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Abstract 
 

While data could be discrete and continuous (defined 

as ordinal numerical features), some classifiers, like 

.aïve Bayes (.B), work only with or may perform better 

with the discrete data. We focus on .B due to its 

popularity and linear training time. We investigate the 

impact of eight discretization algorithms (Equal Width, 

Equal Frequency, Maximum Entropy, IEM, CADD, 

CAIM, MODL, and CACC) on the classification with .B 

and two modern semi-.B classifiers, LBR and AODE. 

Our comprehensive empirical study indicates that 

unsupervised discretization algorithms are the fastest 

while among the supervised algorithms the fastest is 

Maximum Entropy, followed by CAIM and IEM. The 

CAIM and MODL discretizers generate the lowest and the 

highest number of discrete values, respectively. 

We compare the time to build the classification model 

and classification accuracy when using raw and 

discretized data. We show that discretization helps to 

improve the classification with the .B when compared 

with Flexible .B which models continuous features using 

Gaussian kernels. The AODE classifier obtains on 

average the best accuracy, while the best performing 

setup includes discretization with IEM and classification 

with AODE. The runner-up setups include CAIM and 

CACC coupled with AODE and CAIM and IEM coupled 

with LBR. IEM and CAIM are shown to provide 

statistically significant improvements across all 

considered datasets for LBR and AODE classifiers when 

compared with using .B on the continuous data. We also 

show that the improved accuracy comes at the trade-off of 

substantially increased runtime. 

  

1. Introduction 
Discretization of continuous features (ordinal 

numerical features) has been extensively studied in the 

past two decades [3-5,9,11,13,14,18,20-23,25-29,30-

33,36,37]. Discretization algorithms were found useful in 

developing decision tree methods, in computing 

conditional probability tables in Bayesian networks [3], 

and in implementing rule-based classifiers [24]. Some 

classification algorithms, like AQ [16], CLIP [6,7], CN2 

[8], and DataSqueezer [24], work only with discrete data. 

Some other classifiers that can handle continuous features 

may perform better with discrete-valued features 

[5,23,27,30]. The discretization methods have been 

evaluated mainly when coupled with decision tree 

classifiers, including ID3 [4], C4.5 [9,10,19,25-28,31], 

and C5.0 [22,23,31,32]. A few works also investigated the 

application of discretization methods to classification with 

AQ [4] and CLIP4 classifiers [6,22,23], and nearest 

neighbor and logistic regression [1].  

We focus on the family of methods based on the Naïve 

Bayes (NB) algorithm. The two major advantages of NB 

classifiers are their scalability, i.e., the classification 

model is learned in linear time with respect to the number 

of training examples, and no need for parameterizations, 

i.e., NB is parameterless. The NB is appealing due to its 

simplicity, elegance, and robustness, which is why it was 

included in the recent list of the top 10 data mining 

algorithms [38]. This classifier works only with nominal 

or discrete features; the continuous features are estimated 

using a distribution. Applying discretization algorithms as 

the front-end for the NB outperforms the NB that uses 

normal distribution to model continuous features [9]. A 

few recent studies also show the positive impact of several 

discretizers on the accuracy of the NB models [12,25]. 

These studies were limited to the classical NB algorithm. 

Recently several semi-NB algorithms, i.e., algorithms that 

relax the requirement of conditional independence, which 

have the same linear complexity and improved accuracy, 

were proposed [17,34,39]. Although one study explored 

the impact of discretization on the performance of a few 

NB variants [1], it was limited to a few medical datasets 

and investigated only three older discretization methods 

[11]. We investigate the impact of using a representative 

set of eight modern discretization algorithms on the 

quality of models generated by both NB and semi-NB 

classifiers from seven benchmark datasets. 

 

2. Background 
2.1. Discretization 

A discretization scheme D on a feature F converts the 

domain of values of F into d disjoint discrete subintervals, 

bound by a pair of values (boundary points)  



D: { [d1;d2], …,(di;di+1], …, (dd-1;dd] } 

The discretization algorithms can be categorized as 

supervised versus unsupervised, global versus local, top-

down (splitting) versus bottom-up (merging), and direct 

versus incremental [27]. Unsupervised algorithms 

compute the boundary points given the knowledge of the 

values of F while supervised algorithms also use the 

corresponding class labels. Local methods compute/adjust 

the boundaries using a subset of the training examples at a 

given time, while global algorithms use all training 

examples. The search for an “optimal” discretization 

scheme could start with all potential boundary points 

(usually assumed as all values of F or all midpoints 

between neighboring sorted values of F) and successively 

merge the neighboring intervals (bottom-up/merging 

algorithms). The top-down/splitting algorithms start from 

one interval that covers the entire range of values of F and 

divide it by adding new boundary points. The merging and 

splitting of intervals is accomplished with the use of a 

discretization criterion, which estimated whether a given 

merger/division improves D. The direct algorithms require 

a user-defined final/initial number of intervals in D, while 

incremental methods find this number on their own. 

