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Abstract –Knowledge of structural classes is useful in 
understanding folding patterns in proteins. Numerous 
structural class prediction methods were proposed in the 
past. Although virtually all state-of-the-art classifiers 
were already tried, many of these methods use very 
simple protein sequence representation that often 
includes amino acid (AA) composition.  To this end, we 
propose a novel sequence representation, which is based 
on PSI-BLAST profile based collocation of AA pairs.  We 
used two benchmark datasets constructed by Zhou (J. of 
Prot. Chem. 1998, 17(8):729–38) to test the proposed 
representation with five representative classifiers. The 
two best classifiers, which include a support vector 
machine and an instance base learner, achieved 88% and 
96% accuracy on the two datasets, respectively. Our 
results were compared with five recently proposed 
methods. The comparison shows superiority of the 
proposed method, which reduces the error rates by 30% 
and 21% on the two datasets when compared with the 
best-performing ensemble of boosted logistic regression 
classifier. Finally, the new sequence representation is 
compared with AA composition when using support 
vector machine classifier. The error rate reduction due to 
application of the new representation equals 40% and 
25% for the two datasets, respectively.  In short, the PSI-
BLAST profile based collocation of AA pairs is shown to 
be a promising feature-based sequence representation. 
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1. Introduction and Related Work 
Knowledge of protein structure plays a crucial role in 

analysis of protein function, simulation of protein-ligand 
interaction, rational drug discovery and in many other 
applications. Prediction of the tertiary protein structure 
remains a challenge even though it is being researched for 
over two decades. There are numerous, supplementary 
aspects of protein structure, which include secondary 
structure, solvent accessibility, contact maps and structural 
class, which prediction is actively pursued by many 
structural biology and bioinformatics research labs. 

The concept of protein structural class was proposed by 
Levitt and Chothia in 1976 [1]. They inspected and classified 

31 globular proteins into four structural classes: all-α, all-β, 
α/β, and α+β. The all-α and all-β classes represent structures 
that mainly consist of α-helices and β-strands, respectively. 
The α/β and α+β classes contain both α-helices and β-
strands; the α/β class includes mainly parallel β-strands, 
while α+β class includes anti-parallel strands. The most 
frequently used classifications of protein structural classes 
can be found in the SCOP (Structural Classification of 
Protein) database [2]. This database is organized as a 
hierarchy of known protein and protein domain structures 
where first level is based on the structural class. 

The last twenty years observed significant efforts in 
automated prediction of protein structural classes due to 
large numbers (currently over 3 millions) of unclassified 
sequences. Several early attempts were made in late 1980s 
[3, 4]. Composition vectors, auto-correlation function based 
on non-bonded residue energy, polypeptide composition, 
pseudo amino acid composition and complexity measure 
factor were applied to represent protein sequence in later 
works [5-10]. Different classification algorithms, including 
the maximum component coefficient [11], least correlation 
angle [12], fuzzy clustering [13], neural network [14], 
Bayesian classification [15], rough sets [16], component-
coupled [5] and support vector machine [17], have been 
already used. Recent works also explored application of 
complex classification models, such as ensembles [18], 
bagging [19] and boosting [20]. 

Since virtually all state-of-the-art classifiers have been 
already tried, we concentrate on development of a novel 
representation of protein sequences based on a PSI-BLAST 
profile [21]. This profile has been successfully applied in 
window based protein prediction tasks, including secondary 
structure and solvent accessibility predictions [22, 23], while 
it was never applied to predict the structural class. We 
propose a novel method that transforms the original profile 
(N×20 matrix where N is the sequence length), into a fixed 
length feature-vector based on a recently proposed 
collocation of AA pairs [24] that is calculated from the 
sequence. This novel representation is shown to substantially 
improve the accuracy of the structural class prediction. 
2. Materials and Methods 
 

2.1. Dataset 
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Two datasets used in this paper were originally generated by 
Zhou [5]. Both the datasets were used in several past studies 
[5, 14, 16, 17, 20] and were extracted from SCOP. They 
include 277 and 498 protein domains, respectively. Both 
datasets are balanced, i.e., each class includes similar number 
of sequences. 
 

2.2. Proposed Sequence Representation 
The new representation, which combines PSI-Blast profile 

and the concept of frequency of collocation of AA pairs in 
the sequence [24], was developed for the proposed prediction 
method.  

The motivation to introduce the collocation of AA pairs 
comes from an insufficient sequence representation that is 
offered by the commonly used composition vector, i.e., it 
only counts the frequencies of individual AAs. At the same 
time, frequencies of AA pairs (dipeptides) provide more 
information since they may reflect local (with respect to the 
sequence) interaction between AA pairs. Based on this 
argument we should count all dipeptides in the sequence. 
Since there are 400 possible AA pairs (AA, AC, AD, …, YY), 
a feature vector of that size is used to represent occurrence of 
these pairs in the sequence. Since short-range interactions 
between AAs, rather than only interactions between 
immediately adjacent AAs, have impact of folding [25], the 
proposed representation also considers collocated pairs of 
AAs, i.e. pairs that are separated by p other AAs. These pairs 
can be understood as the dipeptides with gaps. Collocated 
pairs for p = 0, 1,…, 4 are considered, where for p=0 the 
pairs reduce to the dipeptides. There are 400 feature values 
for each value of p. 

