
900 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 3, JUNE 2012

Learning of Fuzzy Cognitive Maps
Using Density Estimate

Wojciech Stach, Member, IEEE, Witold Pedrycz, Fellow, IEEE, and Lukasz A. Kurgan, Member, IEEE

Abstract—Fuzzy cognitive maps (FCMs) are convenient and
widely used architectures for modeling dynamic systems, which
are characterized by a great deal of flexibility and adaptability.
Several recent works in this area concern strategies for the devel-
opment of FCMs. Although a few fully automated algorithms to
learn these models from data have been introduced, the resulting
FCMs are structurally considerably different than those developed
by human experts. In particular, maps that were learned from
data are much denser (with the density over 90% versus about
40% density of maps developed by humans). The sparseness of
the maps is associated with their interpretability: the smaller the
number of connections is, the higher is the transparency of the
map. To this end, a novel learning approach, sparse real-coded
genetic algorithms (SRCGAs), to learn FCMs is proposed. The
method utilizes a density parameter to guide the learning toward
a formation of maps of a certain predefined density. Comparative
tests carried out for both synthetic and real-world data demon-
strate that, given a suitable density estimate, the SRCGA method
significantly outperforms other state-of-the-art learning methods.
When the density estimate is unknown, the new method can be
used in an automated fashion using a default value, and it is still
able to produce models whose performance exceeds or is equal to
the performance of the models generated by other methods.

Index Terms—Fuzzy cognitive maps (FCMs), real-coded genetic
algorithms (RCGAs).

I. INTRODUCTION

FUZZY COGNITIVE maps (FCMs), introduced by Kosko
[16], have found applications in modeling and simulation

of dynamic systems. They represent a given system as a collec-
tion of concepts (events, actions, values, goals, etc.) represented
by cause–effect dependencies. Any FCM is depicted as a fuzzy
causal graph [16], in which nodes represent concepts, whereas
directed edges between the concepts denote causal relationships
present between them. The graph structure of FCMs allows for
static analysis, while its execution model allows for dynamic
analysis of the modeled system [46]. FCMs are convenient
in handling issues of knowledge representation and reasoning,
which are essential to intelligent systems [22]. This modeling
technique comes with a number of desirable properties, such
as abstraction, flexibility, adaptability, and fuzzy reasoning [2],

Manuscript received January 10, 2010; revised September 18, 2010 and
July 19, 2011; accepted December 6, 2011. Date of publication February 14,
2012; date of current version May 16, 2012. This work was supported in part
by the Alberta Ingenuity, the Alberta Informatics Circle of Research Excellence
(iCORE), and the Natural Sciences & Engineering Research Council of Canada
(NSERC). This paper was recommended by Associate Editor M. Huber.

The authors are with the Department of Electrical and Computer Engi-
neering, University of Alberta, Edmonton, AB T6G 2V4, Canada (e-mail:
wstach@ualberta.ca; lkurgan@ece.ualberta.ca; wpedrycz@ualberta.ca).

Digital Object Identifier 10.1109/TSMCB.2011.2182646

[44]. The areas of applications of FCMs are diversified and
include problems in electrical engineering, medicine, political
science, international relations, etc. [2]. Examples of specific
applications include medical diagnosis [14], analysis of electri-
cal circuits [41], failure modes effects analysis [29], fault man-
agement in distributed network environment [24], modeling of
software development projects [33], and many others.

One of the recently extensively researched topics in FCMs
concerns their design process [2], [39]. Two main categories
of the design have been investigated. Expert-based methods,
which originate from deductive modeling, are performed man-
ually and rely solely on human expert knowledge. Their main
drawbacks are model subjectivity and limited human perception
and ensuing quantification of perception when it comes to
dealing with complex systems [39]. As an alternative approach,
computational methods have been recently introduced to sup-
port (semiautomated methods) or to replace (fully automated
methods) human expert(s) [2], [39]. These methods are aimed
at developing a model from available data using some learning
mechanisms. Therefore, they are also referred to as induc-
tive modeling techniques. The two major types of the com-
putational methods include the following: 1) Hebbian-based
methods, which were proposed shortly after the introduction
of FCMs, and 2) evolutionary algorithm-based methods, which
are currently gaining momentum [35], [39]. The computational
methods face a substantial challenge, which is the existence of
numerous suboptimal solutions. These solutions provide simi-
lar simulation results (dynamic analysis), while they might be
structurally different and, subsequently, not suitable to support
static analysis [2]. This problem is partially addressed by semi-
automated methods, in which experts impose constraints on
certain properties of the FCM, like the weight associated with
the individual causal relationships. However, an involvement of
human experts exposes the model to the same problems as in the
case of expert-based development methods. Therefore, while
this type of learning can be efficient in certain applications,
semiautomated methods cannot be considered as a silver-bullet
solution, e.g., they could not be used to model large maps due
to the difficulty in establishing the corresponding large number
of constraints.