2.1.1. Unsupervised discretizers. The two unsupervised 

algorithms include Equal Width and Equal Frequency. 

Equal Width finds a minimal and a maximal value of F 

and divides the corresponding interval into d equally wide 

intervals. The number of intervals is user-defined or it can 

be estimated as d = M / 3k, where M is the number of 

distinct values of F and k is the number of classes [36]. 

Equal frequency sorts the values of F and computes d 

intervals that contain the same number of values.  

2.1.2. Supervised discretizers. The supervised 

algorithms use discretization criteria to add, remove, and 

adjust boundary points. The Maximum Entropy method 

[36], the Information Entropy Maximization (IEM) 

algorithm [11], and the Class-Attribute Dependency 

Discretization (CADD) algorithm [4] and the above two 

unsupervised methods were used as a benchmark for 

several modern discretizers [1,3,21-23,27] and thus they 

are included in our study. We also included several 

modern methods. The Class-Attribute Interdependence 

Maximization (CAIM) algorithm is a top-down method 

that iteratively adds boundary points by accepting a 

boundary, from among all midpoints, that maximizes a 

custom designed CAIM criterion [23]. The MODL 

algorithm is based on Bayesian approach and thus it 

seems the best suited towards application with NB 

classifiers [3]. Finally, one of the newest discretization 

methods, Class-Attribute Contingency Coefficient 

(CACC), is based on maximizing a value of a novel 

CACC criterion [32]. The considered discretizers are 

summarized in Table 1. In the case of both unsupervised 

algorithms, Maximum Entropy, and CADD algorithms d = 

M / 3k [36]; the remaining methods are incremental. 

Table 1. Summary of the considered discretization methods. 
 

�ame Ref. Characteristics Criterion 

Equal Width N/A unsupervised, splitting, global, direct N/A 
Equal Freq. N/A unsupervised, splitting, global, direct N/A 
Max.Entropy [36] supervised, splitting, global, direct Entropy 

IEM [11] supervised, splitting, local, incremental MDLP 
CADD [4] supervised, splitting/merging, global, direct CAIR 
CAIM [23] supervised, splitting, global, incremental CAIM 
MODL [3] supervised, merging, global, incremental MODL 
CACC [32] supervised, splitting, global, incremental CACC 

 

2.2. �aïve Bayes and semi-�aïve Bayes classifiers 
2.2.1. �aïve Bayes. Using a training set of t examples 

described by n features, we predict the class label y ∈ c1, 

…, ck of a test example x = <x1, …, xn>, where xi is the 

value of the i
th
 feature and k is the number of class labels. 

NB assumes that the features are independent given the 

class label and performs classification using 
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where P’(y) and P’(xi | y) are estimates of the respective 

probabilities derived from the training set. For discrete 

features the conditional probabilities correspond to the 

probability that i
th
 feature takes a particular value xi when 

the class label y is ci. Continuous features are modeled 

using Gaussian distribution. The maximum likelihood 

estimates of the mean and the standard deviation of the 

normal distributions are based on the sample average and 

standard deviation for each ci. The estimates may lead to 

classification errors when the continuous features do not 

obey the Gaussian distribution. Therefore, in the flexible 

Naïve Bayes (FNB) [15], the distribution is averaged over 

a set of Gaussian kernels, which helps reducing the errors. 

2.2.2. Lazy Bayes Rule. The NB was extended in the 

framework of lazy learning by relaxing the assumption of 

feature independence [39]. The Lazy Bayes Rule (LBR) 

method performs classification using  
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where W is a subset of features, and when assuming 

independence among the remaining features given W and 

y. W is selected using a heuristic wrapper that aims at 

minimizing error on the training set [39]. 

2.2.4. Aggregating one-dependence estimators. The 

aggregating one-dependence estimators (AODE) 

algorithm [34] uses an ensemble of 1-dependence NB 

classifiers to perform classification, i.e. 
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where F(xi) is count of the number of training examples 

having the attribute-value xi [34]. 

NB, FNB, and LBR have O(tn), and AODE has O(tn
2
) 

complexity, i.e., the classification model in computed in 

linear time. Both AODE and LBR require front-end 

discretization of the continuous features. 
 



Table 2. Summary of the benchmark datasets. 
 

Dataset 
# features 

(real/integer) 

# 

classes 

# 

examples 

Avg. #  

distinct 

values 

ratio  
# examples / # 

values 

glass 9 (9/0) 7 214 97.244 2.2 
ionosphere 34 (34,0) 2 351 216.106 1.6 
pendigits 16 (0,16) 10 10990 100.419 109.4 
sat 36 (0,36) 7 6433 77.469 83.0 
segment 19 (18,0) 7 2310 632.784 3.7 
sonar 60 (60,0) 2 208 170.148 1.2 
vehicle 18 (0,18) 4 846 77.433 10.9 
 

3. Experimental results 
The NB, FNB, LBR, and AODE algorithms are 

implemented in WEKA [35]. They were used to perform 

classification on 7 datasets from UCI repository [2], see 

Table 2. The datasets include only continuous features, 

i.e., ordinal real numbers and ordinal integers, and cover a 

wide range of problem sizes. The NB and FNB were used 

on the raw data (without discretization), and the four 

classifiers were used on datasets discretized with eight 

discretizers including Equal Width, Equal Frequency, 

Maximum Entropy, IEM, CADD, CAIM, MODL, and 

CACC (we use in-house implementation of these 

methods). We perform tenfold cross-validation where 

generation of the discretization and classification models 

is based on the same training folds. 

