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Abstract 
 

Predicted relative solvent accessibility (RSA) provides 
useful information for prediction of binding sites and 
reconstruction of the 3D-structure based on a protein 
sequence, which are at the very core of proteomics. Several 
RSA prediction methods including those that generate real 
values and those that predict discrete states (buried vs. 
exposed) have been published. We propose a novel method 
for real valued prediction that aims to improve the 
prediction quality when compared with the existing methods. 
The proposed method combines Support Vector Regression 
(SVR) predictors into a two-stage architecture. The improved 
prediction quality comes from a composite sequence 
representation, which includes a custom-selected subset of 
features from the PSI-BLAST profile, secondary structure 
predicted with PSI-PRED, and binary code that indicates 
position of a given residue with respect to sequence termini. 
Based on empirical evaluation with a standard benchmark 
dataset, the proposed method obtains the mean absolute 
error (MAE) equal 0.143, which corresponds to 6% error 
rate reduction when compared with the best performing 
competing method that obtains 0.152 MAE on this dataset. 
 
Keywords: relative solvent accessibility; support vector 
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1. Introduction and Related Work 

The knowledge of protein structure is invaluable in 
understanding protein’s function. Computational prediction 
of the tertiary protein structure is one of the most important 
topics in proteomics due the large and exponentially growing 
gap between the number of known protein sequences and the 
number of known structures. Despite several decades of 
extensive research in tertiary structure prediction, this task is 
still a big challenge, especially for sequences that do not 
have a significant sequence similarity with known structures 
[1]. The predictions of the secondary structure and the 
solvent accessibility were proposed as an intermediate step in 
prediction of the tertiary structure; several such in-silico 
prediction methods have been already proposed [6, 20]. 
 

The relative solvent accessibility (RSA) reflects the degree 
to which a residue interacts with the solvent molecules. Since 
protein-protein and protein-ligand interactions occur at the 

protein surface, only the residues that have a large surface 
area exposed to the solvent can possibly bind to the ligands 
and other proteins. As a result, prediction of solvent 
accessibility is helpful for prediction of binding sites [2]. 
Chan and Dill showed that the burial of core residues is a 
strong driving force in protein folding, which means that 
knowledge of localization of individual residues (surface vs. 
buried) provides useful information to reconstruct the 3D-
structure of proteins [3].  

 
The solvent accessibility prediction methods use the 

protein sequence, which is converted into a fixed-size 
feature-based representation, to predict the RSA for each of 
the residues. They can be divided into two main groups: 
− real valued predictors that predict RSA value. They 

apply linear regression, multiple linear regression, neural 
networks, support vector regression, and neural network 
based regression [4-10].  

− discrete valued predictors which classify each residue 
into a predefined set classes. The classes are usually 
defined based a threshold and include buried, intermediate, 
and exposed (in most cases the predictions concerns only 
two classes, i.e., buried vs. exposed). They apply fuzzy-
nearest neighbor, neural network, probability profile, 
support vector machine, and two stage support vector 
machine [11-18].  
A PSI-BLAST profile [19] was recently introduced as an 

efficient sequence representation that improves classification 
accuracy [11]. Subsequently, researchers have found that 
secondary structure predicted using the PSI-PRED method 
[20] helps to improve the real value predictions [6]. 

To this end, we propose a novel real value predictor which 
is based on a two-stage support vector regression. As 
suggested in previous work, the PSI-BLAST profile, 
secondary structure predicted with PSI-PRED, and additional 
features that indicate termini of the sequence were adopted to 
represent the input sequence. In contrast to prior works, we 
do not use all features from the PSI-BLAST profile, but 
instead we use a linear correlation based feature selection 
method to select a subset of best-performing features. This 
approach results in a simplified prediction model, reduced 
computational time, and optimized predictive quality. 
2. Materials and Methods 
 

2.1. Dataset 
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The dataset used in this paper is referred to as the Manesh 
dataset [18] and consist of 215 non-homologous, i.e., < 25% 
sequence homology, protein chains. The sequences are 
available online at http://gibk21.bse.kyutech.ac.jp/rvp-net/all-
data.tar.gz. The Manesh dataset was used by several 
researchers to benchmark their prediction methods, and this 
motivated us to use it in our research.  
 
2.2. Relative Solvent Accessibility 

RSA reflects the percentage of the surface area of a given 
residue that is accessible to the solvent. RSA values, which 
are normalized to [0, 1] interval, are defined as the ratio 
between the solvent accessible surface area (ASA) of a 
residue within a three-dimensional structure and ASA of its 
extended tripeptide (Ala-X-Ala) conformation 

 in a three-dimensional structure
 in an extended tripepetide

ASARSA
ASA

=  (1) 

 
2.3. Feature Generation 

PSI-BLAST profile. PSI-BLAST is used to compare 
different protein sequences to find distant relatives and to 
discover evolutionary relationships [19]. PSI-BLAST 
generates a profile representing a set of similar proteins in 
the form of a 20×N position-specific scoring matrix, where N 
is the length of the sequence (window) and each amino acid 
in the sequence (window) is described by 20 features. We 
used PSI-BLAST with the default parameters and the 
BLOSUM62 substitution matrix. The profile was computed 
for a 15 residues wide window centered on a target residue. 
The selected size is motivated by previous studies that 
adopted this window size [14] and good results obtained for 
the secondary structure prediction with this window [20]. 
The selected window corresponds to the 15×20 scoring 
matrix, which gives total of 300 features.  