The motivation of this paper comes from structural compar-
ison of models generated by existing fully automated learning
approaches against real-world models developed by human ex-
perts. We show that maps developed by computational methods
are much denser than those constructed by humans. Table I
summarizes the values of densities, defined as the ratio of the
number of nonzero weights to the total number of all possible
weights for a given map size (number of nodes in the graph), of
the FCMs reported in the literature.

1083-4419/$31.00 © 2012 IEEE

STACH et al.: LEARNING OF FUZZY COGNITIVE MAPS USING DENSITY ESTIMATE 901

TABLE I
EXAMPLES OF FCMS REPORTED IN LITERATURE ALONG

WITH THE NUMBER OF NODES (#NODES) AND

DENSITY OF CONNECTIONS (DENSITY)

Most of the models are characterized by a relatively low
level of density, in the range of 30%–40%. The average model
density from Table I is approximately 37%, with a standard de-
viation of 14%. We use the map concerning the slurry rheology
[4], which is a larger size map with similar to average density,
to demonstrate the level of densities obtained by application
of several learning methods. In this experiment, we simulated
the expert-derived model to obtain data that were next used in
the learning, which, in turn, would try to reproduce the input
FCM model. We performed the learning five times, and the ave-
rage densities of the generated maps are equal 95% for the real-
coded genetic algorithm (RCGA) method [35], 93% for the
nonlinear Hebbian learning (NHL) method [26], and 92% for
the data-driven NHL (DD-NHL) method [37] (these methods
are described in Section II-A).

We propose a learning method, sparse RCGA (SRCGA),
using which we develop sparse FCMs. It incorporates a pa-
rameter (density estimate) to guide the learning process and
utilizes a modified RCGA algorithm to implement the process.
The choice of the RCGA method was implied by the nature of
the learning problem, which involves a search through a large
solution space with continuous variables and many suboptimal
solutions. Moreover, learning FCMs with the RCGA approach
has been shown to outperform other fully automated methods
[34]. The basic RCGA method was modified to accommo-
date the density estimate parameter. Comparative experimental
analysis that involves three other learning methods shows that,
if an accurate density estimate is available, the SRCGA method
learns models of high transparency in terms of both static
and dynamic properties. Analysis of results demonstrates that
the differences are statistically significant. The results also

Fig. 1. Example of FCM that models a software development project.
(a) FCM graph. (b) Connection matrix.

demonstrate that the quality of the generated FCM model is
lower in the absence of a proper density estimate; however, it is
still better or equal to the quality of models learned by the other
fully automated methods.

This paper is organized as follows. Section II presents a
required background on FCMs and a summary of the existing
FCM learning approaches. It also includes a description of the
RCGAs, which are used as the proposed learning method. Fur-
thermore, in Section III, we present detailed description of the
SRCGA. Section IV covers experimental results for synthetic
and real-world systems. Finally, key findings are summarized
in Section V.

II. BACKGROUND

A. Overview of FCMs

The techniques for modeling and analysis of dynamic sys-
tems can be divided into two major groups, namely, quantitative
and qualitative approaches [7]. FCMs, which are successors and
generalizations of cognitive maps [3], fall into the rubric of
qualitative modeling and are characterized by simplicity of both
model representation and its execution. They define a given
system as a collection of concepts that influence each other
through cause–effect relationships, which are quantified and
usually normalized to the [−1, 1] interval [16]. Positive values
describe promoting effect, whereas negative ones describe in-
hibiting effect. The value of −1 represents the highest negative
interaction, and +1 represents the highest positive interaction,
while 0 denotes a neutral relationship (no interaction). Other
values correspond to different intermediate levels of the causal
effect. The term “fuzzy” in FCMs refers to the relationship
values, which are “fuzzified” when compared to the values
present in cognitive maps [16].

FCMs can be conveniently represented either by a graph,
which is easily understood by a human, or by a connection
matrix, which is useful for computational purposes when run-
ning simulations. In the graph representation, concepts are
represented as nodes, and relationships are depicted by directed
edges between the nodes. Each edge is also associated with
a number (weight) that quantifies the strength of the corre-
sponding relationship. In the matrix representation, concepts
are represented by successive rows/columns, and cells store all
relationships values. Fig. 1 shows both of these equivalent rep-
resentations using an example model of a software development
project [33].

