proposed Prediction System and Goals 

4.1. System Diagram 

Figure 1 shows the overall prediction process. The 
prediction performed in prior works is shown using white 
boxes and solid arrows (prior works used only a subset of 
67 features). Our contribution consists of adding the 
predicted content values to the feature representation, 
which is shown using grayed boxes and dotted arrows.  

 
Figure 1. Diagram of the proposed prediction system 

 

4.2. Goals 

The paper addresses the two following goals: 
− Goal 1. To design a compact feature based sequence 

representation and to verify if the predicted 
secondary structure content has an impact on the 
protein structural class prediction.  

− Goal 2. To perform an empirical evaluation of the 
impact of the predicted content on the accuracy of the 
4-classes and 11-classes protein structural class 
prediction. The prediction accuracies on the twilight 
zone dataset that is encoded using three sequence 
representations (25PDB67, 25PDB71 and the 
proposed compact representation) and using four 
different classifiers are compared. The comparison 
includes the overall accuracies, as well as the 
accuracies for individual structural classes. 

5. Experiments and Results 
The experiments were performed using the WEKA 3.4 

environment [28]. All experiments, including feature 

selection to address Goal 1, and computations of the 
predicted content values and classification to address 
Goal 2 were performed using 10 fold cross validation.  

The overall classification accuracy that was computed 
for Goal 2 is defines as: 

n
dcbaaccuracy +++=  

while the accuracy for all-α class (and by analogy for the 
remaining structural classes) is defined as: 
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where a, b, c, d values are defined in Table 2. 

Table 2.  Confusion matrix for the 4-classes prediction 

5.1. Experimental Results for Goal 1 

The design of a new, compact feature based sequence 
representation and evaluation of the value-added of the 
features related to the predicted content was performed 
based on a feature selection. The 25PDB71-4 and 
25PDB71-11 datasets were used to establish separate 
representations for the 4-classes and 11-classes 
predictions. The representations were developed based on 
a consensus among three feature selection methods: 
− Chi2 feature selection, which ranks attributes by 
computing the χ2 test with respect to the class [35]. 
− Information gain feature selection, which ranks 
attributes using the information gain (introduced in 
decision trees) with respect to the class [35]. 
− ReliefF, which ranks attributes by repeatedly sampling 
examples and considering the value of a given attribute 
for the nearest example of the same and different classes 
[36]. 

The proposed representation consists of the best 20 
features that selected based on the average rank among 
the three feature selection methods. The number of 
dimensions is equal to the most popular composition 
vector based representation. 

AAi A1/M11 C2/N12 D3/P13 E4/Q14 F5/R15 G6/S16 H7/T17 I8/V18 K9/W19 L10/Y20 
0.42 1.34 -1.05 -0.87 2.44 0.00 0.18 2.46 -1.35 2.32 Fauchere & Pliska 

hydrophobic index (hi) 1.68 -0.82 0.98 -0.3 -1.37 -0.05 0.35 1.66 3.07 1.31 
0.115 0.36 0.446 0.55 0.7 0.00076 0.63 0.13 0.48 0.13 Relative side-chain masses (smi) 0.577 0.446 0.323 0.55 0.777 0.238 0.346 0.33 1 0.82 

71 103 115 129 147.1 57 137.1 113.1 128.1 113.1 Molecular weight (mi) 131 114 97 128.1 156.1 87 101 99.1 186.1 163.1 

Predicted structural class Actual 
structural class All-α All-β α/β α+β 

all-α a ab ac ad 
all-β ba b bc bd 
α/β ca cb c cd 
α+β da db dc d 

LP [24] MLR 
model  for H 

LP [24] MLR 
model  for E 

ZSZ [23] MLR 
model  for H 

ZSZ [23] MLR 
model  for E 
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Table 3. Feature selection results (number of selected features for each feature set) 

Table 4. Feature selection results (list of features that constitute the proposed 20 dimensional sequence representation) 

 
Table 3 summarizes the selected best 20 features with 

respect to their corresponding feature sets; for each set the 
number and percentage of the selected features is given. 
The selected features include all four predicted secondary 
content values, molecular weight and some of the features 
from the remaining feature sets, except the 
autocorrelations based on side-chain masses. This shows 
that almost all feature sets are useful with respect to the 
prediction of the structural class, both in case of 4- and 
11-classes. 