Secondary structure predicted with PSI-PRED. The 
quality of secondary structure prediction significantly 
improved in the last decade and nowadays it is successfully 
used in prediction of tertiary structure. Recently, secondary 
structure predicted with the PSI-PRED algorithm was shown 
to improve prediction of solvent accessibility [6]. We used 
PSI-PRED25 with default parameters to predict secondary 
structure from the protein sequences. PSI-PRED assigns 
three probabilities for each residue, which correspond to 
probability of assuming helix, strand, and coil conformation, 
respectively. These probabilities were taken as features for 
the proposed RSA prediction method. 

Binary code. The amino acids that are located at the two 
termini of the sequence have larger probability of being 
exposed to the solvent. This fact is implemented during RSA 
prediction by using a simple binary code that indicates 
position of a given residue that is located close to either 
terminus. The following binary vector 

1 2 3 4 5 1 2 3 4 5( , , , , , , , , , )a a a a a b b b b b  

is used to encode the first five positions at the N terminus 
(denoted by ai) and the last five position and the C terminus 
(denoted by bi). For instance, the third residue in the 
sequence is encoded as (0,0,1,0,0,0,0,0,0,0), while a residue 
that is outside of the first and the last five residues in the 
sequence is encoded as (0,0,0,0,0,0,0,0,0,0). 
 
2.4. Feature Selection 

PSI-BLAST profile includes 300 features, and thus a 
feature selection method was used to reduce the 
dimensionality and potentially improve the prediction 
accuracy. We applied the correlation-based feature selection 
[21], which is based on Pearson correlation coefficient r 
computed for a pair of variables (X, Y) as 
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where ix is the mean of X, and iy is the mean of Y. The 
value of r is bounded within [-1, 1] interval. Higher absolute 
value of r corresponds to higher correlation between X and Y. 
This method ranks individual features based on the 
correlation coefficient between each feature and the actual 
RSA values. A subset of features with the highest absolute r 
value is selected. 

The 300 features corresponding to the PSI-BLAST profile, 
3 features corresponding to the predicted secondary structure 
and 10 binary code values were processed with the feature 
selection method. As a result, the best 70 features were 
selected, i.e., the lower ranked feature did not improve RSA 
prediction. The selected features include 65 features from the 
PSI-BLAST profile, all 3 predicted secondary structure 
features, and 2 binary code values that correspond to the first 
and last position in the sequence, see Tables 1 and 2.  
 
Table 1. Summary of the feature selection results. 

 

 
The feature selection exercise shows that most of the 300 

features generated by PSI-BLAST are either redundant and 
have little or no impact on the RSA predictions. Table 2 
shows that when predicting RSA for Ai, the features to 
encode the first 2 amino acids (Ai-7 Ai-6) and the last amino 
acids (Ai+7) were not selected, i.e., these amino acids have no 
impact on the prediction of the central amino acid. 
Therefore, a sliding window of size 13 would be sufficient 
for the RSA prediction. Additionally, the two amino acids 
that are adjacent to Ai, i.e., Ai-1 and Ai+1, have the most 
significant impact on the prediction since they correspond to 

Features set Total # features # selected features
PSI-BLAST profile 300 65 
Binary code 10 2 
Predicted secondary structure 3 3 

Total 313 70 
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the largest number of the selected features. Interestingly, 
residues at i-2 and i+2 positions have relatively small 
influence on the prediction. 

 
2.5. Prediction Method 

Support Vector Regression (SVR) was already applied in 
the RSA prediction [8]. In this paper, we propose a better-
performing two-stage SVR model. Due to the page limits, we 
do not describe the SVR model (the reader is referred to [8]), 
but instead we focus on describing differences between the 
one-stage SVR and the applied two-stage SVR. 

First, 70 features were generated using a 15 wide window 
for each residue in the input sequence. In the first stage, the 
70 features are used as input and SVR predicts a real value 
(predicted RSA value) for each residue. The second stage 
aims to refine the first stage predictions. Similarly to a two-
stage neural network designs, the second stage smoothes the 
predictions. It takes the three predicted secondary structure 
features and a 7 wide window of the first stage predicted 
values centered over the being predicted residue as the input 
to provide the final real valued predictions. The detailed 
procedure is shown in Figure 1. 

The optimization of the prediction, through adjustment of 
internal parameters of SVR (kernel type and parameters and 
complexity parameter C) and selection of the window size 
for the second stage SVR, was performed by dividing the 
Manesh dataset into two subsets, one used to compute the 
prediction model and the other to perform test. Similarly to 
[15], 30 sequences were used for training and the remaining 
185 as the test set. As a result, RBF kernel was used for both 
stages. The parameters for the first stage SVR are γ=0.01 and 
C=1, and for the second stage γ=0.15 and C=1. The mean 
absolute error (MAE) of the final prediction for the second 
stage windows sizes of 5, 7, 9, 11, 15, and 21 equals 0.149, 
0.148, 0.148, 0.148, 0.148, and 0.148, respectively. This 
shows that the window size of 7 is sufficient to provide 
accurate predictions. 