The two main approaches to develop FCMs are based on the
deductive modeling (expert-based methods) and the inductive

902 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 3, JUNE 2012

modeling (computational methods) [39]. The expert-based
methods exploit human domain knowledge. In this case, the
models are developed based solely on the understanding of
the modeled system by an expert or a group of experts. These
methods suffer from a number of drawbacks. They require
a knowledgeable expert who is also familiar with the FCM
formalism. In addition, the model is vulnerable to the bias ex-
hibited by the expert, especially in terms of an accurate weight
assignment. The FCM development by a group of experts may
increase the model’s reliability; however, additional parameters,
such as credibility of each expert, need to be considered, which
adds to the complexity of the entire process. Also, development
of larger maps is difficult as the number of weighs that have
to be established exhibits quadratic growth with the size of
the problem. These problems motivated investigations into
alternative methods for the development of FCMs. A number
of learning techniques, which aim at supporting or replacing
human expert(s), have been recently examined. They use avail-
able historical data and an algorithm to develop a model of a
given system. Section II-B presents a comprehensive overview
of the existing learning methods.

Once the map has been developed (either by an expert or
through learning), a user can perform static analysis of the
model using graph theory techniques (as adopted by Tsadiras
[48]). The FCM may also be used to complete simulations and,
based on them, draw conclusions as to the dynamic behavior
of the system. Simulation boils down to calculating system
states over successive iterations. System state is defined by
the degree of activation of all the concepts, which is usually
limited to the [0, 1] interval [16]. The value of zero suggests
that a given concept is not present in the system at a particular
iteration, whereas the value of one indicates that a given concept
is present to its maximum degree. Other values correspond
to intermediate levels of activation. The activation level of
each concept depends on its value at the preceding iteration
as well as on the preceding values of all concepts that exert
influence on it through nonzero relationships. Consequently, the
simulation requires knowledge of an initial state vector in order
to determine successive states of the model, which is carried out
using the following expression [2], [16]

Cj(t + 1) = f

(
N∑

i=1

eijCi(t)

)
(1)

where Ci(t) is the value of the ith node in the tth iteration, eij

is the edge weight between nodes Ci and Cj , N is the number
of nodes, and f is a transformation function.

Therefore, expression (1) is used to calculate each concept
activation degree over the successive iterations. The transfor-
mation function is used to restrict the unbounded weighted sum
to a certain range. This hinders quantitative analysis but allows
for more qualitative comparative analysis. The most commonly
encountered functions are continuous; however, some authors
utilize binary functions. The latter type of functions limits
dynamic analysis of concepts just to two values, which corre-
spond to linguistic terms: inactive and active. A comparison of
different transformation functions for FCMs was carried out in
two recent papers authored by Tsadiras [47] and by Bueno and
Salmeron [6]. Fig. 2 shows a sample simulation of the model

Fig. 2. Sample FCM simulation of the model from Fig. 1.

present in Fig. 1. The simulation was carried out with the use
of logistic transformation function [see formula (2)], which is
the most commonly used function [2] and offers significantly
greater advantages than other functions [6]. Function (2) is
continuous and returns values from the (0, 1) interval that
corresponds to the activation degrees of the concepts

f(x) =
1

1 + e−Cx
(2)

where C is a parameter used to determine the degree of fuzzifi-
cation of the function. In many practical applications, its value
is equal to 5 [2].

Simulations allow for an analysis of several aspects of FCMs,
such as concept activation levels at the final state (if there is
any) and changes/trends in the activation levels throughout the
simulation concerning either all concepts or a subset of concept
that is of interest to the user, and discovery of cycles (intervals
and concept activation levels within the cycle). This type of
analysis allows investigating “what-if” scenarios by performing
simulations of a given model for different initial state vectors.
Simulations offer a description of the dynamic behavior of
the system that can be used to support decision making or
predictions about its future states [4], [32].

B. Computational Methods for Learning FCMs

Computational methods utilize historical data available for a
given system to establish an FCM model. Semiautomated meth-
ods require a relatively limited human intervention, whereas
fully automated design approaches are able to develop FCMs
based solely on the historical data, i.e., without any human in-
teraction. These algorithms can be categorized into two groups
based on the learning paradigm used, i.e., Hebbian-based and
evolutionary algorithm-based learners [39].

Dickerson and Kosko proposed the first method that uti-
lized a simple differential Hebbian learning (DHL) algorithm
[9], [10], which is based on Hebbian learning. During DHL
learning, the values of weights are iteratively updated until the
desired structure is found. The weights of outgoing edges for
each concept in the connection matrix are modified only when
the corresponding concept value changes:

eij(t + 1) =
{

eij(t) + ct [∆Ci∆Cj − eij(t)] if ∆Ci �= 0

eij(t) if ∆Ci = 0
(3)

STACH et al.: LEARNING OF FUZZY COGNITIVE MAPS USING DENSITY ESTIMATE 903

where eij denotes the weight for relation from concept Ci to Cj ,
∆Ci represents the change in the Ci concept’s activation value,
t is the iteration number, and ct is a learning coefficient. The
learning coefficient is a small constant, whose values usually
decrease as the learning progresses.