Table 4 shows the ranking of the best selected features 
for both, 4- and 11-classes predictions; features selected 
in both cases are shown in bold. The results show that the 
most valuable features are the predicted content values; 
they occupy top 4 positions for 4 class problem and 4 out 
top seven for the 11 class problem. The second best 
feature set is the molecular weight that was ranked 6th and 
4th, respectively. The other features that are included for 
both predictions are autocorrelations based on 
hydrophobicity with the lag equal 2, 3, and 4, composition 
vector for alanine (A), lysine (K), and threonine (T), and 
composition moment vector for lysine. The remaining 
features, which include composition for cysteine (C), 
isoleucine (I), serine (S) and tyrosine (Y) and composition 
moment for alanine (A), isoleucine and valine (V), 
hydrophobic autocorrelations with lag equal 1, 5 and 7 

and finally six out of ten chemical composition groups, 
were included in one of the two representations.  

In short, the results strongly indicate that the predicted 
content values are among the most useful features for 
prediction of the secondary structural class. The other 
useful feature sets include molecular weight, composition 
and composition moment vectors, low lag hydrophobic 
autocorrelations, and chemical composition groups. At the 
same time, the autocorrelations based on side-chain 
masses, which were originally used to predict the 
structure content [24], and higher lag hydrophobicity 
autocorrelations provide relatively smaller amount of 
useful information for the structural class prediction. 

The new datasets, for the 4- and 11-classes prediction, 
that use the proposed 20 features representations are 
denoted as 25PDB20-4 and 25PDB20-11, respectively. 
5.2. Goal 2 

The prediction of the structural classes for both 4-
classes and 11-classes problems was performed using 
three sequence representations (25PDB67, 25PDB71, and 
25PDB20) and four classifiers: 
− Support Vector Machine (SVM) [37] with a second 

degree polynomial kernel. 
− Multinomial logistic regression (LR) [38]. 
− Random Forest (RF) [39]. 

# of extracted features from each feature set % of extracted features from each feature set Dataset Selection method 
CV CMV ACH ACM MW CG CE/CH CV CMV ACH ACM MW CG CE/CH

Chi2 6 3 4 0 1 2 4 30 15 40 0 100 20 100 
Information Gain 5 4 4 0 1 2 4 25 20 40 0 100 20 100 25PDB71-4 

ReliefF 6 2 2 0 1 5 4 30 10 20 0 100 50 100 
Chi2 1 1 10 0 1 3 4 5 5 100 0 100 30 100 

Information gain 3 2 7 0 1 3 4 15 10 70 0 100 30 100 25PDB71-11 
ReliefF 6 3 1 0 1 5 4 30 15 10 0 100 50 100 

 
Feature selection on 25PDB71-4 

 Rank for a given method 
Features Chi2 Info Gain ReliefF Average 
CE-LP 1 1 1 1.0 
CE-ZSZ 3 2 2 2.3 
CH-ZSZ 2 3 4 3.0 
CH-LP 4 4 3 3.7 
ACH2 5 5 7 5.7 
MW 6 6 5 5.7 
CG4 7 7 14 9.3 
CV5 8 8 13 9.7 
CV9 10 10 9 9.7 
CMV18 9 9 12 10.0 
CMV9 11 12 11 11.3 
CV17 13 13 8 11.3 
CV1 17 16 10 14.3 
ACH4 14 14 20 16.0 
CG10 15 15 18 16.0 
CV20 24 22 16 20.7 
CV16 16 18 30 21.3 
CMV8 21 20 28 23.0 
ACH3 18 17 37 24.0 
CV8 23 24 26 24.3 