On the other hand, the successful applications of PSI-
BLAST profile illustrate that it contains more information 
than a query sequence. PSI-BLAST aligns a given query 
sequence to a database of sequences, and searches for these 
that are similar to the query sequence. Using multiple 
alignment, PSI-BLAST generates the frequency of each AA 
at each position in the query sequence. The PSI-BLAST 
profile generates 20-dimensional vector of AA frequencies 
for each position in the query sequence, which can be used to 
identify the key positions of conserved AAs. In other words, 
the profile can help in identifying which residues (segments) 
are conserved and which undergo mutations. 

Our approach combines the frequency of collocation of 
AA pairs and the PSI-BLAST profile into so called PSI-
BLAST profile based collocation of AA pairs. The PSI-
BLAST profile is the N×20 matrix, which is denoted as [ai,j], 
where i=1,2,…,N denotes position in the query sequence and 
j=1,2,…,20 denotes a given AA. After applying the 
substitution matrix and log function, aij values range between 
-9 and 11. The proposed representation is related to 
calculation of the frequency of AA pairs based on binary 
coding. The binary coding uses a 20-dimensional vector to 
encode each AA. The 20 AAs can be represented as AA1, 

AA2, …, AA19, and AA20. In binary coding, AAi is encoded as 
(0,0,…,0,1,0,…,0,0), where only the ith value is greater than 
0. The binary coding matrix is denoted as [bi,j]. The binary 
encoding and PSI-Blast profile matrices have the same 
dimensionality (N×20).  

The frequency of AA pairs can be computed from the 
binary coding matrix. For a given protein sequence A1A2...AN 

AiAi+1 is a AAmAAn dipeptide 
⇔ Ai=AAm and  Ai+1 =AAn 
⇔ bi,m=1, bi+1,n=1, bi,p=0, bi+1,q=0, where p≠m and q≠n 

Given that cs,t = min(bi,s , bi+1,t ), then 
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which means that AAmAAn was counted once while other 
dipeptides were counted 0 times. Matrix [cs,t ] stores the 
frequencies of all dipeptides. The count of the AA pairs 
along the entire sequence can be computed as 
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The PSI-BLAST profile based collocation of AA pairs is 
calculated in similar way. The only difference is that the 
binary coding matrix [bi,j] is replaced by the PSI-Blast profile 
[ai,j]. The frequency of dipeptide AAsAAt is computed as 

1
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=∑  and matrix [cs,t] stores the frequencies 

of all dipeptides.  
Since the PSI-BLAST profile values can be negative, and 

the frequencies of AA pairs should not be negative, using 
min(ai,s, ai+1,t) function to represent the frequency of AA 
pairs is unsound. Instead, we define 
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in which the negative value of min(ai,s, ai+1,t) is replaced by 0. 
Similarly, the frequencies of p-collocated AA pairs are 
defined as 
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The matrixes [cs,t] and [ds,t,p], which correspond to the 
frequency of the PSI-BLAST profile based dipeptides and p-
collocated AA pairs, respectively, constitute the proposed 
protein sequence representation. We generate PSI-BLAST 
profile based collocation of AA pairs for p = 0, 1, 2, 3, and 4, 
which results in 2000 features per each sequence. Since the 
proposed representation includes relatively large number of 
features, a feature selection method was used to reduce the 
dimensionality and potentially improve the prediction 
accuracy. An entropy based feature selection method, which 
evaluates each feature by measuring the information gain 
with respect to the class, was used.  
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The entropy of a feature X is defined as 

2( ) ( ) log ( ( ))i i
i

H X P x P x= −∑  

where {xi} is a set of values of X and P(xi) is the prior 
probability of xi. The conditional entropy of X, given another 
feature Y (in our case the structural class) is defined as 

2( | ) ( ) ( | ) log ( ( | ))j i j i j
j i

H X Y P y P x y P x y= −∑ ∑  

where P(xi| yj) is the posterior probability of X given the 
value yi of Y. The amount by which the entropy of X 
decreases reflects additional information about X provided 
by Y and is called information gain 

( | ) ( ) ( | )IG X Y H X H X Y= −  
According to this measure, Y has stronger correlation with X 
than with Z if IG(X|Y)>IG(Z|Y). The feature selection was 
performed using 10-fold cross validation to avoid overfitting.  
Among the original set of 2000 features, the best 50 features, 
which give the highest IG values, were selected.  
 

3. Results and Discussion 
The classification systems used to develop and compare 

the proposed method were implemented in Weka [26]. The 

proposed new feature representation was tested with several 
state-of-the-art classifiers such as Support Vector Machine 
(SVM) [27], Multiple Logistic Regression [28], instance 
learning based IB1 algorithm [29], Naïve Bayes [30], and 
C4.5 decision tree [31], using the  selected 50 features to 
represent sequences. We also compare these results with 
previous studies that used the same datasets, and different 
sequence representations and classifiers. All experiments 
were performed using jackknife test. 