The main drawback of this learning method is that the
formula updates weights between each pair of concepts, taking
into account only these two concepts and ignoring the influence
coming from other concepts. An improved version of DHL
learning was introduced by Huerga [13]. The algorithm called
balanced differential algorithm (BDA) eliminates one of the li-
mitations of the DHL method by taking into account all the
concept values that change at the same time when updating the
weights. More specifically, the modified formula for eij(t + 1)
takes into consideration changes in all concepts if they occur at
the same iteration and exhibit the same direction. Experimental
comparison between DHL and BDA demonstrates that the latter
method improves quality of the learned maps [13]. The BDA al-
gorithm was applied only to binary FCMs, i.e., maps with bina-
ry transformation functions, which limits its application areas.

A year later, Papageorgiou introduced an NHL algorithm
[26]. While this algorithm originates from the same learning
principles, it uses a nonlinear extension to the basic Hebbian
rule [25] by modifying the weight update formula. The NHL
learning method has been designed as a semiautomated ap-
proach that requires initial human intervention. Experts are
required to suggest nodes that are directly connected, and only
these edges are updated during learning. In addition, the experts
have to indicate a sign of each edge according to its physical in-
terpretation. This algorithm updates the corresponding weights
while preserving their initial signs. In short, the NHL algorithm
allows obtaining a model that retains initial graph structure
imposed by the expert(s), and therefore, it requires human
intervention before the learning process starts. In addition, the
experts have to define output concepts and specify range of
values that these concepts can take. The latter is used after every
update of the learned model’s weights to validate the model.
The validation is based on checking whether the model state
satisfies these constrains.

The same research group proposed active Hebbian algorithm
(AHL) in 2004 [27]. This approach realizes the task of de-
termination of the sequence of activation concepts. Expert(s)
determines a desired set of concepts, initial structure, and
interconnections of the FCM structure, as well as the sequence
of activation concepts. A seven-step AHL procedure, which
is based on Hebbian learning, is iteratively used to adjust the
weights until predefined stopping criteria are satisfied.

In the recent work, Stach et al. proposed an improved version
of the NHL method [37]. The algorithm, called DD-NHL, is
based on the same learning principle as NHL, but it takes
advantage of historical data (a simulation of the actual system)
and uses output concepts to improve the learning quality. An
empirical comparative study has shown that, if historical data
are available, then the DD-NHL method produces better FCM
models when compared with those developed by using the
generic NHL method [37].

In 2001, Koulouriotis applied the genetic strategy to learn
the FCM’s model structure from the data [18]. In their method,
the learning process is based on a collection of input/output

pairs, referred to as examples. The learning requires historical
data consisting of multiple sequences of state vectors (multiple
simulations of the system). The algorithm computes the struc-
ture of the FCM that is able to generate state vector sequences
that transform the input vectors into the output vectors. The
main drawback of this approach is that it requires multiple state
vector sequences, which might be difficult to obtain in some of
the application domains.

Particle swarm optimization (PSO) method, proposed by Par-
sopoulos, belongs to the class of swarm intelligence algorithms
[28]. This method aims at learning the FCM structure based
on historical data that converge to a desired final state. The
PSO is a population-based algorithm, which performs a search
for the solution by maintaining and transforming a popula-
tion of individuals. The learning requires human knowledge
to specify adequate constraints, which would guarantee that
the relationships within the FCM model retain the physical
meaning defined by the expert(s).

The algorithm proposed by Khan and Chong aims to accom-
plish a different learning objective [15]. Instead of learning the
structure of the FCM model, their goal was to find an initial
state vector (initial condition) that leads a given model to the
specified end state. Their method employed genetic algorithms
(GAs) to find the initial state.

A fully automated method for learning FCMs, which is based
on RCGAs, was introduced by Stach in 2005 [35]. The RCGA
is a floating-point extension [12] to GAs [11]. This extension
was used to allow finding of the floating point weights instead
of weights that take on a limited set of values. The core of
this approach is a learning module which exploits RCGA to
find the FCM structure that is capable of mimicking the given
input historical data. This approach is flexible in terms of the
input data as it can use either one or multiple sets of concept
values over successive iterations. A follow-up of this work
includes analysis of the quality of the RCGA-based learning
depending on the amount of the available historical data [36]. It
demonstrates that the RCGA-based method can generate FCM
models that are identical to models proposed by a domain
expert, given the training data of sufficient size.

Recently, the same research group has introduced a parallel
RCGA-based method that targets learning of large maps that
consist of dozens of concepts [34]. The method was reported to
be up to four times faster than the sequential RCGA learning
when executed on eight processors, and it allows learning maps
that include several dozens of concepts within a few hours.
This publication was followed by another method that aims at
improving learning time. This work is based on the divide and
conquer strategy, where the input data are divided into several
subsets that are used simultaneously to learn submodels, which
are later merged into a single final model [38].