 Feature selection on 25PDB71-11 
 Rank for a given method 
Features Chi2 Info Gain ReliefF Average 
CH-ZSZ 1 1 3 1.7 
CV2 2 4 2 2.7 
CH-LP 5 2 4 3.7 
MW 3 3 6 4.0 
CE-ZSZ 7 5 1 4.3 
CMV1 4 7 7 6.0 
CE-LP 10 6 5 7.0 
CG6 6 8 8 7.3 
ACH2 8 9 21 12.7 
CG8 18 11 13 14.0 
ACH4 13 14 23 16.7 
CG3 25 12 14 17.0 
CV9 27 17 9 17.7 
CMV9 30 22 10 20.7 
CV17 29 21 15 21.7 
ACH7 17 18 31 22.0 
ACH1 12 16 45 24.3 
CV1 31 26 17 24.7 
ACH3 23 24 39 28.7 
ACH5 16 19 52 29.0 
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− Instance based (IB1) which is lazy learner based on 
the nearest neighbor algorithm [40]. 

The first three classifiers were selected based on their 
superior performance in prior works on structural class 
prediction [20]. The lazy learner was selected to provide 

contrast for the best performing algorithms. Each of the 
classifiers was optimized with respect to its parameters 
(e.g. kernel type, ridge value, number of trees) based on 
the 10 fold cross-validation. 

Table 5. Summary of the structural class prediction results 

Table 6.  Structural class prediction results for individual classes 

 
The overall (across all classes) structural class prediction 
accuracies for the four classifiers, three representations 
and 4- and 11-classes problems are shown in Table 5. The 
best accuracies (shown in bold) were achieved by LR in 
case of the 4-classes prediction and by SVM in case of 
11-classes prediction. The average (across all 
representations and both prediction) accuracy ranks the 
LR classifiers first (59.3%), with SVM second (57.4%), 
RF third (55.7%) and IB1 with a distant last position 
(43.4%), which confirms results from [20]. The poor 
performance of IB1 learner is due to low homology 
among sequences. 

Comparison between 25PDB67 and 25PDB71, and 
25PDB67 and 25PDB20 datasets shows the impact of 
using the secondary structure content on the prediction 
accuracy. Comparison of average accuracies between 
25PDB71-4 and 25PDB67-4 datasets shows that adding 
structural content features improves the accuracy by 
2.7%. At the same time, the difference in case of the 
25PDB20-4 dataset is 3.3%, and demonstrates that the 
structural content helps and that the designed 
representation provides not only reduced dimensionality, 
but also improvements in accuracy. Similarly for the 11-
classes prediction, the 71 dimensional representations 

Accuracy for 4 classes Accuracy for 11 classes 
This paper Results after [20] This paper Classifiers 

25PDB67-4 25PDB71-4 25PDB20-4 CV 66 25PDB67-11 25PDB71-11 25PDB20-11 
RF 54.6% 56.4% 57.2% 47.6% 51.0% 52.2% 57.2% 56.7% 
LR 60.5% 62.2% 60.0% 51.0% 56.7% 56.9% 58.4% 58.0% 
IBI 41.2% 45.3% 47.0% 37.8% 39.2% 37.5% 42.0% 47.1% 

SVM 56.8% 56.2% 58.2% 52.0% 55.1% 56.1% 58.9% 57.9% 
average 53.3% 55.0% 55.6% 47.1% 50.5% 50.7% 54.1% 54.9% 

Accuracyclass i for i = all-α, all-β, …. Accuracyclass i for i = all-α, all-β, …. SCOP 
class dataset RF LR IB1 SVM mean 