Table 1 shows the results when using the proposed 
sequence representation and the five selected classifiers. For 
both datasets, IB1 and SVM classifiers provide comparable 
and highest overall accuracy, i.e., 88% and 95-96% for the 
277 and 498 datasets, respectively. The other three classifiers 
are substantially worse, i.e., over 10% and 1-6% worse 
accuracy for the 277 and 498 datasets, respectively. 

The best-performing IB1 and SVM classifiers were 
further compared with other recently reported methods, such 
as rough sets [16], component-coupling algorithm [5], neural 
network [14], SVM [17] and ensemble of boosted logistic 
regression classifiers [20], see Table 2. The proposed 
representation results in substantial error rate reduction for 

Table 1. Comparison of jackknife test accuracy between different classifiers for the proposed sequence representation that 
includes the selected 50 features. The best results are shown in bold. 
 

Jackknife accuracy [%] Dataset Algorithm all-α all-β α/β α+β overall 
SVM (3rd degree polynomial) 91.18 91.38 93.42 76.92 87.73 
Logistic Regression 76.47 79.66 87.01 64.62 77.32 
IB1 89.71 88.14 92.21 80.00 87.73 
C4.5 73.53 74.58 79.22 73.85 75.46 

277 domains 

Naïve Bayes 67.65 77.97 85.71 66.15 74.72 
SVM (3rd degree polynomial) 97.98 93.33 95.62 93.43 94.93 
Logistic Regression 95.96 95.83 94.16 90.51 93.91 
IB1 94.95 95.83 97.81 94.16 95.74 
C4.5 89.90 89.17 94.89 91.24 91.48 

498 domains 

Naïve Bayes 80.81 92.50 94.89 82.48 88.03 
 
Table 2. Comparison of jackknife test accuracy between the two best classifiers (using the proposed representation with 50 
features) and other reported methods. The best results are shown in bold. 
 

Jackknife accuracy [%] Dataset Algorithm Reference Feature-based sequence representation all-α all-β α/β α+β overall  
Rough sets [16] AA composition & physicochemical properties 77.1 77.0 93.8 66.2 79.4 
Component-Coupling  [5] AA composition 84.3 82.0 81.5 67.7 79.1 
Neural Network [14] AA composition 68.6 85.2 86.4 56.9 74.7 
SVM [17] AA composition 74.3 82.0 87.7 72.3 79.4 
LogitBoost [20] AA composition 81.4 88.5 92.6 72.3 84.1 
SVM  (this paper) PSI-BLAST based p-collocated AA pairs 91.2 91.4 93.4 76.9 87.7 

277 
domains 

IB1 (this paper) PSI-BLAST based p-collocated AA pairs 89.7 88.1 92.2 80.0 87.7 
Rough sets [16] AA composition & physicochemical properties 87.9 91.3 97.1 86.0 90.8 
Component-Coupling  [5] AA composition 93.5 88.9 90.4 84.5 89.2 
Neural Network [14] AA composition 86.0 96.0 88.2 86.0 89.2 
SVM [17] AA composition 88.8 95.2 96.3 91.5 93.2 
LogitBoost [20] AA composition 92.5 96.0 97.1 93.0 94.8 
SVM  (this paper) PSI-BLAST based p-collocated AA pairs 98.0 93.3 95.6 93.4 94.9 

498 
domains 

IB1 (this paper) PSI-BLAST based p-collocated AA pairs 95.0 95.8 97.8 94.2 95.7 
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both datasets when compared with best previously reported 
results for the LogitBoost method, i.e., 3.6/12.3 = 30% and 
0.9/4.3 = 21% error rate reduction for the 277 and 498 
datasets, respectively. Our predictions give comparably high 
accuracy for all four structural classes, i.e., IB1 does not 
produce accuracy below 80% for 277 sequences, while 
accuracy of both SVM and IB1 for the 498 dataset does not 
decrease below 93%, for any of the four classes. 

We also compare the quality of the commonly used AA 
composition and the proposed sequence representations. For 
one of the best performing SVM classifier, the PSI- BLAST 
profile based collocation of AA pairs gives 8.2% and 1.7% 
higher accuracy for the 277 and 498 sequences datasets, 
respectively, i.e., this corresponds to the 40% and 25% error 
rate reduction, respectively. 

Finally, our best classifiers were relatively simple (single 
SVM and an instance base method) when compared with the 
best among the reported methods ensemble based classifier. 
This leaves some room for future improvements. 
 

4. Conclusion 
The proposed PSI-BLAST profile based collocation of 

AA pairs is a novel and promising feature representation. 
Our empirical tests show that the accuracy of the protein 
structural class prediction can be substantially improved by 
applying this representation, i.e., relatively simple classifiers 
that use the proposed features provide better accuracy than 
more complex classifiers on two benchmark datasets. The 
new representation can be extended to other protein 
prediction tasks that currently apply AA composition to 
improve their accuracy. 
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