Table II summarizes the existing computational methods for
learning FCMs. It includes several aspects, such as learning
goal, involvement of a domain expert, input data type, and
learning strategy used.

A more detailed comparison of expert-based methods with
computational methods for learning FCMs is presented in a
recent work [40]. It concludes that computational methods are
more suitable to perform accurate dynamic analysis of a given
system, whereas expert-based methods provide a more accurate

904 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 3, JUNE 2012

TABLE II
COMPARISON OF INDUCTIVE METHODS USED IN LEARNING OF FCMS. THE “NO. OF NODES” COLUMN REPORTS MAP SIZES THAT HAVE BEEN

LEARNED USING A GIVEN METHOD AND REPORTED IN THE ORIGINAL REFERENCE, WHEREAS THE “LEARNING ALGORITHM”
COLUMN SHOWS A CATEGORY OF THE LEARNING METHOD THAT A GIVEN TECHNIQUE BELONGS TO

static analysis. Semiautomated methods, in which experts su-
pervise the learning, provide partial solution to this problem.
However, the existing semiautomated methods for learning
FCMs are not as good for the static analysis as the models
obtained from the expert-based methods. They are worse in the
context of the dynamic analysis when compared with the fully
automated methods.

C. Figures

GAs have been used in various problem domains to perform
optimization and search tasks [11]. They have numerous ad-
vantages such as a broad applicability, ease of use, and ability
to find global solutions. GAs maintain a population of chromo-
somes that evolves over time using operators inspired by evo-
lutionary biology, such as mutation, selection, and crossover.
Each chromosome encodes a solution to a given problem, and
its quality is quantified by a fitness value that comes from a
fitness function. The fitness function is custom defined for a
given genetic representation (problem dependent) by the de-
signer. The GAs usually start from a randomly generated popu-
lation, and they evolve it to produce subsequent generations. In
each generation, a new population is formed by using genetic
operators and by exploiting fitness values of the chromosomes.
The idea is to produce better solutions to the problem over the
successive generations. GAs succeed in application to large,
complex, and poorly understood search spaces, in which classi-
cal tools are often inappropriate. The details about GAs can be
found in [11] and [31].

The RCGA [12] is a floating-point extension to basic GAs.
This means that, in contrary to GAs that use binary vectors,
RCGA represents chromosomes as floating-point vectors. This
makes RCGA more effective in tackling optimization problems
with continuous variables. The genetic operators used in the
GAs have also been revised in order to handle floating-point
values in the RCGA method. Nevertheless, the underlying
principles of these two optimization techniques are the same.
A comprehensive review of the RCGAs is presented in [12].

III. PROPOSED APPROACH

The proposed method, called SRCGA, is a computational
method for learning FCMs. It takes the input data and density
estimate parameter and carries out the learning process until the
final model, called candidate FCM, is found. Input data are val-
ues of concept activations at successive time points (iterations).
For a system with N concepts and K data points, the input data
form a K × N matrix, which is called input data matrix. Each
row of this matrix, given as C(t) = [C1(t), C2(t), . . . , CN (t)],
where t = 1 . . . K, stores values of activations of the concepts
at tth iteration. For the purpose of the genetic-based learning,
the problem is transformed into an optimization task. The
objective of this optimization is to find the best set of weights
of the candidate FCM, i.e., E = [e11, e12, . . . , eN1, . . . , eNN],
where eij is the relationship strength from concept Ci to con-
cept Cj , such that they maximize a predefined quality function
(fitness function). The quality function evaluates the candidate
FCM based on its ability to approximate the input data. Hence,
the learning problem boils down to determining the values of
N2 parameters that can take any value from the [−1, 1] range.
The optimization process in the SRCGA method is based on the
modified RCGA method.

The modified RCGA method itself, similar to a generic
RCGA method, has a number of parameters, which need to
be fixed before running the simulations. In our experiments,
they have been set up consistently with [35] and [36]. They
include population size, maximum fitness value (max fitness),
maximum number of generation (max generation), recombi-
nation method, recombination probability, mutation method,
mutation probability, fitness function (fitness), and selection
method. The latter parameters are discussed in the follow-
ing. They are fixed for all of the experiments reported in
the following discussion, and thus, they should be treated
as being transparent to the user. In contrast to the generic
RCGA method, the SRCGA learning needs an additional
parameter—the density estimate. In case when the density is
unknown, a default value of 37%, as discussed in Section I,
should be used. This parameter is used to guide the learning

STACH et al.: LEARNING OF FUZZY COGNITIVE MAPS USING DENSITY ESTIMATE 905

toward solutions with a predefined structure (candidate FCM
density).