3.1. Comparison of discretization algorithms 
The eight discretizers were compared based on 

average runtime (over the ten folds) and average (over all 

features in a given dataset and the ten folds) number of 

generated intervals, see Table 3. The results show, as 

expected, that unsupervised discretizers are the fastest. 

The fastest supervised algorithm is Maximum Entropy, 

which is followed by CAIM and IEM. The differences in 

runtime are up to three orders of magnitude, e.g., for the 

segment dataset, Equal Width and Equal Entropy execute 

in 17 milliseconds while the slowest CADD takes almost 

27 thousand milliseconds to converge. The CACC method 

performs poorly on the glass and sonar datasets. These 

datasets have relatively low ratio of # examples to # of 

distinct values (see Table 2), i.e., they include large 

number of distinct continuous values. MODL algorithm is 

the worst on the vehicle, sat, and pendigits datasets, which 

are among the datasets with the highest abovementioned 

ratio, i.e., these datasets include large number of 

redundant continuous values. Finally, CADD is the 

slowest on the ionosphere, segment, and sonar datasets.  

The results concerning the number of generated 

discretization intervals indicate that CAIM on average 

performs the best. CACC and CADD also generate 

relatively low numbers of intervals. The remaining 

incremental algorithm, MODL, generates on average the 

largest number of intervals. The two algorithms that 

require the user defined initial number of intervals 

(CADD and IEM) reduce this initial number, i.e., their 

average (across all datasets) ranks are lower than the ranks 

of Equal Width and Equal Frequency algorithms, which 

are initialized with the same number of intervals. 

3.2. Classification with �aïve Bayes and semi-

�aïve Bayes algorithms 
The eight discretizers were used on the data inputted 

into NB and two semi-NB classifiers. Their accuracies 

and the accuracy of NB and FNB classifiers on continuous 

data were compared in Table 4. For each setup (each 

classifier and input raw or discretized data obtained with a 

given discretization algorithm), we report the average 

(over the ten folds) accuracy and rank for each dataset. 

We investigate statistical significance of the differences in 

the accuracy over the ten folds by comparing a given 

setup with results obtained with the NB classifier on the 

raw data. We used paired t-test for normally distributed 

data and Mann-Whitney u-test for the nonparametric data. 

The normality was tested using Shapiro-Wilk test. We 

assume 95% confidence level for all tests. 

 

Table 3. The average runtime (in milliseconds) and number of intervals associated with the discretization performed by the considered 

8 discretization algorithms. The values in round brackets indicate standard deviation (over the 10 folds), the values in square brackets 

show rank of a given discretization algorithm for a given dataset, underlined values and shaded cells indicate best results. 
 

