
Comparative analysis of the impact of discretization on the classification with

�aive Bayes and semi-�aïve Bayes classifiers

Marcin Mizianty
1,2
, Lukasz Kurgan

2
, and Marek Ogiela

3

1
Faculty of Physics and Applied Computer Science, AGH Univ. of Science and Technology, Krakow, Poland

2
 Department of Electrical and Computer Engineering, Univ. of Alberta, Edmonton, Canada

3
Institute of Automatics, AGH Univ. of Science and Technology, Krakow, Poland

marcin.mizianty@gmail.com, lkurgan@ece.ualberta.ca, mogiela@agh.edu.pl

Abstract

While data could be discrete and continuous (defined

as ordinal numerical features), some classifiers, like

.aïve Bayes (.B), work only with or may perform better

with the discrete data. We focus on .B due to its

popularity and linear training time. We investigate the

impact of eight discretization algorithms (Equal Width,

Equal Frequency, Maximum Entropy, IEM, CADD,

CAIM, MODL, and CACC) on the classification with .B

and two modern semi-.B classifiers, LBR and AODE.

Our comprehensive empirical study indicates that

unsupervised discretization algorithms are the fastest

while among the supervised algorithms the fastest is

Maximum Entropy, followed by CAIM and IEM. The

CAIM and MODL discretizers generate the lowest and the

highest number of discrete values, respectively.

We compare the time to build the classification model

and classification accuracy when using raw and

discretized data. We show that discretization helps to

improve the classification with the .B when compared

with Flexible .B which models continuous features using

Gaussian kernels. The AODE classifier obtains on

average the best accuracy, while the best performing

setup includes discretization with IEM and classification

with AODE. The runner-up setups include CAIM and

CACC coupled with AODE and CAIM and IEM coupled

with LBR. IEM and CAIM are shown to provide

statistically significant improvements across all

considered datasets for LBR and AODE classifiers when

compared with using .B on the continuous data. We also

show that the improved accuracy comes at the trade-off of

substantially increased runtime.

1. Introduction
Discretization of continuous features (ordinal

numerical features) has been extensively studied in the

past two decades [3-5,9,11,13,14,18,20-23,25-29,30-

33,36,37]. Discretization algorithms were found useful in

developing decision tree methods, in computing

conditional probability tables in Bayesian networks [3],

and in implementing rule-based classifiers [24]. Some

classification algorithms, like AQ [16], CLIP [6,7], CN2

[8], and DataSqueezer [24], work only with discrete data.

Some other classifiers that can handle continuous features

may perform better with discrete-valued features

[5,23,27,30]. The discretization methods have been

evaluated mainly when coupled with decision tree

classifiers, including ID3 [4], C4.5 [9,10,19,25-28,31],

and C5.0 [22,23,31,32]. A few works also investigated the

application of discretization methods to classification with

AQ [4] and CLIP4 classifiers [6,22,23], and nearest

neighbor and logistic regression [1].

We focus on the family of methods based on the Naïve

Bayes (NB) algorithm. The two major advantages of NB

classifiers are their scalability, i.e., the classification

model is learned in linear time with respect to the number

of training examples, and no need for parameterizations,

i.e., NB is parameterless. The NB is appealing due to its

simplicity, elegance, and robustness, which is why it was

included in the recent list of the top 10 data mining

algorithms [38]. This classifier works only with nominal

or discrete features; the continuous features are estimated

using a distribution. Applying discretization algorithms as

the front-end for the NB outperforms the NB that uses

normal distribution to model continuous features [9]. A

few recent studies also show the positive impact of several

discretizers on the accuracy of the NB models [12,25].

These studies were limited to the classical NB algorithm.

Recently several semi-NB algorithms, i.e., algorithms that

relax the requirement of conditional independence, which

have the same linear complexity and improved accuracy,

were proposed [17,34,39]. Although one study explored

the impact of discretization on the performance of a few

NB variants [1], it was limited to a few medical datasets

and investigated only three older discretization methods

[11]. We investigate the impact of using a representative

set of eight modern discretization algorithms on the

quality of models generated by both NB and semi-NB

classifiers from seven benchmark datasets.

2. Background
2.1. Discretization

A discretization scheme D on a feature F converts the

domain of values of F into d disjoint discrete subintervals,

bound by a pair of values (boundary points)

D: { [d1;d2], …,(di;di+1], …, (dd-1;dd] }

The discretization algorithms can be categorized as

supervised versus unsupervised, global versus local, top-

down (splitting) versus bottom-up (merging), and direct

versus incremental [27]. Unsupervised algorithms

compute the boundary points given the knowledge of the

values of F while supervised algorithms also use the

corresponding class labels. Local methods compute/adjust

the boundaries using a subset of the training examples at a

given time, while global algorithms use all training

examples. The search for an “optimal” discretization

scheme could start with all potential boundary points

(usually assumed as all values of F or all midpoints

between neighboring sorted values of F) and successively

merge the neighboring intervals (bottom-up/merging

algorithms). The top-down/splitting algorithms start from

one interval that covers the entire range of values of F and

divide it by adding new boundary points. The merging and

splitting of intervals is accomplished with the use of a

discretization criterion, which estimated whether a given

merger/division improves D. The direct algorithms require

a user-defined final/initial number of intervals in D, while

incremental methods find this number on their own.

2.1.1. Unsupervised discretizers. The two unsupervised

algorithms include Equal Width and Equal Frequency.

Equal Width finds a minimal and a maximal value of F

and divides the corresponding interval into d equally wide

intervals. The number of intervals is user-defined or it can

be estimated as d = M / 3k, where M is the number of

distinct values of F and k is the number of classes [36].

Equal frequency sorts the values of F and computes d

intervals that contain the same number of values.