The SRCGA method is a six-step procedure described as
follows:

STEP 1. Initialize and evaluate population
First, the population of chromosomes is initialized. Each
gene, which represents one of the weights in a given con-
nection matrix (represented as the chromosome), is reset
to the value of zero with probability (1—density estimate).
All remaining genes are initialized with the value chosen
randomly from a uniform distribution [a, 1] and are as-
signed the negative sign with the 50% probability. In other
words, all nonzero values are chosen from the uniform
distribution in the interval [−1,−a] and [a, 1], while the
values from [−a, a] are rounded down to 0. a is a rounding
cutoff, and it is equal to 0.05, as suggested in the previous
studies [35], [36]. Second, each chromosome is evaluated
by assigning to it a fitness function value (STEP 5).

STEP 2. Check stop criteria
IF the fitness value of the best individual (candidate
FCM) is
greater than max fitness
OR current generation is greater than max generation
THEN stop the learning process.
Candidate FCM is a chromosome with the highest fitness
function value in the current generation.

STEP 3. Recombine population
Recombination is performed using crossover operation.
In our experiments, we exploited a simple one-point
crossover. It carries a low computational cost, yet as
demonstrated through experiments [35], it effectively han-
dles the optimization problem.

STEP 4. Mutate population
For each gene selected for mutation, the following proce-
dure is applied:
First, the density of the chromosome that includes the given
gene is calculated (defined as the number of nonzero genes
over the total number of genes). If this number is lower than
or equal to the density estimate, then mutation is carried out
using a randomly chosen mutation operator. The random
mutation, nonuniform mutation, and Mühlenbein’s muta-
tion operators are considered, and all of them are normal-
ized such that they return numbers between −1 and 1. This
is to ensure that each gene’s value is a valid relationship
strength of the corresponding FCM. If the chromosome’s
density is higher than the density estimate, then the gene
is reset to zero. In other words, the mutation operator is
dynamically adjusted each time to guide the optimization
toward solutions with the predefined density. This way
of modifying mutation operation has been reported as an
effective approach to boost convergence of GAs [5], [21].
It allows intensifying search in certain areas of the search
space.

STEP 5. Evaluate population
Similar to our previous works [34]–[36], the design of
the fitness function in the proposed learning method takes
advantage of a specific feature of the FCM theory. Specif-
ically, at each iteration during the model simulation, the

current state vector depends only on the state vector at
the preceding iteration and does not depend on any other
state vectors [see formula (1)]. We use this property to
group each two adjacent state vectors in the input data
matrix to form K − 1 input data pairs. Within each pair,
we call the antecedent a system stimulus, whereas the
decedent is called a system response. These input data pairs
store information about the system’s dynamics, and con-
sequently, they are used in the fitness function definition.
This approach was reported to provide better convergence
when compared to a method that uses the entire data set at
once [35].
The fitness function for each chromosome is calculated
by performing one-step simulations of the correspond-
ing FCM starting from each system stimulus. The state
vectors obtained from simulations, which constitute FCM
responses, are compared against the corresponding true
system responses. The obtained error value is used to
calculate the fitness value. An auxiliary function (4) is
introduced to ensure that better chromosomes have a higher
fitness value and to normalize the fitness value to the (0, 1]
interval [34]–[36]. As a result, the following formula (4) is
used to calculate the fitness function for each chromosome:

fitness(Error) =
1

b · Error + 1
(4)

where

Error =
1

(K − 1) · N

K−1∑
t=1

N∑
n=1

∣∣∣Cn(t) − Ĉn(t)
∣∣∣2 (5)

C(t) = [C1(t), C2(t), . . . , CN (t)]—original system state
at time point t (from input data), Ĉ(t) = [Ĉ1(t), Ĉ2(t),
. . . , ĈN (t)]—state of the candidate FCM obtained from
performing one-step simulation from C(t − 1) initial state
vector, and b—fitness function coefficient (set to 10 000 as
used in [34]–[36]).

STEP 6. Select next population
Two popular selection strategies, i.e., roulette wheel and
tournament selection, are randomly applied. Next, go to
STEP 2.

The SRCGA method, by using modified population initial-
ization and mutation operators (STEP 1 and STEP 4), guides
the learning toward solutions of a given density. Since the
ultimate goal is to optimize the candidate FCM in terms of
its dynamic properties, the fitness function (STEP 5) compares
the simulation result of the candidate FCM against the input
data. The overall architecture of the RCGA optimization, its
parameters, and the fitness function formula are consistent with
our previous works [35], [36].

We note that the SRCGA method is capable of handling
missing states since the fitness function exploits pairs of con-
secutive states. In other words, the algorithm splits the data
into input–output pairs of successive states, which are used in
RCGA-based optimization. Therefore, if the input data matrix
has missing rows, then in STEP 5, when calculating the Error
value, only rows C(t) having defined C(t + 1) would be used
in the formula (5). In such case, the value of K in the same

906 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 3, JUNE 2012

formula would be updated and equal to the number of existing
C(t) − C(t + 1) pairs in the input data matrix.