signifi
cance  

dataset 
RF LR IB1 SVM mean 

signifi
cance 

25PDB67-11 79.1 84.2 76.7 83.0 80.7 N/A 25PDB67-4 80.6 84.9 77.6 81.5 81.2 N/A 
25PDB71-11 82.7 84.7 80.0 82.7 82.5 + 25PDB71-4 82.8 85.0 81.6 83.9 83.3 + All-α 
25PDB20-11 83.0 84.1 81.0 84.2 83.1 + 25PDB20-4 84.8 84.5 80.5 84.2 83.5 + 
25PDB67-11 77.8 83.4 73.2 81.7 79.0 N/A 25PDB67-4 76.8 80.6 71.4 78.7 76.9 N/A 
25PDB71-11 81.1 84.0 76.7 81.6 81.0 + 25PDB71-4 78.7 82.3 74.0 80.6 80.6 ++ All-β 
25PDB20-11 82.0 82.6 79.2 82.5 81.6 + 25PDB20-4 79.4 80.8 74.0 80.1 78.9 + 
25PDB67-11 84.5 86.7 74.5 85.6 82.8 N/A 25PDB67-4 73.9 73.0 64.2 73.0 71.0 N/A 
25PDB71-11 85.1 86.6 75.2 86.0 83.2 + 25PDB71-4 73.4 72.7 64.4 73.6 71.0 ~ α/β 
25PDB20-11 85.4 85.8 79.7 86.3 84.3 + 25PDB20-4 72.5 73.6 69.6 73.3 72.2 + 
25PDB67-11 74.6 77.0 68.1 76.8 74.1 N/A 25PDB67-4 68.0 72.0 64.6 70.0 68.7 N/A 
25PDB71-11 75.5 78.2 70.2 76.9 75.2 + 25PDB71-4 69.3 73.2 65.1 72.1 70.0 ++ α+β 
25PDB20-11 74.7 76.0 70.7 75.1 74.1 + 25PDB20-4 68.8 70.7 63.1 69.1 68.0 - 
25PDB67-11 98.8 98.1 97.9 98.3 98.3 N/A 
25PDB71-11 98.8 98.2 97.7 98.3 98.2 - e 
25PDB20-11 98.8 98.5 98.0 98.8 98.5 + 
25PDB67-11 98.6 97.3 98.3 97.9 98.0 N/A 
25PDB71-11 98.7 97.2 98.1 98.1 98.0 ~ f 
25PDB20-11 98.5 98.0 97.9 98.3 98.2 + 
25PDB67-11 96.3 95.7 93.0 96.2 95.3 N/A 
25PDB71-11 96.2 96.1 92.8 96.0 95.3 - g 
25PDB20-11 96.0 96.7 94.7 96.7 96.0 + 
25PDB67-11 98.1 97.6 97.6 97.8 97.8 N/A 
25PDB71-11 98.4 97.7 97.5 98.0 97.9 + h 
25PDB20-11 98.3 98.0 97.6 98.1 98.0 + 
25PDB67-11 99.7 98.5 99.5 99.1 99.2 N/A 
25PDB71-11 99.7 98.6 99.3 99.1 99.2 - i 
25PDB20-11 99.7 99.7 99.5 99.7 99.7 + 
25PDB67-11 97.3 95.9 96.7 96.3 96.6 N/A 
25PDB71-11 97.1 96.3 96.7 96.4 96.6 + j 
25PDB20-11 97.4 96.8 96.5 96.6 96.8 + 
25PDB67-11 99.7 99.4 99.6 99.5 99.6 N/A 
25PDB71-11 99.6 99.3 99.6 99.4 99.5 - k 
25PDB20-11 99.7 99.5 99.5 99.6 99.6 + 
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gives 3.4% improvement in accuracy and the proposed 20 
dimensional representation gives 4.2% improvement 
when compared to representation that does not use the 
predicted content. In short, the results clearly demonstrate 
that adding the four structural content prediction based 
features increases the prediction accuracy for both 4- and 
11-classes predictions and that the proposed, compact 
representation results in best, on average, results. 

The obtained results were compared with recent results 
obtained for the same datasets, which were reported in 
[20]. This paper reports classification accuracies the four 
major structural classes when using the 20 dimensional 
composition vector representation and a custom designed 
66 dimensional representation that did not use the 
predicted content values. Both average results and results 
for individual classifiers demonstrate superiority of the 
proposed solution. The proposed 20 dimensional 
representation gives on average 5.1% and 8.5% 
improvements when compared with the 66 and 20 
dimensional representation proposed in [20]. The best 
obtained results show 5.5% improvement in favor of the 
proposed method.  