2.1.2. Supervised discretizers. The supervised

algorithms use discretization criteria to add, remove, and

adjust boundary points. The Maximum Entropy method

[36], the Information Entropy Maximization (IEM)

algorithm [11], and the Class-Attribute Dependency

Discretization (CADD) algorithm [4] and the above two

unsupervised methods were used as a benchmark for

several modern discretizers [1,3,21-23,27] and thus they

are included in our study. We also included several

modern methods. The Class-Attribute Interdependence

Maximization (CAIM) algorithm is a top-down method

that iteratively adds boundary points by accepting a

boundary, from among all midpoints, that maximizes a

custom designed CAIM criterion [23]. The MODL

algorithm is based on Bayesian approach and thus it

seems the best suited towards application with NB

classifiers [3]. Finally, one of the newest discretization

methods, Class-Attribute Contingency Coefficient

(CACC), is based on maximizing a value of a novel

CACC criterion [32]. The considered discretizers are

summarized in Table 1. In the case of both unsupervised

algorithms, Maximum Entropy, and CADD algorithms d =

M / 3k [36]; the remaining methods are incremental.

Table 1. Summary of the considered discretization methods.

�ame Ref. Characteristics Criterion

Equal Width N/A unsupervised, splitting, global, direct N/A
Equal Freq. N/A unsupervised, splitting, global, direct N/A
Max.Entropy [36] supervised, splitting, global, direct Entropy

IEM [11] supervised, splitting, local, incremental MDLP
CADD [4] supervised, splitting/merging, global, direct CAIR
CAIM [23] supervised, splitting, global, incremental CAIM
MODL [3] supervised, merging, global, incremental MODL
CACC [32] supervised, splitting, global, incremental CACC

2.2. �aïve Bayes and semi-�aïve Bayes classifiers
2.2.1. �aïve Bayes. Using a training set of t examples

described by n features, we predict the class label y ∈ c1,

…, ck of a test example x = <x1, …, xn>, where xi is the

value of the i
th
 feature and k is the number of class labels.

NB assumes that the features are independent given the

class label and performs classification using

∏
=

n

i

i
y

yxPyP
1

))|(')('(maxarg

where P’(y) and P’(xi | y) are estimates of the respective

probabilities derived from the training set. For discrete

features the conditional probabilities correspond to the

probability that i
th
 feature takes a particular value xi when

the class label y is ci. Continuous features are modeled

using Gaussian distribution. The maximum likelihood

estimates of the mean and the standard deviation of the

normal distributions are based on the sample average and

standard deviation for each ci. The estimates may lead to

classification errors when the continuous features do not

obey the Gaussian distribution. Therefore, in the flexible

Naïve Bayes (FNB) [15], the distribution is averaged over

a set of Gaussian kernels, which helps reducing the errors.

2.2.2. Lazy Bayes Rule. The NB was extended in the

framework of lazy learning by relaxing the assumption of

feature independence [39]. The Lazy Bayes Rule (LBR)

method performs classification using

∏
=

n

i

i
y

WyxPWyP
1

)),|(')|('(maxarg

where W is a subset of features, and when assuming

independence among the remaining features given W and

y. W is selected using a heuristic wrapper that aims at

minimizing error on the training set [39].

2.2.4. Aggregating one-dependence estimators. The

aggregating one-dependence estimators (AODE)

algorithm [34] uses an ensemble of 1-dependence NB

classifiers to perform classification, i.e.

∑ ∏
≥∧≤≤ =30)(1: 1

)),|(')|('(maxarg
ixFnii

n

j

iji
y

xyxPxyP

where F(xi) is count of the number of training examples

having the attribute-value xi [34].

NB, FNB, and LBR have O(tn), and AODE has O(tn
2
)

complexity, i.e., the classification model in computed in

linear time. Both AODE and LBR require front-end

discretization of the continuous features.

Table 2. Summary of the benchmark datasets.

Dataset
features

(real/integer)

classes

examples

Avg. #

distinct

values

ratio
examples / #

values

glass 9 (9/0) 7 214 97.244 2.2
ionosphere 34 (34,0) 2 351 216.106 1.6
pendigits 16 (0,16) 10 10990 100.419 109.4
sat 36 (0,36) 7 6433 77.469 83.0
segment 19 (18,0) 7 2310 632.784 3.7
sonar 60 (60,0) 2 208 170.148 1.2
vehicle 18 (0,18) 4 846 77.433 10.9

3. Experimental results
The NB, FNB, LBR, and AODE algorithms are

implemented in WEKA [35]. They were used to perform

classification on 7 datasets from UCI repository [2], see

Table 2. The datasets include only continuous features,

i.e., ordinal real numbers and ordinal integers, and cover a

wide range of problem sizes. The NB and FNB were used

on the raw data (without discretization), and the four

classifiers were used on datasets discretized with eight

discretizers including Equal Width, Equal Frequency,

Maximum Entropy, IEM, CADD, CAIM, MODL, and

CACC (we use in-house implementation of these

methods). We perform tenfold cross-validation where

generation of the discretization and classification models

is based on the same training folds.

3.1. Comparison of discretization algorithms
The eight discretizers were compared based on

average runtime (over the ten folds) and average (over all

features in a given dataset and the ten folds) number of

generated intervals, see Table 3. The results show, as

expected, that unsupervised discretizers are the fastest.

The fastest supervised algorithm is Maximum Entropy,

which is followed by CAIM and IEM. The differences in

runtime are up to three orders of magnitude, e.g., for the

segment dataset, Equal Width and Equal Entropy execute

in 17 milliseconds while the slowest CADD takes almost

27 thousand milliseconds to converge. The CACC method

performs poorly on the glass and sonar datasets. These

datasets have relatively low ratio of # examples to # of

distinct values (see Table 2), i.e., they include large

number of distinct continuous values. MODL algorithm is

the worst on the vehicle, sat, and pendigits datasets, which

are among the datasets with the highest abovementioned

ratio, i.e., these datasets include large number of

redundant continuous values. Finally, CADD is the

slowest on the ionosphere, segment, and sonar datasets.