IV. EXPERIMENTS

The experiments evaluate the quality of the SRCGA method
on synthetic and real-world models. Similarly as in [34]–[37],
we use a known FCM connection matrix to generate the input
data, which are next used by the learning method to reconstruct
this matrix. The evaluation was performed based on several
criteria that measure both the static and dynamic properties of
the generated candidate FCMs against the known model and
the input data (as well as additional data simulated from the
known FCM), respectively. We carry out a comparative analysis
with other state-of-the-arts methods for learning FCMs, which
include both Hebbian-based and genetic-based approaches.

A. Evaluation Criteria

Several quality criteria, which include in sample and out
of sample errors that evaluate the dynamic properties of the
candidate FCM and matrix error, specificity, sensitivity, and SS
mean that evaluate the static properties, were measured.

1) In sample error—measures the difference between the in-
put data (given as the input data matrix) and the data gen-
erated by simulating the candidate FCM from the first row
in the input data matrix (initial state vector). The criterion
is defined as a normalized average of absolute errors
between corresponding concept values at each iteration:

In sample error =
1

(K − 1) · N

K−1∑
t=1

N∑
n=1

∣∣∣Cn(t) − Ĉn(t)
∣∣∣

(6)

where Cn(t) is the value of node n at iteration t in the
input data, Ĉn(t) is the value of a node n at iteration t
from simulation of the candidate FCM from C(0) initial
state vector, K is the input data length, and N is the
number of nodes.

2) Out of sample error—evaluates generalization capabili-
ties of the candidate FCM. To compute this criterion, both
the input model and the candidate FCMs are simulated
from ten randomly chosen initial state vectors that were
not used to learn the candidate FCM. Subsequently, the
error values, which compare state vector sequences gen-
erated from the input FCM and the candidate FCM, are
computed for each of the ten simulations, and an average
of these values is reported:

Out of sample error

=
1

P · (K − 1) · N

P∑
p=1

K−1∑
t=1

N∑
n=1

∣∣∣Cp
n(t) − Ĉp

n(t)
∣∣∣ (7)

where Cp
n(t) is the value of a node n at iteration t for the

data generated by input FCM started from pth initial state
vector, Ĉp

n(t) is the value of a node n at iteration t for the
data generated by candidate FCM started from pth initial
state vector, K is the input data length, N is the number
of nodes, and P is the number of different initial state
vectors.

3) Execution time—measures the time (in seconds) to learn
the candidate FCM from the given data. All methods
were implemented in-house using C language and were
executed on the same hardware platform. The hardware
used to execute the experiments was a state-of-the-art 12-
way IBM p570 server with POWER5 processors. How-
ever, it should be noted that this measure is not suitable
to compare computational complexity of the learning
methods since it just reports average time needed to learn
FCM for a given setup.

4) Matrix error—evaluates the candidate FCM structure
against the input model. It is defined as a normalized av-
erage of absolute errors between corresponding weights:

Matrix error =
1

N2

N∑
i=1

N∑
j=1

|eij − êij | (8)

where eij is the edge weight between nodes Ci and Cj in
the input model and êij is the edge weight between nodes
Ci and Cj in the candidate FCM.

The matrix error measure does not provide sufficient
insights into the map structure in terms of its density.
Therefore, in addition, the structural evaluation was ex-
tended and transformed into a binary classification prob-
lem with two classes, namely, zeros and nonzeros, which
are defined for all map weights. Each weight from both
the original FCM and the candidate FCM is assigned to
one of the two classes. Each comparison of the corre-
sponding weights from the input FCM with these from
the candidate FCM results in one of the four outcomes,
TP—correctly identified zero, TN—correctly identified
nonzero, FP—nonzero (in the input model) incorrectly
identified as zero (in the candidate FCM), and FN—zero
(in the input model) incorrectly identified as nonzero (in
the candidate FCM). Two measures, i.e., sensitivity and
specificity, are used to evaluate the classification quality
based on the cardinalities of the four outcomes over the
entire connection matrix:

Sensitivity=
TP

TP + FN
Specificity=

TN

TN+ FP
. (9)

In addition, the harmonic mean of sensitivity and speci-
ficity SS − mean is calculated:

SSmean =
2 · Sensitivity · Specificity

Sensitivity + Specificity
. (10)

This measure is a weighted average of the sensitivity
and specificity which ranges between 0 and 1, where 1
corresponds to a perfect result.