Datasets 
Algorithms 

glass ionosphere pendigits sat segment sonar vehicle 
Avg. rank 

Equal Width 0.6 (0.06)[2] 3.8 (0.05)[1] 91.3 (6.22)[2] 101.2 (0.42)[1] 17.3 (0.15)[1] 5.3 (4.86)[2] 5.1 (0.07)[1] 1.4 
Equal Frequency 0.6 (0.02)[1] 3.8 (0.05)[2] 89.8 (5.63)[1] 101.2 (0.48)[2] 17.3 (0.15)[2] 3.7 (0.01)[1] 6.4 (4.01)[2] 1.6 
Maximum Entropy 8.2 (0.32)[3] 203.4 (7.52)[5] 916.4 (19.61)[3] 739.8 (9.05)[3] 2163.0 (128.88)[3] 220.4 (15.6)[5] 61.3 (4.32)[3] 3.6 
IEM 20.4 (0.50)[4] 141.5 (8.04)[4] 4397.3 (23.17)[7] 3490.2 (29.98)[7] 3750.9 (22.37)[4] 101.8 (4.55)[3] 177.8 (4.14)[6] 5.0 
CADD 23.7 (1.37)[5] 3726.3 (185)[8] 1507.5 (43.77)[4] 1343.5 (20.95)[4] 26997.3 (748.47)[8] 2606.6 (30.69)[8] 343.5 (35)[7] 6.3 
CAIM 32.1 (0.33)[6] 127.5 (5.56)[3] 4314.4 (22.07)[6] 2993.7 (19.03)[5] 4891.7 (15.51)[5] 110.1 (6.84)[4] 119.1 (0.77)[4] 4.7 
MODL 71.0 (3.83)[7] 344.7 (6.56)[7] 7001.8 (144.9)[8] 6372.6 (58.39)[8] 5266.3 (193.78)[7] 447.2 (8.99)[6] 525.9 (26.36)[8] 7.3 
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CACC 153.9 (17.0)[8] 209.0 (9.87)[6] 4306.0 (15.25)[5] 3025.9 (17.59)[6] 4904.9 (26.71)[6] 784.6 (115.73)[7] 135.3 (5.88)[5] 6.1 
Algorithms glass ionosphere pendigits sat segment sonar vehicle Avg. rank 
Equal Width 7.1 (0.04)[5] 36.4 (0.42)[6] 10.0 (0.0)[3] 7.0 (0.0)[3] 31.3 (0.11)[7] 28.7 (0.05)[6] 7.6 (0.05)[7] 5.3 
Equal Frequency 7.1 (0.04)[5] 36.4 (0.42)[6] 10.0 (0.0)[3] 7.0 (0.0)[3] 30.9 (0.11)[6] 28.7 (0.05)[6] 7.6 (0.05)[7] 5.1 
Maximum Entropy 5.2 (0.08)[3] 31.7 (0.64)[5] 4.0 (0.0)[2] 4.0 (0.0)[2] 30.7 (0.1)[5] 28.7 (0.05)[5] 6.9 (0.07)[6] 4.0 
IEM 2.5 (0.06)[1] 3.7 (0.12)[3] 10.2 (0.15)[7] 12.0 (0.13)[7] 8.9 (0.13)[3] 1.4 (0.02)[1] 3.9 (0.1)[1] 3.3 
CADD 5.0 (0.11)[2] 24.1 (0.58)[4] 3.8 (0.03)[1] 3.8 (0.02)[1] 25.4 (0.13)[4] 28.0 (0.1)[4] 6.5 (0.1)[5] 3.0 
CAIM 7.0 (0.0)[4] 1.9 (0.0)[1] 10.0 (0.03)[6] 7.0 (0.0)[3] 6.2 (0.02)[1] 2.0 (0.0)[2] 4.0 (0.0)[2] 2.7 
MODL 43.9 (5.37)[8] 48.2 (2.63)[8] 11.8 (0.22)[8] 13.1 (0.21)[8] 50.8 (2.85)[8] 49.7 (3.56)[8] 6.1 (0.91)[4] 7.4 A
v
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CACC 24.7 (2.95)[7] 3.2 (0.14)[2] 10.0 (0.0)[3] 7.0 (0.0)[3] 6.2 (0.02)[1] 16.7 (2.81)[3] 4.2 (0.07)[3] 3.1 



Table 4. The average accuracy for a given classification setup (a given classifier executed on raw or discretized data). The values in 

round brackets indicate standard deviation (over the 10 folds), square brackets show rank of a given setup for a given dataset, 

underlined values and shaded cells show best results. Second line shows p-values inside round brackets; we assume 95% confidence 

level; ++/--/~ indicates that a given setup is significantly better/ worse/indifferent when compared with NB on the raw data. 
 

Datasets 
Classifier 

Discretization 
Algorithm glass ionosphere pendigits sat segment sonar vehicle 

Avg. rank 

NB Original Data 0.47 (0.09)[26] 0.83 (0.1)[26] 0.86 (0.01)[24] 0.80 (0.02)[25] 0.80 (0.02)[26] 0.69 (0.09)[25] 0.46 (0.05)[26] 25.4 
0.52 (0.10)[25] 0.92 (0.05)[3] 0.88 (0.005)[17] 0.82 (0.02)[17] 0.86 (0.02)[25] 0.72 (0.07)[18] 0.61 (0.07)[19] FNB Original Data 

~ (0.292) ++ (0.023) ++ (<0.001) ++ (0.008) ++ (<0.001) ~ (0.524) ++ (<0.001) 
17.7 

0.60 (0.10)[23] 0.89 (0.05)[15] 0.87 (0.006)[23] 0.80 (0.01)[24] 0.90 (0.02)[21] 0.75 (0.07)[10] 0.60 (0.07)[23] Equal Width 
++ (0.007) ~ (0.099) ++ (0.015) ~ (0.774) ++ (<0.001) ~ (0.113) ++ (<0.001) 

19.9 

0.71 (0.09)[11] 0.88 (0.05)[24] 0.87 (0.005)[22] 0.80 (0.02)[23] 0.89 (0.01)[23] 0.74 (0.04)[15] 0.60 (0.07)[22] Equal Freq. 
++ (<0.001) ~ (0.174) ++ (0.013) ~ (0.350) ++ (<0.001) ~ (0.116) ++ (<0.001) 20.0 

0.63 (0.10)[22] 0.89 (0.06)[22] 0.84 (0.01)[26] 0.77 (0.02)[26] 0.88 (0.02)[24] 0.75 (0.07)[9] 0.57 (0.07)[25] Max. Entropy 
++ (0.001) ~ (0.120) -- (0.016) -- (0.001) ++ (<0.001) ~ (0.108) ++ (<0.001) 22.0 