The results concerning the number of generated

discretization intervals indicate that CAIM on average

performs the best. CACC and CADD also generate

relatively low numbers of intervals. The remaining

incremental algorithm, MODL, generates on average the

largest number of intervals. The two algorithms that

require the user defined initial number of intervals

(CADD and IEM) reduce this initial number, i.e., their

average (across all datasets) ranks are lower than the ranks

of Equal Width and Equal Frequency algorithms, which

are initialized with the same number of intervals.

3.2. Classification with �aïve Bayes and semi-

�aïve Bayes algorithms
The eight discretizers were used on the data inputted

into NB and two semi-NB classifiers. Their accuracies

and the accuracy of NB and FNB classifiers on continuous

data were compared in Table 4. For each setup (each

classifier and input raw or discretized data obtained with a

given discretization algorithm), we report the average

(over the ten folds) accuracy and rank for each dataset.

We investigate statistical significance of the differences in

the accuracy over the ten folds by comparing a given

setup with results obtained with the NB classifier on the

raw data. We used paired t-test for normally distributed

data and Mann-Whitney u-test for the nonparametric data.

The normality was tested using Shapiro-Wilk test. We

assume 95% confidence level for all tests.

Table 3. The average runtime (in milliseconds) and number of intervals associated with the discretization performed by the considered

8 discretization algorithms. The values in round brackets indicate standard deviation (over the 10 folds), the values in square brackets

show rank of a given discretization algorithm for a given dataset, underlined values and shaded cells indicate best results.

Datasets
Algorithms

glass ionosphere pendigits sat segment sonar vehicle
Avg. rank

Equal Width 0.6 (0.06)[2] 3.8 (0.05)[1] 91.3 (6.22)[2] 101.2 (0.42)[1] 17.3 (0.15)[1] 5.3 (4.86)[2] 5.1 (0.07)[1] 1.4
Equal Frequency 0.6 (0.02)[1] 3.8 (0.05)[2] 89.8 (5.63)[1] 101.2 (0.48)[2] 17.3 (0.15)[2] 3.7 (0.01)[1] 6.4 (4.01)[2] 1.6
Maximum Entropy 8.2 (0.32)[3] 203.4 (7.52)[5] 916.4 (19.61)[3] 739.8 (9.05)[3] 2163.0 (128.88)[3] 220.4 (15.6)[5] 61.3 (4.32)[3] 3.6
IEM 20.4 (0.50)[4] 141.5 (8.04)[4] 4397.3 (23.17)[7] 3490.2 (29.98)[7] 3750.9 (22.37)[4] 101.8 (4.55)[3] 177.8 (4.14)[6] 5.0
CADD 23.7 (1.37)[5] 3726.3 (185)[8] 1507.5 (43.77)[4] 1343.5 (20.95)[4] 26997.3 (748.47)[8] 2606.6 (30.69)[8] 343.5 (35)[7] 6.3
CAIM 32.1 (0.33)[6] 127.5 (5.56)[3] 4314.4 (22.07)[6] 2993.7 (19.03)[5] 4891.7 (15.51)[5] 110.1 (6.84)[4] 119.1 (0.77)[4] 4.7
MODL 71.0 (3.83)[7] 344.7 (6.56)[7] 7001.8 (144.9)[8] 6372.6 (58.39)[8] 5266.3 (193.78)[7] 447.2 (8.99)[6] 525.9 (26.36)[8] 7.3

A
v

g
.

r
u

n
ti

m
e

CACC 153.9 (17.0)[8] 209.0 (9.87)[6] 4306.0 (15.25)[5] 3025.9 (17.59)[6] 4904.9 (26.71)[6] 784.6 (115.73)[7] 135.3 (5.88)[5] 6.1
Algorithms glass ionosphere pendigits sat segment sonar vehicle Avg. rank
Equal Width 7.1 (0.04)[5] 36.4 (0.42)[6] 10.0 (0.0)[3] 7.0 (0.0)[3] 31.3 (0.11)[7] 28.7 (0.05)[6] 7.6 (0.05)[7] 5.3
Equal Frequency 7.1 (0.04)[5] 36.4 (0.42)[6] 10.0 (0.0)[3] 7.0 (0.0)[3] 30.9 (0.11)[6] 28.7 (0.05)[6] 7.6 (0.05)[7] 5.1
Maximum Entropy 5.2 (0.08)[3] 31.7 (0.64)[5] 4.0 (0.0)[2] 4.0 (0.0)[2] 30.7 (0.1)[5] 28.7 (0.05)[5] 6.9 (0.07)[6] 4.0
IEM 2.5 (0.06)[1] 3.7 (0.12)[3] 10.2 (0.15)[7] 12.0 (0.13)[7] 8.9 (0.13)[3] 1.4 (0.02)[1] 3.9 (0.1)[1] 3.3
CADD 5.0 (0.11)[2] 24.1 (0.58)[4] 3.8 (0.03)[1] 3.8 (0.02)[1] 25.4 (0.13)[4] 28.0 (0.1)[4] 6.5 (0.1)[5] 3.0
CAIM 7.0 (0.0)[4] 1.9 (0.0)[1] 10.0 (0.03)[6] 7.0 (0.0)[3] 6.2 (0.02)[1] 2.0 (0.0)[2] 4.0 (0.0)[2] 2.7
MODL 43.9 (5.37)[8] 48.2 (2.63)[8] 11.8 (0.22)[8] 13.1 (0.21)[8] 50.8 (2.85)[8] 49.7 (3.56)[8] 6.1 (0.91)[4] 7.4 A
v

g
.