 
Table 6 shows the impact of adding the predicted 

content on the accuracy for individual structural classes. 
The results show that the structural content features 
increase the prediction accuracy for all four major 
structural classes. For the 11-classes prediction the only 
two cases when adding structural content does not provide 
improvements are multi-domain proteins (class e) and 
designed protein (class k) (shown in italics in the mean 
column). Both of these classes combined include only 33 
sequences, which constitutes only about 1.5% of the 
proteins in the entire dataset.  

The significance column in Table 6 shows the 
statistical significance (based on a paired t-test at the 95% 
significance) of the differences between the 25PDB67 and 
25PDB71, and 25PDB67 and 25PDB20 datasets for the 
four classifiers. The following annotation is used: 
− + (-) denotes that results for 25PDB71 or 25PDB20 
are better (worse) than that for 25PDB67, but the 
difference is not statistically significant. 
− ++ (--) shows that the prediction results for 25PDB71 
or 25PDB20 are statistically significantly better (worse) 
than for 25PDB67. 
− ~ shows that the results for 25PDB71 or 25PDB20 and 
25PDB67 are equal. 

The results show that for 4-classes prediction adding 
structural content features results in statistically 
significant improvements for the all-β (3.7% 
improvement) and α+β classes (1.3% improvement). The 
results for the remaining two classes are improved, but the 
differences are not statistically significant. For the 11-
classes prediction the structural content improves all 
results, but none of the improvements is statistically 
significant. Finally, the proposed 20 dimensional 

representation provides improvements in 3 out of 4 
classes in the 4-classes prediction and all classes in the 
11-classes prediction. 

6. Summary and Conclusions 
Protein structural class prediction from its sequence is 

a very challenging problem. The common factor among 
the past attempts was poor performance when considering 
prediction for the twilight zone proteins. The best 
reported past results show 48% [14] and 57% [20] 
accuracy. Other higher reported accuracies were shown to 
be a result of methodological errors [20,41]. At the same 
time, this problem provides the true values to the 
community, while prediction for sequences with higher 
homology should be performed using multiple sequence 
alignment [14]. To this end, this paper proposes a novel 
structural class prediction method for the twilight zone 
proteins. The method is the first to use the predicted 
secondary structure content values and to design a 
comprehensive and compact 20 dimensional protein 
representation.  

Based on extensive experimental study several 
interesting finding and conclusions are made: 
− The results clearly show that the predicted content 

values are among the most useful features for 
prediction of the secondary structural class. Adding 
these features on average increases the prediction 
accuracy for the 4 major classes by 3.3% and for the 
11-classes by 4.2%. 

− The proposed 20 dimensional feature based sequence 
representation includes predicted content values, 
molecular weight of the protein, composition and 
composition moment vectors, low lag hydrophobic 
autocorrelations, and chemical composition groups. 
A separate representation was proposed for 
prediction of the 4 and the 11 structural classes. For 
the 4-classes prediction, the proposed representation 
gives on average 5.1% and 8.5% improvements when 
compared with the best published results that applied 
the 66 and 20 dimensional representations, 
respectively [20]. At the same time, the proposed 
representation results in improvements for all classes 
in the 11-classes prediction and for 3 out of 4 classes 
for the 4-classes prediction when compared with a 
comprehensive representation that uses 67 features. 

− Among many classifiers that were used in this 
prediction task, the multinomial logistic regression 
and support vector machine are shown to provide 
superior results. 

− The best prediction results for the twilight zone 
proteins were obtained with the logistic regression 
(62.2%) and the support vector machine (58.9%) for 
the 4 and 11-classes predictions, respectively. 

In short, we conclude that structural class prediction 
benefits from including the predicted secondary structure 
content, and that the proposed sequence representation 
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can be successfully used to improve accuracy for this 
challenging prediction task. 
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