0.72 (0.11)[7] 0.90 (0.04)[6] 0.87 (0.006)[18] 0.82 (0.02)[20] 0.91 (0.01)[17] 0.78 (0.08)[6] 0.61 (0.08)[20] IEM 
++ (<0.001) ~ (0.052) ++ (0.001) ++ (0.005) ++ (<0.001) ++ (0.030) ++ (<0.001) 13.4 

0.66 (0.11)[20] 0.89 (0.05)[15] 0.85 (0.01)[25] 0.81 (0.01)[22] 0.90 (0.02)[22] 0.70 (0.08)[20] 0.58 (0.09)[24] CADD 
++ (<0.001) ~ (0.099) ~ (0.574) ++ (0.034) ++ (<0.001) ~ (0.798) ++ (<0.001) 21.1 

0.68 (0.11)[17] 0.89 (0.07)[20] 0.87 (0.004)[21] 0.82 (0.02)[21] 0.90 (0.01)[20] 0.76 (0.07)[7] 0.62 (0.07)[17] CAIM 
++ (<0.001) ~ (0.138) ++ (0.009) ++ (0.014) ++ (<0.001) ~ (0.070) ++ (<0.001) 17.6 

0.76 (0.06)[1] 0.89 (0.04)[18] 0.87 (0.004)[19] 0.82 (0.02)[19] 0.91 (0.01)[19] 0.70 (0.10)[23] 0.60 (0.07)[21] MODL 
++ (<0.001) ~ (0.91) ++ (0.003) ++ (0.007) ++ (<0.001) ~ (0.908) ++ (<0.001) 17.1 

0.71 (0.12)[8] 0.89 (0.05)[13] 0.87 (0.003)[20] 0.82 (0.02)[18] 0.91 (0.01)[16] 0.75 (0.10)[13] 0.61 (0.08)[18] 

NB / FNB 

CACC 
++ (<0.001) ~ (0.090) ++ (0.008) ++ (0.011) ++ (<0.001) ~ (0.193) ++ (<0.001) 15.1 

0.60 (0.11)[24] 0.89 (0.05)[23] 0.96 (0.006)[9] 0.87 (0.01)[12] 0.92 (0.02)[14] 0.74 (0.07)[16] 0.66 (0.06)[16] Equal Width 
++ (0.009) ~ (0.114) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.207) ++ (<0.001) 

16.3 

0.70 (0.09)[14] 0.88 (0.05)[24] 0.97 (0.01)[7] 0.87 (0.01)[11] 0.93 (0.02)[13] 0.71 (0.07)[19] 0.67 (0.05)[15] Equal Freq. 
++ (<0.001) ~ (0.187) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.373) ++ (<0.001) 14.7 

0.70 (0.10)[15] 0.89 (0.06)[13] 0.96 (0.005)[16] 0.84 (0.02)[16] 0.92 (0.02)[15] 0.68 (0.10)[26] 0.68 (0.08)[10] Max. Entropy 
++ (<0.001) ~ (0.093) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.730) ++ (<0.001) 15.9 

0.74 (0.10)[5] 0.90 (0.03)[12] 0.96 (0.01)[14] 0.86 (0.02)[13] 0.94 (0.01)[7] 0.79 (0.08)[5] 0.70 (0.06)[4] IEM 
++ (<0.001) ++ (0.0494) ++ (<0.001) ++ (<0.001) ++ (<0.001) ++ (0.023) ++ (<0.001) 8.6 

0.67 (0.11)[19] 0.89 (0.05)[15] 0.96 (0.005)[13] 0.87 (0.01)[9] 0.93 (0.01)[11] 0.70 (0.08)[20] 0.68 (0.05)[11] CADD 
++ (<0.001) ~ (0.099) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.798) ++ (<0.001) 14.0 

0.68 (0.11)[17] 0.93 (0.04)[1] 0.96 (0.005)[12] 0.88 (0.02)[8] 0.94 (0.01)[4] 0.80 (0.06)[3] 0.70 (0.06)[6] CAIM 
++ (<0.001) ++ (0.008) ++ (<0.001) ++ (<0.001) ++ (<0.001) ++ (0.008) ++ (<0.001) 7.3 

0.75 (0.06)[2] 0.89 (0.04)[18] 0.96 (0.004)[10] 0.86 (0.02)[14] 0.94 (0.01)[8] 0.70 (0.10)[23] 0.69 (0.05)[8] MODL 
++ (<0.001) ~ (0.091) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.908) ++ (<0.001) 11.9 

0.71 (0.12)[8] 0.89 (0.05)[ 21] 0.96 (0.005)[11] 0.87 (0.02)[10] 0.94 (0.02)[6] 0.75 (0.10)[13] 0.70 (0.09)[5] 

LBR 

CACC 
++ (<0.001) ~ (0.111) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.193) ++ (<0.001) 10.6 