#
 o

f
in

te
r
v

a
ls

CACC 24.7 (2.95)[7] 3.2 (0.14)[2] 10.0 (0.0)[3] 7.0 (0.0)[3] 6.2 (0.02)[1] 16.7 (2.81)[3] 4.2 (0.07)[3] 3.1

Table 4. The average accuracy for a given classification setup (a given classifier executed on raw or discretized data). The values in

round brackets indicate standard deviation (over the 10 folds), square brackets show rank of a given setup for a given dataset,

underlined values and shaded cells show best results. Second line shows p-values inside round brackets; we assume 95% confidence

level; ++/--/~ indicates that a given setup is significantly better/ worse/indifferent when compared with NB on the raw data.

Datasets
Classifier

Discretization
Algorithm glass ionosphere pendigits sat segment sonar vehicle

Avg. rank

NB Original Data 0.47 (0.09)[26] 0.83 (0.1)[26] 0.86 (0.01)[24] 0.80 (0.02)[25] 0.80 (0.02)[26] 0.69 (0.09)[25] 0.46 (0.05)[26] 25.4
0.52 (0.10)[25] 0.92 (0.05)[3] 0.88 (0.005)[17] 0.82 (0.02)[17] 0.86 (0.02)[25] 0.72 (0.07)[18] 0.61 (0.07)[19] FNB Original Data

~ (0.292) ++ (0.023) ++ (<0.001) ++ (0.008) ++ (<0.001) ~ (0.524) ++ (<0.001)
17.7

0.60 (0.10)[23] 0.89 (0.05)[15] 0.87 (0.006)[23] 0.80 (0.01)[24] 0.90 (0.02)[21] 0.75 (0.07)[10] 0.60 (0.07)[23] Equal Width
++ (0.007) ~ (0.099) ++ (0.015) ~ (0.774) ++ (<0.001) ~ (0.113) ++ (<0.001)

19.9

0.71 (0.09)[11] 0.88 (0.05)[24] 0.87 (0.005)[22] 0.80 (0.02)[23] 0.89 (0.01)[23] 0.74 (0.04)[15] 0.60 (0.07)[22] Equal Freq.
++ (<0.001) ~ (0.174) ++ (0.013) ~ (0.350) ++ (<0.001) ~ (0.116) ++ (<0.001) 20.0

0.63 (0.10)[22] 0.89 (0.06)[22] 0.84 (0.01)[26] 0.77 (0.02)[26] 0.88 (0.02)[24] 0.75 (0.07)[9] 0.57 (0.07)[25] Max. Entropy
++ (0.001) ~ (0.120) -- (0.016) -- (0.001) ++ (<0.001) ~ (0.108) ++ (<0.001) 22.0

0.72 (0.11)[7] 0.90 (0.04)[6] 0.87 (0.006)[18] 0.82 (0.02)[20] 0.91 (0.01)[17] 0.78 (0.08)[6] 0.61 (0.08)[20] IEM
++ (<0.001) ~ (0.052) ++ (0.001) ++ (0.005) ++ (<0.001) ++ (0.030) ++ (<0.001) 13.4

0.66 (0.11)[20] 0.89 (0.05)[15] 0.85 (0.01)[25] 0.81 (0.01)[22] 0.90 (0.02)[22] 0.70 (0.08)[20] 0.58 (0.09)[24] CADD
++ (<0.001) ~ (0.099) ~ (0.574) ++ (0.034) ++ (<0.001) ~ (0.798) ++ (<0.001) 21.1

0.68 (0.11)[17] 0.89 (0.07)[20] 0.87 (0.004)[21] 0.82 (0.02)[21] 0.90 (0.01)[20] 0.76 (0.07)[7] 0.62 (0.07)[17] CAIM
++ (<0.001) ~ (0.138) ++ (0.009) ++ (0.014) ++ (<0.001) ~ (0.070) ++ (<0.001) 17.6

0.76 (0.06)[1] 0.89 (0.04)[18] 0.87 (0.004)[19] 0.82 (0.02)[19] 0.91 (0.01)[19] 0.70 (0.10)[23] 0.60 (0.07)[21] MODL
++ (<0.001) ~ (0.91) ++ (0.003) ++ (0.007) ++ (<0.001) ~ (0.908) ++ (<0.001) 17.1

0.71 (0.12)[8] 0.89 (0.05)[13] 0.87 (0.003)[20] 0.82 (0.02)[18] 0.91 (0.01)[16] 0.75 (0.10)[13] 0.61 (0.08)[18]

NB / FNB

CACC
++ (<0.001) ~ (0.090) ++ (0.008) ++ (0.011) ++ (<0.001) ~ (0.193) ++ (<0.001) 15.1

0.60 (0.11)[24] 0.89 (0.05)[23] 0.96 (0.006)[9] 0.87 (0.01)[12] 0.92 (0.02)[14] 0.74 (0.07)[16] 0.66 (0.06)[16] Equal Width
++ (0.009) ~ (0.114) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.207) ++ (<0.001)

16.3

0.70 (0.09)[14] 0.88 (0.05)[24] 0.97 (0.01)[7] 0.87 (0.01)[11] 0.93 (0.02)[13] 0.71 (0.07)[19] 0.67 (0.05)[15] Equal Freq.
++ (<0.001) ~ (0.187) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.373) ++ (<0.001) 14.7

0.70 (0.10)[15] 0.89 (0.06)[13] 0.96 (0.005)[16] 0.84 (0.02)[16] 0.92 (0.02)[15] 0.68 (0.10)[26] 0.68 (0.08)[10] Max. Entropy
++ (<0.001) ~ (0.093) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.730) ++ (<0.001) 15.9

0.74 (0.10)[5] 0.90 (0.03)[12] 0.96 (0.01)[14] 0.86 (0.02)[13] 0.94 (0.01)[7] 0.79 (0.08)[5] 0.70 (0.06)[4] IEM
++ (<0.001) ++ (0.0494) ++ (<0.001) ++ (<0.001) ++ (<0.001) ++ (0.023) ++ (<0.001) 8.6