 
Figure 1. RSA prediction with the proposed system; the RSA 
value for the ith residue is predicted based on the 70 feature 
values (see Table 1) that are computed over a 15 residues 
wide window centered on ith residue; the feature values are 
inputted into the first-stage SVR; next, the first-stage 
predictions are aggregated into 7 residue wide windows and 
inputted, together with the predicted secondary structure of 
the central residue, into the second-stage SVR that provides 
the RSA values. 
 
3. Results and Discussion 

The SVR predictor [22] was implemented in Weka [23], 
which is a comprehensive open-source library of machine 
learning methods. The Manesh dataset consists of 50682 
instances (individual residues), and evaluation was done by 
5-folds cross validation to assure objective comparison with 
previous works.  

The MAE value for the first stage of the proposed method 
equals 0.146 and the corresponding Pearson’s correlation 

input 7-wide windows for 
all residues, i=1, 2, …, N

first-stage SVR 

A1A2… Ai-1AiAi+1…An-1AN 

Ai-7… Ai-1AiAi+1…Ai+7

select 15-wide window 

compute 70 feature values 

feature values for the 15-wide window
input feature vectors for all 

residues, i=1, 2, …, N

r1r2… ri-1riri+1…rn-1rN
select 7-wide window 

ri-3… ri-1riri+1…ri+3

second-stage SVR 

PSI-PRED

ss1ss2… ssi-1ssissi+1…ssn-1ssN 

predicted
secondary 

structure

R1R2… Ri-1RiRi+1…Rn-1RN 

Table 2. Summary of feature selection results for the PSI-BLAST profile.
 

15-wide window Ai-7 Ai-6 Ai-5 Ai-4 Ai-3 Ai-2 Ai-1 Ai Ai+1 Ai+2 Ai+3 Ai+4 Ai+5 Ai+6 Ai+7 
Total # of features 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 
# of selected features 0 0 2 4 5 0 8 19 7 1 6 6 4 3 0 

 
Table 3. Experimental comparison between the proposed two-stage SVR and other reported methods; the real valued 
predictions were also converted to two state prediction (buried vs. exposed) with different threshold (5%~50%); unreported 
results are denoted by “-“; best results are shown in bold. 
 

Accuracy for two-states (buried vs. exposed) prediction Reference Prediction method MAE (%) Correlation 
coefficient r 5% 10% 20% 30% 40% 50% 

[6] Neural Network 15.2 0.67 74.9% 77.2% 77.7% 77.8% 78.1% 80.5% 
[10] Neural Network 18.0 0.50 - - - - - - 

This paper Two-stage SVR 14.3 0.68 81.1% 79.7% 78.8% 78.6% 78.8% 80.8% 
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coefficient (r) equals 0.67. After the second stage, the MAE 
value is reduced to 0.143 and r is improved to 0.68. Table 3 
compares the proposed two-stage SVR with recent methods 
for real valued RSA prediction by Gard and colleagues [6] 
and Ahmad and colleagues [10]. The proposed method 
obtains 0.9% and 3.7% lower MAE when compared with 
methods proposed in [6] and [10], respectively. This 
translates into 6% and 20% error reduction, respectively. 

Since some methods predict discrete valued classes 
(exposed vs. buried), we also examined the performance of 
our method by converting the real valued prediction into the 
two states prediction. We followed the standard procedure, in 
which the state is defined based on the predicted RSA value 
and a pre-defined threshold. For instance, a 5% threshold 
means that the residues having an RSA value (%) greater or 
equal 5 are defined as exposed, and otherwise they are 
classified as buried. The threshold’s value is usually adjusted 
between 5 and 50%. When compared with the best-
performing, recent method from [6], see Table 3, our 
predictions obtain higher accuracies over all thresholds, i.e., 
the differences range between 0.3% and 6.2%. We also note 
that results from one-stage SVR model introduced in [8] are 
comparable with results from the neural network model 
presented in [10], which in turn are worse than results shown 
in [6]. Since one-stage SVR was not tested on the Manesh 
dataset, we could not include these results in Table 3. 

 
4. Conclusions 

This paper proposes a novel method for the real valued 
RSA prediction, which is based on a two-stage SVR and a 
custom-designed sequence representation. Empirical tests 
with the Manesh dataset show that the proposed method is 
characterized by lower prediction error when compared with 
competing methods for the real valued predictions. We also 
show that the PSI-BLAST profile that is commonly used to 
represent sequences can by largely reduced by using feature 
selection, which would result in reduction of the 
computational time required to develop the prediction model. 
Our results indicate that window size of 13 is sufficient and 
only about 22% of the PSI-BLAST features are useful for the 
RSA prediction. 
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