0.65 (0.13)[21] 0.90 (0.04)[10] 0.97 (0.005)[5] 0.88 (0.01)[7] 0.91 (0.02)[18] 0.74 (0.07)[17] 0.67 (0.05)[14] Equal Width 
++ (0.002) ++ (0.049) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.265) ++ (<0.001) 

13.1 

0.75 (0.14)[3] 0.91 (0.04)[5] 0.97 (0.005)[4] 0.88 (0.02)[6] 0.93 (0.01)[11] 0.76 (0.08)[8] 0.69 (0.05)[9] Equal Freq. 
++ (<0.001) ++ (0.024) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.087) ++ (<0.001) 6.6 

0.71 (0.10)[10] 0.90 (0.04)[9] 0.96 (0.005)[15] 0.85 (0.02)[15] 0.93 (0.01)[10] 0.80 (0.08)[2] 0.68 (0.07)[13] Max. Entropy 
++ (<0.001) ~ (0.083) ++ (<0.001) ++ (<0.001) ++ (<0.001) ++ (0.012) ++ (<0.001) 10.6 

0.74 (0.12)[5] 0.90 (0.04)[6] 0.98 (0.005)[2] 0.89 (0.02)[3] 0.95 (0.01)[2] 0.79 (0.07)[4] 0.70 (0.04)[7] IEM 
++ (<0.001) ++ (0.036) ++ (<0.001) ++ (<0.001) ++ (<0.001) ++ (0.019) ++ (<0.001) 

4.1 

0.71 (0.11)[12] 0.90 (0.04)[10] 0.97 (0.006)[8] 0.88 (0.02)[5] 0.94 (0.01)[9] 0.75 (0.05)[10] 0.68 (0.05)[12] CADD 
++ (<0.001) ++ (0.045) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.798) ++ (<0.001) 9.4 

0.69 (0.14)[16] 0.92 (0.04)[2] 0.97 (0.005)[6] 0.88 (0.01)[4] 0.95 (0.01)[3] 0.80 (0.07)[1] 0.71 (0.04)[2] CAIM 
++ (<0.001) ++ (0.010) ++ (<0.001) ++ (<0.001) ++ (<0.001) ++ (0.008) ++ (<0.001) 4.9 

0.75 (0.09)[4] 0.90 (0.03)[6] 0.98 (0.004)[1] 0.89 (0.02)[2] 0.94 (0.01)[5] 0.70 (0.10)[21] 0.71 (0.06)[1] MODL 
++ (<0.001) ++ (0.028) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.908) ++ (<0.001) 5.9 

0.70 (0.13)[13] 0.91 (0.04)[4] 0.97 (0.004)[3] 0.89 (0.02)[1] 0.96 (0.01)[1] 0.75 (0.09)[10] 0.71 (0.06)[3] 

AODE 

CACC 
++ (<0.001) ++ (0.023) ++ (<0.001) ++ (<0.001) ++ (<0.001) ~ (0.193) ++ (<0.001) 5.0 

 

The average rank given in the last column in Table 4 

(over all datasets) shows that the classification with NB 

on the continuous data results in the poorest accuracy. 

The rank shows that AODE classifier obtains on average 

(over all datasets and discretization methods) the best 

results. The best performing setup includes discretization 

with the IEM algorithm and subsequent classification with 

the AODE classifier, which is closely followed by results 

when using CAIM and CACC discretizers and the AODE 

classifier. The best results for the LBR classifier are 

obtained when discretizing the data with CAIM and IEM 

algorithms. Among the unsupervised discretization 

methods, Equal Frequency performs better for both semi-

NB classifiers and comparably well for the NB classifier. 

Comparison of results obtained with NB and FNB 

classifiers on the raw data and results obtained by these 

classifiers on the discretized data (they are the same when 

working with the discrete data) reveals that FNB 

classifiers applied on the raw data in some cases performs 

better than when used with the discretized data, i.e., the 

modeling of continuous features using a set of Gaussian 

kernels works on average better than when using more 

sophisticated discretization methods such as CADD and 

Maximum Entropy. At the same time, discretization with 

IEM, MODL, and CACC algorithms helps to improve 

classification with NB.  

The statistical tests show that setups that include IEM 

and CAIM discretizers provide statistically significant 

improvements over all considered datasets for both semi-

NB classifiers when compared with using NB on the raw 

data. The two results that are statistically significantly 

worse than the results of NB on raw data concern 



classification with NB on the data discretized with 

Maximum Entropy method for the pendigits and sat 

datasets. Overall, the Maximum Entropy seems to perform 

the poorest among the considered supervised 

discretization algorithms. The largest number of setups 

fails to provide significant improvements on the sonar and 

the ionosphere datasets. These datasets have the highest 

relative numbers of distinct continuous values (smallest 

ratio shown in Table 2). This result could be due to the 

relatively good performance of NB on these datasets. We 

hypothesize that the large number of distinct values allows 

establishing a robust estimate of the Gaussian distribution 

that is used to model the continuous features. 