0.67 (0.11)[19] 0.89 (0.05)[15] 0.96 (0.005)[13] 0.87 (0.01)[9] 0.93 (0.01)[11] 0.70 (0.08)[20] 0.68 (0.05)[11] CADD
++ (<0.001) ~ (0.099) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.798) ++ (<0.001) 14.0

0.68 (0.11)[17] 0.93 (0.04)[1] 0.96 (0.005)[12] 0.88 (0.02)[8] 0.94 (0.01)[4] 0.80 (0.06)[3] 0.70 (0.06)[6] CAIM
++ (<0.001) ++ (0.008) ++ (<0.001) ++ (<0.001) ++ (<0.001) ++ (0.008) ++ (<0.001) 7.3

0.75 (0.06)[2] 0.89 (0.04)[18] 0.96 (0.004)[10] 0.86 (0.02)[14] 0.94 (0.01)[8] 0.70 (0.10)[23] 0.69 (0.05)[8] MODL
++ (<0.001) ~ (0.091) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.908) ++ (<0.001) 11.9

0.71 (0.12)[8] 0.89 (0.05)[21] 0.96 (0.005)[11] 0.87 (0.02)[10] 0.94 (0.02)[6] 0.75 (0.10)[13] 0.70 (0.09)[5]

LBR

CACC
++ (<0.001) ~ (0.111) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.193) ++ (<0.001) 10.6

0.65 (0.13)[21] 0.90 (0.04)[10] 0.97 (0.005)[5] 0.88 (0.01)[7] 0.91 (0.02)[18] 0.74 (0.07)[17] 0.67 (0.05)[14] Equal Width
++ (0.002) ++ (0.049) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.265) ++ (<0.001)

13.1

0.75 (0.14)[3] 0.91 (0.04)[5] 0.97 (0.005)[4] 0.88 (0.02)[6] 0.93 (0.01)[11] 0.76 (0.08)[8] 0.69 (0.05)[9] Equal Freq.
++ (<0.001) ++ (0.024) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.087) ++ (<0.001) 6.6

0.71 (0.10)[10] 0.90 (0.04)[9] 0.96 (0.005)[15] 0.85 (0.02)[15] 0.93 (0.01)[10] 0.80 (0.08)[2] 0.68 (0.07)[13] Max. Entropy
++ (<0.001) ~ (0.083) ++ (<0.001) ++ (<0.001) ++ (<0.001) ++ (0.012) ++ (<0.001) 10.6

0.74 (0.12)[5] 0.90 (0.04)[6] 0.98 (0.005)[2] 0.89 (0.02)[3] 0.95 (0.01)[2] 0.79 (0.07)[4] 0.70 (0.04)[7] IEM
++ (<0.001) ++ (0.036) ++ (<0.001) ++ (<0.001) ++ (<0.001) ++ (0.019) ++ (<0.001)

4.1

0.71 (0.11)[12] 0.90 (0.04)[10] 0.97 (0.006)[8] 0.88 (0.02)[5] 0.94 (0.01)[9] 0.75 (0.05)[10] 0.68 (0.05)[12] CADD
++ (<0.001) ++ (0.045) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.798) ++ (<0.001) 9.4

0.69 (0.14)[16] 0.92 (0.04)[2] 0.97 (0.005)[6] 0.88 (0.01)[4] 0.95 (0.01)[3] 0.80 (0.07)[1] 0.71 (0.04)[2] CAIM
++ (<0.001) ++ (0.010) ++ (<0.001) ++ (<0.001) ++ (<0.001) ++ (0.008) ++ (<0.001) 4.9

0.75 (0.09)[4] 0.90 (0.03)[6] 0.98 (0.004)[1] 0.89 (0.02)[2] 0.94 (0.01)[5] 0.70 (0.10)[21] 0.71 (0.06)[1] MODL
++ (<0.001) ++ (0.028) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.908) ++ (<0.001) 5.9

0.70 (0.13)[13] 0.91 (0.04)[4] 0.97 (0.004)[3] 0.89 (0.02)[1] 0.96 (0.01)[1] 0.75 (0.09)[10] 0.71 (0.06)[3]

AODE

CACC
++ (<0.001) ++ (0.023) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.193) ++ (<0.001) 5.0

The average rank given in the last column in Table 4

(over all datasets) shows that the classification with NB

on the continuous data results in the poorest accuracy.

The rank shows that AODE classifier obtains on average

(over all datasets and discretization methods) the best

results. The best performing setup includes discretization

with the IEM algorithm and subsequent classification with

the AODE classifier, which is closely followed by results

when using CAIM and CACC discretizers and the AODE

classifier. The best results for the LBR classifier are

obtained when discretizing the data with CAIM and IEM

algorithms. Among the unsupervised discretization

methods, Equal Frequency performs better for both semi-

NB classifiers and comparably well for the NB classifier.

Comparison of results obtained with NB and FNB

classifiers on the raw data and results obtained by these

classifiers on the discretized data (they are the same when

working with the discrete data) reveals that FNB

classifiers applied on the raw data in some cases performs

better than when used with the discretized data, i.e., the

modeling of continuous features using a set of Gaussian

kernels works on average better than when using more

sophisticated discretization methods such as CADD and

Maximum Entropy. At the same time, discretization with

IEM, MODL, and CACC algorithms helps to improve

classification with NB.

The statistical tests show that setups that include IEM

and CAIM discretizers provide statistically significant

improvements over all considered datasets for both semi-

NB classifiers when compared with using NB on the raw

data. The two results that are statistically significantly

worse than the results of NB on raw data concern

classification with NB on the data discretized with

Maximum Entropy method for the pendigits and sat

datasets. Overall, the Maximum Entropy seems to perform

the poorest among the considered supervised

discretization algorithms. The largest number of setups

fails to provide significant improvements on the sonar and

the ionosphere datasets. These datasets have the highest

relative numbers of distinct continuous values (smallest

ratio shown in Table 2). This result could be due to the

relatively good performance of NB on these datasets. We

hypothesize that the large number of distinct values allows

establishing a robust estimate of the Gaussian distribution

that is used to model the continuous features.

Table 5. The average runtime (in milliseconds) for a given classification setup (a given classifier executed on raw or discretized data).

The values in round brackets indicate standard deviation (over the 10 folds), the values in square brackets show rank of a given setup

for a given dataset, underlined values and shaded cells indicate best results.

Datasets
Classifier

Discretization

algorithm Glass ionosphere pendigits sat segment sonar vehicle
Avg. rank

NB Original Data 0.9 (0.06)[15] 5.5 (0.04)[20] 119.0 (11.33)[19] 140.0 (0.89)[22] 25.3 (1.26)[17] 5.6 (0.09)[19] 7.7 (0.51)[25] 19.6
FNB Original Data 1.1 (0.13)[22] 7.3 (0.05)[21] 133.0 (0.60)[24] 155.0 (2.78)[24] 31.0 (0.56)[20] 7.9 (0.26)[20] 8.8 (0.07)[26] 22.4

Equal Width 0.2 (0.01)[5] 0.7 (0.002)[6] 10.6 (0.06)[5] 12.4 (0.10)[3] 2.6 (0.09)[5] 0.7 (0.14)[8] 0.9 (0.03)[8] 5.7
Equal Freq. 0.2 (0.002)[1] 0.7 (0.001)[5] 10.6 (0.05)[3] 12.4 (0.15)[5] 3.3 (2.37)[8] 0.7 (0.002)[4] 0.9 (0.004)[4] 4.3
Max. Entropy 0.2 (0.001)[3] 0.7 (0.002)[4] 10.6 (0.06)[2] 12.4 (0.10)[4] 2.6 (0.04)[6] 0.7 (0.03)[6] 0.9 (0.003)[1] 3.7
IEM 0.2 (0.005)[4] 1.0 (1.15)[8] 10.7 (0.10)[8] 12.6 (0.18)[7] 2.5 (0.01)[2] 0.7 (0.02)[1] 0.9 (0.03)[7] 5.3
CADD 0.2 (0.001)[2] 0.7 (0.01)[3] 10.6 (0.14)[6] 12.3 (0.07)[1] 2.6 (0.02)[4] 0.7 (0.002)[5] 0.9 (0.003)[3] 3.4
CAIM 0.2 (0.01)[7] 0.7 (0.002)[1] 10.6 (0.06)[4] 12.4 (0.05)[2] 2.5 (0.01)[1] 0.7 (0.04)[2] 0.9 (0.001)[2] 2.7
MODL 0.2 (0.002)[8] 0.7 (0.002)[7] 10.6 (0.07)[7] 12.6 (0.31)[8] 2.6 (0.06)[7] 0.7 (0.01)[7] 0.9 (0.004)[6] 7.1

NB / FNB

CACC 0.2 (0.002)[6] 0.7 (0.004)[2] 10.6 (0.04)[1] 12.4 (0.10)[6] 2.5 (0.02)[3] 0.7 (0.03)[3] 0.9 (0.005)[5] 3.7
Equal Width 1.0 (0.03)[18] 3.7 (0.08)[17] 120.0 (0.51)[21] 101.0 (1.04)[17] 38.9 (4.02)[25] 4.9 (4.94)[18] 4.9 (0.02)[22] 19.7
Equal Freq. 1.0 (0.04)[19] 4.0 (1.17)[18] 120.0 (0.23)[20] 101.0 (4.04)[18] 37.5 (0.38)[24] 3.4 (0.03)[14] 5.0 (0.11)[23] 19.4
Max. Entropy 1.0 (0.02)[21] 3.4 (0.04)[16] 99.5 (1.25)[17] 101.0 (3.85)[16] 37.3 (0.32)[23] 3.4 (0.02)[13] 6.3 (4.01)[24] 18.6
IEM 0.9 (0.02)[16] 1.9 (0.03)[11] 146.0 (2.92)[25] 130.0 (1.38)[22] 24.5 (0.26)[16] 1.8 (0.03)[10] 4.4 (0.06)[19] 16.8
CADD 1.0 (0.01)[20] 3.1 (0.06)[15] 101.0 (1.03)[18] 98.0 (0.97)[15] 35.1 (3.95)[21] 3.4 (0.02)[12] 4.9 (0.09)[21] 17.4
CAIM 1.0 (0.06)[17] 1.6 (0.005)[9] 122.0 (2.70)[22] 104.0 (6.03)[20] 21.4 (0.47)[14] 1.7 (0.01)[9] 3.9 (0.04)[17] 15.4
MODL 2.1 (0.16)[25] 4.2 (0.12)[19] 148.0 (6.21)[26] 141.0 (7.75)[23] 50.2 (1.68)[26] 4.6 (0.18)[17] 4.7 (0.23)[20] 22.3