 
Table 5. The average runtime (in milliseconds) for a given classification setup (a given classifier executed on raw or discretized data). 

The values in round brackets indicate standard deviation (over the 10 folds), the values in square brackets show rank of a given setup 

for a given dataset, underlined values and shaded cells indicate best results. 
 

Datasets 
Classifier 

Discretization 

algorithm Glass ionosphere pendigits sat segment sonar vehicle 
Avg. rank 

NB Original Data 0.9 (0.06)[15] 5.5 (0.04)[20] 119.0 (11.33)[19] 140.0 (0.89)[22] 25.3 (1.26)[17] 5.6 (0.09)[19] 7.7 (0.51)[25] 19.6 
FNB Original Data 1.1 (0.13)[22] 7.3 (0.05)[21] 133.0 (0.60)[24] 155.0 (2.78)[24] 31.0 (0.56)[20] 7.9 (0.26)[20] 8.8 (0.07)[26] 22.4 

Equal Width 0.2 (0.01)[5] 0.7 (0.002)[6] 10.6 (0.06)[5] 12.4 (0.10)[3] 2.6 (0.09)[5] 0.7 (0.14)[8] 0.9 (0.03)[8] 5.7 
Equal Freq. 0.2 (0.002)[1] 0.7 (0.001)[5] 10.6 (0.05)[3] 12.4 (0.15)[5] 3.3 (2.37)[8] 0.7 (0.002)[4] 0.9 (0.004)[4] 4.3 
Max. Entropy 0.2 (0.001)[3] 0.7 (0.002)[4] 10.6 (0.06)[2] 12.4 (0.10)[4] 2.6 (0.04)[6] 0.7 (0.03)[6] 0.9 (0.003)[1] 3.7 
IEM 0.2 (0.005)[4] 1.0 (1.15)[8] 10.7 (0.10)[8] 12.6 (0.18)[7] 2.5 (0.01)[2] 0.7 (0.02)[1] 0.9 (0.03)[7] 5.3 
CADD 0.2 (0.001)[2] 0.7 (0.01)[3] 10.6 (0.14)[6] 12.3 (0.07)[1] 2.6 (0.02)[4] 0.7 (0.002)[5] 0.9 (0.003)[3] 3.4 
CAIM 0.2 (0.01)[7] 0.7 (0.002)[1] 10.6 (0.06)[4] 12.4 (0.05)[2] 2.5 (0.01)[1] 0.7 (0.04)[2] 0.9 (0.001)[2] 2.7 
MODL 0.2 (0.002)[8] 0.7 (0.002)[7] 10.6 (0.07)[7] 12.6 (0.31)[8] 2.6 (0.06)[7] 0.7 (0.01)[7] 0.9 (0.004)[6] 7.1 

NB / FNB 

CACC 0.2 (0.002)[6] 0.7 (0.004)[2] 10.6 (0.04)[1] 12.4 (0.10)[6] 2.5 (0.02)[3] 0.7 (0.03)[3] 0.9 (0.005)[5] 3.7 
Equal Width 1.0 (0.03)[18] 3.7 (0.08)[17] 120.0 (0.51)[21] 101.0 (1.04)[17] 38.9 (4.02)[25] 4.9 (4.94)[18] 4.9 (0.02)[22] 19.7 
Equal Freq. 1.0 (0.04)[19] 4.0 (1.17)[18] 120.0 (0.23)[20] 101.0 (4.04)[18] 37.5 (0.38)[24] 3.4 (0.03)[14] 5.0 (0.11)[23] 19.4 
Max. Entropy 1.0 (0.02)[21] 3.4 (0.04)[16] 99.5 (1.25)[17] 101.0 (3.85)[16] 37.3 (0.32)[23] 3.4 (0.02)[13] 6.3 (4.01)[24] 18.6 
IEM 0.9 (0.02)[16] 1.9 (0.03)[11] 146.0 (2.92)[25] 130.0 (1.38)[22] 24.5 (0.26)[16] 1.8 (0.03)[10] 4.4 (0.06)[19] 16.8 
CADD 1.0 (0.01)[20] 3.1 (0.06)[15] 101.0 (1.03)[18] 98.0 (0.97)[15] 35.1 (3.95)[21] 3.4 (0.02)[12] 4.9 (0.09)[21] 17.4 
CAIM 1.0 (0.06)[17] 1.6 (0.005)[9] 122.0 (2.70)[22] 104.0 (6.03)[20] 21.4 (0.47)[14] 1.7 (0.01)[9] 3.9 (0.04)[17] 15.4 
MODL 2.1 (0.16)[25] 4.2 (0.12)[19] 148.0 (6.21)[26] 141.0 (7.75)[23] 50.2 (1.68)[26] 4.6 (0.18)[17] 4.7 (0.23)[20] 22.3 

LBR 

CACC 1.6 (0.08)[24] 1.9 (0.04)[10] 122.0 (4.95)[23] 102.0 (2.71)[19] 21.2 (0.73)[13] 2.7 (0.16)[11] 4.1 (0.07)[18] 16.9 
Equal Width 0.4 (0.003)[13] 21.6 (4.25)[24] 33.0 (0.19)[13] 88.9 (4.53)[12] 19.9 (0.28)[12] 44.5 (0.78)[22] 2.5 (0.16)[16] 16.0 
Equal Freq. 0.4 (0.003)[14] 22.1 (1.05)[25] 33.1 (0.34)[14] 88.2 (0.72)[11] 26.3 (0.31)[18] 45.2 (0.11)[23] 2.5 (0.02)[14] 17.0 
Max. Entropy 0.3 (0.015)[11] 19.8 (1.47)[23] 23.8 (0.08)[10] 58.8 (4.72)[10] 27.5 (0.21)[19] 45.3 (0.17)[24] 2.5 (0.28)[15] 16.0 
IEM 0.3 (0.004)[9] 2.8 (0.03)[14] 32.7 (1.55)[12] 183.0 (3.31)[25] 7.9 (0.07)[11] 4.2 (0.02)[15] 2.3 (0.02)[9] 13.6 
CADD 0.3 (0.003)[10] 14.6 (0.37)[22] 23.7 (0.13)[9] 55.3 (0.21)[9] 22.0 (0.22)[15] 45.9 (5.01)[25] 2.4 (0.04)[13] 14.7 
CAIM 0.4 (0.002)[12] 2.6 (0.03)[12] 32.1 (0.86)[11] 93.0 (4.70)[13] 7.0 (0.05)[9] 4.3 (0.02)[16] 2.3 (0.09)[10] 11.9 
MODL 3.8 (0.81)[26] 26.7 (2.84)[26] 37.3 (1.08)[16] 191.0 (2.94)[26] 36.8 (2.36)[22] 147.0 (51.49)[26] 2.4 (0.05)[12] 22.0 

AODE 

CACC 1.4 (0.31)[23] 2.7 (0.03)[13] 34.0 (0.25)[15] 93.5 (0.78)[14] 7.1 (0.04)[10] 18.0 (3.73)[21] 2.3 (0.03)[11] 15.3 

 

Table 5 shows a comparison of the runtime to build 

classification models. As expected, the runtime of NB and 

FNB with continuous data is worse than when using the 

discretized data. This is true except when using MODL 

discretizer and LBR and AODE classifiers, which is likely 

due to the large number of intervals produced by this 

discretization algorithm, see Table 3. Overall, the runtime 

is positively correlated with the number of discretization 

intervals, i.e., the smaller the number of intervals the 

shorter the runtime. The results reveal, as expected, that 

NB is the fastest, with the AODE and LBR taking the 

second and third spots, respectively. Although AODE is 

faster for the datasets with relatively low number of 

features (glass, pendigits, segment, and vehicle), LBR is 

either similarly fast or faster for the datasets with large 

number of features (ionosphere, sonar, and sat), which 

corroborates with the computational complexity of these 

two methods. LBR has substantially higher complexity of 

classification of the test examples, O(tkn
2
), when 

compared with O(kn) and O(kn
2
) achieved by NB and 

AODE, respectively [3], i.e. usually t >> k and t >> n. 

Since this time is not included in Table 5, we anticipate 

that when considering the combined time (including the 

time to generate the model and to classify test examples) 

the difference between LBR and AODE would be larger.  

We observe that the runtime of supervised discretizers 

is substantially longer than the time to compute the NB 

models. The differences are up to two orders of 

magnitude, and they indicate that the improved 

classification accuracy comes as the trade-off of 

significantly increased runtime. The long runtime of 

discretization algorithms is due to their poor (when 

compared with NB classifier) complexity, e.g. CAIM, 

CACC, and MODL have O(tlog(t)) complexity. 

 

4. Summary and conclusions 
The comparison of the eight considered discretizers 

indicates that the unsupervised algorithms are faster than 

the supervised methods.  The fastest supervised algorithm 

is Maximum Entropy, followed by CAIM and IEM 

algorithms. We show that CAIM and MODL discretizers 

generate the lowest and the highest number of 

discretization intervals, respectively. 



Our empirical comparison shows that discretization helps 

to improve the subsequent classification with the NB 

when compared with applying Flexible NB on the 

continuous features. The classification performed with NB 

on continuous data is characterized by the poorest 

accuracy, while AODE classifier obtains on average the 

most accurate results. The best performing setup includes 

discretization with IEM algorithm and subsequent 

classification with AODE classifier, which is closely 

followed by CAIM and CACC discretizers used with 

AODE classifier. The highest accuracies for the LBR 

classifier are obtained when using CAIM and IEM 

discretizers. IEM and CAIM coupled with the LBR and 

AODE classifiers provide statistically significantly higher 

accuracies across all 7 datasets when compared with 

accuracies obtained with NB on the continuous data. We 

also show that the improved accuracy when using data 

discretized by supervised discretizers comes at the 

expense of substantially increased runtime. 
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