LBR

CACC 1.6 (0.08)[24] 1.9 (0.04)[10] 122.0 (4.95)[23] 102.0 (2.71)[19] 21.2 (0.73)[13] 2.7 (0.16)[11] 4.1 (0.07)[18] 16.9
Equal Width 0.4 (0.003)[13] 21.6 (4.25)[24] 33.0 (0.19)[13] 88.9 (4.53)[12] 19.9 (0.28)[12] 44.5 (0.78)[22] 2.5 (0.16)[16] 16.0
Equal Freq. 0.4 (0.003)[14] 22.1 (1.05)[25] 33.1 (0.34)[14] 88.2 (0.72)[11] 26.3 (0.31)[18] 45.2 (0.11)[23] 2.5 (0.02)[14] 17.0
Max. Entropy 0.3 (0.015)[11] 19.8 (1.47)[23] 23.8 (0.08)[10] 58.8 (4.72)[10] 27.5 (0.21)[19] 45.3 (0.17)[24] 2.5 (0.28)[15] 16.0
IEM 0.3 (0.004)[9] 2.8 (0.03)[14] 32.7 (1.55)[12] 183.0 (3.31)[25] 7.9 (0.07)[11] 4.2 (0.02)[15] 2.3 (0.02)[9] 13.6
CADD 0.3 (0.003)[10] 14.6 (0.37)[22] 23.7 (0.13)[9] 55.3 (0.21)[9] 22.0 (0.22)[15] 45.9 (5.01)[25] 2.4 (0.04)[13] 14.7
CAIM 0.4 (0.002)[12] 2.6 (0.03)[12] 32.1 (0.86)[11] 93.0 (4.70)[13] 7.0 (0.05)[9] 4.3 (0.02)[16] 2.3 (0.09)[10] 11.9
MODL 3.8 (0.81)[26] 26.7 (2.84)[26] 37.3 (1.08)[16] 191.0 (2.94)[26] 36.8 (2.36)[22] 147.0 (51.49)[26] 2.4 (0.05)[12] 22.0

AODE

CACC 1.4 (0.31)[23] 2.7 (0.03)[13] 34.0 (0.25)[15] 93.5 (0.78)[14] 7.1 (0.04)[10] 18.0 (3.73)[21] 2.3 (0.03)[11] 15.3

Table 5 shows a comparison of the runtime to build

classification models. As expected, the runtime of NB and

FNB with continuous data is worse than when using the

discretized data. This is true except when using MODL

discretizer and LBR and AODE classifiers, which is likely

due to the large number of intervals produced by this

discretization algorithm, see Table 3. Overall, the runtime

is positively correlated with the number of discretization

intervals, i.e., the smaller the number of intervals the

shorter the runtime. The results reveal, as expected, that

NB is the fastest, with the AODE and LBR taking the

second and third spots, respectively. Although AODE is

faster for the datasets with relatively low number of

features (glass, pendigits, segment, and vehicle), LBR is

either similarly fast or faster for the datasets with large

number of features (ionosphere, sonar, and sat), which

corroborates with the computational complexity of these

two methods. LBR has substantially higher complexity of

classification of the test examples, O(tkn
2
), when

compared with O(kn) and O(kn
2
) achieved by NB and

AODE, respectively [3], i.e. usually t >> k and t >> n.

Since this time is not included in Table 5, we anticipate

that when considering the combined time (including the

time to generate the model and to classify test examples)

the difference between LBR and AODE would be larger.

We observe that the runtime of supervised discretizers

is substantially longer than the time to compute the NB

models. The differences are up to two orders of

magnitude, and they indicate that the improved

classification accuracy comes as the trade-off of

significantly increased runtime. The long runtime of

discretization algorithms is due to their poor (when

compared with NB classifier) complexity, e.g. CAIM,

CACC, and MODL have O(tlog(t)) complexity.

4. Summary and conclusions
The comparison of the eight considered discretizers

indicates that the unsupervised algorithms are faster than

the supervised methods. The fastest supervised algorithm

is Maximum Entropy, followed by CAIM and IEM

algorithms. We show that CAIM and MODL discretizers

generate the lowest and the highest number of

discretization intervals, respectively.

Our empirical comparison shows that discretization helps

to improve the subsequent classification with the NB

when compared with applying Flexible NB on the

continuous features. The classification performed with NB

on continuous data is characterized by the poorest

accuracy, while AODE classifier obtains on average the

most accurate results. The best performing setup includes

discretization with IEM algorithm and subsequent

classification with AODE classifier, which is closely

followed by CAIM and CACC discretizers used with

AODE classifier. The highest accuracies for the LBR

classifier are obtained when using CAIM and IEM

discretizers. IEM and CAIM coupled with the LBR and

AODE classifiers provide statistically significantly higher

accuracies across all 7 datasets when compared with

accuracies obtained with NB on the continuous data. We

also show that the improved accuracy when using data

discretized by supervised discretizers comes at the

expense of substantially increased runtime.

References
[1] R. Abraham, J.B. Simha, S. Iyengar, “A comparative analysis of

discretization methods for medical datamining with Nai ̈ve Bayesian

classifier”, Proc. 9th Conf. Information Technology, pp.235-236, 2007

[2] A. Asuncion, D.J. Newman, UCI Machine Learning Repository,

Irvine, CA: Univ. of California, School of Information and Computer

Science, 2007 http://www.ics.uci.edu/~mlearn/MLRepository.html

[3] M. Boulle, “MODL: A Bayes optimal discretization method for

continuous attributes”, Machine Learning, 65(1), pp. 131-165, 2006

[4] J.Y. Ching, A.K. Wong, K.C. Chan, “Class-dependent

discretization for inductive learning from continuous and mixed mode

data”, IEEE Trans. on Pattern Analysis and Machine Intelligence,

17(7), pp. 641-651, 1995

[5] J. Catlett, “On changing continuous attributes into ordered

discrete attributes”, Proc. European Working Session on Learning,

pp. 164-178, 1991

[6] K.J. Cios, L. Kurgan, “Hybrid inductive machine learning: an

overview of clip algorithms”, .ew Learning Paradigms in Soft

Computing, L.C. Jain, J. Kacprzyk, ed., pp. 276-322, Physica-Verlag

(Springer), 2001

[7] K.J. Cios, L. Kurgan, “CLIP4: hybrid inductive machine learning

algorithm that generates inequality rules”, Information Sciences,

163(1-3), pp.37-83, 2004

[8] P. Clark, T. Niblett, “The CN2 algorithm”, Machine Learning, 3,

pp. 261-283, 1989

[9] J. Dougherty, R. Kohavi, M. Sahami, “Supervised and

unsupervised discretization of continuous features”, Proc. 12th Int.

Conf. Machine Learning, pp.194-202, 1995

[10] U. Fayyad, K. Irani, “On the handling of continuous-valued

attributes in decision tree generation”, Machine Learning, 8, pp. 87-

102, 1992

[11] U. Fayyad, K. Irani, “Multi-interval discretization of continuous-

valued attributes for classification learning”, Proc. 13th Int. Joint

Conf. Artificial Intelligence, pp. 1022-1027, 1993

[12] J.L. Flores, I. Inza, P. Larrañaga, “Wrapper discretization by

means of estimation of distribution algorithms”, Intelligent Data

Analysis, 11(5), pp. 525-545, 2007

[13] X. Guan, X. Yi, Y. He, “Discretization of continuous interval-

valued attributes in rough set theory and its application”, Proc. 6th Int.

Conf. Machine Learning and Cybernetics, pp. 3682-3686, 2007

[14] W. Huang, “Discretization of continuous attributes for inductive

machine learning”, M.Sc. thesis, Dept. Computer Science, Univ. of

Toledo, Ohio, 1996

[15] G.H. John, P. Langley, “Estimating continuous distributions in

Bayesian classifiers”, Proc. 11th Conf. Uncertainty in Artificial

Intelligence, pp. 338-345, 1995

[16] K.A. Kaufman, R.S. Michalski, “Learning from inconsistent and

noisy data: the AQ18 approach,” Proc. 11th Int. Symp. Methodologies

for Intelligent Systems, 1999

[17] E. Keogh, M. Pazzani, “Learning augmented Bayesian classifiers:

A comparison of distribution-based and classification-based

approaches”, Proc. Int. Workshop Artificial Intelligence and

Statistics, pp. 225-230, 1999

[18] R. Kerber, “ChiMerge: discretization of numeric attributes”, Proc.

9th Int. Conf. Artificial Intelligence, pp. 123-128, 1992

[19] R. Kohavi, M. Sahami, “Error-based and entropy-based

discretization of continuous features”, Proc. 2nd Int. Conf. Knowledge

Discovery and Data Mining, pp. 114-119, 1996

[20] J. Kujala, T. Elomaa, “Improved algorithms for univariate

discretization of continuous features”, Proc Principles and Practice of

Knowledge Discovery in Databases, LNCS 4702, pp. 188-199, 2007

[21] L. Kurgan, K.J. Cios, “Discretization algorithm that uses class-

attribute interdependence maximization,” Proc. 2001 Int. Conf. Artif.

Intelligence, pp. 980-987, 2001

[22] L. Kurgan, K.J. Cios, “Fast class-attribute interdependence

maximization (CAIM) discretization algorithm”, Proc. Int. Conf. on

Machine Learning and Applications, pp. 30-36, 2003

[23] L. Kurgan, K.J. Cios, “CAIM discretization algorithm”, IEEE

Trans. on Knowledge and Data Engineering, 16(2), pp.145-153, 2004

[24] L. Kurgan, K.J. Cios, S. Dick, “Highly scalable and robust rule

learner: performance evaluation and comparison”, IEEE Trans. on

Systems, Man, and Cybernetics, Part B, 36(1), pp. 32-53, 2006

[25] C.-H. Lee, “A Hellinger-based discretization method for numeric

attributes in classification learning”, Knowledge-Based Systems,

20(4), pp. 419-425, 2007

[26] H. Liu, R. Setiono, “Feature selection via discretization”, IEEE

Trans. on Knowledge and Data Engineering, 9(4), pp. 642-645, 1997

[27] H. Liu, F. Hussain, C. Tan, M. Dash, “Discretization: an enabling

technique”. J. Data Mining and Knowledge Discovery, 6(4), pp. 393-

423. 2002

[28] X. Liu, H. Wang, “A discretization algorithm based on a

heterogeneity criterion”, IEEE Trans. on Data and Knowledge

Engineering, 17(9), pp.1166-1173, 2005

[29] S. Mehta, S. Parthasarathy, H. Yang, “Toward unsupervised

correlation preserving discretization”, IEEE Trans. on Knowledge and

Data Engineering, 17(9), pp. 1174-1185, 2005

[30] C-T. Su, J-H. Hsu, “An Extended Chi2 algorithm for

discretization of real value attributes”, IEEE Trans. on Knowledge

and Data Engineering, 17(3), pp. 437-441, 2005

[31] F.E.H. Tay, J. Shen, “A modified Chi2 algorithm for

discretization”, IEEE Trans. on Knowledge and Data Engineering,

14(3), pp. 666-670, 2002

[32] C.-J. Tsai, C.-I. Lee, W.-P. Yang, “A discretization algorithm

based on Class-Attribute Contingency Coefficient”, Information

Sciences, 178, pp.714-731, 2008

[33] K. Wang, B. Liu, “Concurrent discretization of multiple

attributes”, Pacific-Rim Conf Artificial Intelligence, pp.250-259, 1998

[34] G.I. Webb, J. Boughton, Z. Wang, “Not so naive Bayes:

aggregating one-dependence estimators”, Machine Learning, 58(1),

pp. 5-24, 2005

[35] Witten I.H., Frank E., Data Mining: Practical machine learning

tools and techniques, 2nd edition, Morgan Kaufmann, 2005

[36] A.K.C. Wong, D.K.Y. Chiu, “Synthesizing statistical knowledge

from incomplete mixed-mode data”, IEEE Trans. on Pattern Analysis

and Machine Intelligence, 9, pp. 796-805, 1987

[37] X. Wu, “A Bayesian discretizer for real-valued attributes,”

Computer Journal, 39(8), pp. 688-691, 1996

[38] X. Wu, V. Kumar, J.R. Quinlan, et al., “Top 10 algorithms in data

mining”, Knowledge and Information Systems, 14, pp. 1-37, 2008

[39] Z. Zheng, G.I. Webb, ”Lazy learning of Bayesian rules”, Machine

Learning, 41(1), pp. 53-84, 2000