B. Data sets

We used both synthetic and real-world data. In the first
scenario, the data for each experiment (the input data matrix)
were obtained by simulating randomly generated FCMs (input
models) and starting from a certain random initial vector. Next,
ten randomly chosen initial state vectors were generated to
perform the out of sample tests. The experiments were realized
for FCMs of size 5, 10, 20, and 40 concepts and densities 20%
and 40%. For each setup, they were repeated five times with

STACH et al.: LEARNING OF FUZZY COGNITIVE MAPS USING DENSITY ESTIMATE 907

TABLE III
EXPERIMENTAL RESULTS WITH SYNTHETIC DATA. #NODES AND DENSITY COLUMNS DEFINE THE INPUT MODEL. THE SUBSEQUENT COLUMNS

CORRESPOND TO EVALUATION MEASURES DESCRIBED IN SECTION IV-A. TIME, IN SAMPLE, AND MATRIX, SPECIFICITY, SENSITIVITY, AND

SS MEAN VALUES ARE AVERAGED ACROSS FIVE EXPERIMENTS FOR EACH SETUP (WITH CORRESPONDING STANDARD DEVIATIONS), WHILE

OUT OF SAMPLE VALUES ARE ADDITIONALLY AVERAGED ACROSS TEN EXPERIMENTS PERFORMED FROM DIFFERENT INITIAL VECTORS

different input models and state vectors. We report the average
and standard deviations from these five repeats.

In the second scenario, three large FCMs reported in lit-
erature were used. In order to minimize any potential bias,
we selected FCMs that were developed as consensus based
on minimum three experts’ opinions rather than by a single
expert knowledge. The models involve 9, 12, and 13 concepts
that describe, correspondingly, plant supervisory [42], military
planning [49], and slurry rheology [4]. These models were
simulated from initial vectors suggested by the authors to
generate the input data matrix. Similarly to experiments with
the synthetic data, the out of sample error was computed by
simulating the input model and the candidate FCM from ten
randomly chosen initial vectors.

C. Results

Table III summarizes the experimental results with the syn-
thetic data. The density estimate value was set equal to the
actual density of the known FCM used to generate the input
data. The columns reporting the execution time, in sample
error, matrix error, specificity, sensitivity, and SS mean are
averaged over the five independent experiments performed with

each setup, whereas the out of sample error was additionally
averaged over the ten experiments performed with different
initial vectors. The results were compared with three other
recent learning methods, namely, RCGA [35], NHL [26], and
DD-NHL [37]. In order to perform unbiased comparison, the
same initial population was used for RCGA and SRCGA
methods (in the latter case, the gene reset was carried out
after the initialization; see STEP 1 of the SRCGA). Since the
NHL and DD-NHL methods use just a single initial connection
matrix as their starting point (in contrary to the RCGA and
SRCGA that use the entire population of 100 chromosomes),
100 experiments were carried out with these methods—each
experiment was performed with a different initial matrix that
was taken from the initial population utilized by the RCGA
and SRCGA methods. The best (based on the in sample error),
among the 100 experiments, results were reported in Table III
for both the NHL and DD-NHL methods. Consequently, we
report cumulative time, over the 100 experiments, for the NHL
and DD-NHL methods.

The results in Table III show that SRCGA outperforms other
methods in terms of the out of sample and the matrix errors.
In order to facilitate the comparative analysis, we used paired
t-test to investigate statistical significance of differences be-

908 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 3, JUNE 2012

TABLE IV
TESTS OF STATISTICAL SIGNIFICANCE OF DIFFERENCES BETWEEN THE SRCGA AND OTHER METHODS GIVEN THAT THE DENSITY ESTIMATE VALUE

WAS SET EQUAL TO THE ACTUAL DENSITY OF THE KNOWN FCM USED TO GENERATE THE INPUT DATA. THE NUMBER OF PLUS SIGNS IN

CELLS REFLECTS DIFFERENT CONFIDENCE LEVELS, I.E.,, 98% (+ + +), 95% (++), AND 90% (+), FOR THE SIGNIFICANCE TESTS

tween the proposed method and other methods. The obtained
results are summarized in Table IV.

The analysis of the out of sample (see Table IV) shows that
the SRCGA is significantly better at 98% confidence level than
the three other methods under consideration for the small and
medium size maps (containing five and ten nodes). For larger
maps (with 20 and 40 nodes), the improvements at 98% are
true when the map is compared against the DD-NHL and NHL
approaches, whereas the confidence level drops to 95% (20
nodes) and 90% (40 nodes) when the SRCGA is compared with
the RCGA. The results of the proposed method (see Table III)
show that the maximal difference between the out of sample
error for different map densities for a given map size is equal to
0.004. The matrix error (see Table IV) generated by the SRCGA
method is statistically significantly better at 98% confidence
level than the error produced by the three existing methods for
all setups. The results from Table III suggest that the matrix
error is smaller for sparser maps, i.e., 20%, when compared
with the denser maps. This trend is more evident for larger
maps, i.e., 0.135 versus 0.245 for maps consisting of 40 nodes,
which is due to a larger number of zeros in the sparser maps and
the fact that the proposed method enforces zeros in its solution.
We further investigate this observation by calculating baselines
using ten randomly generated maps of a given density and
size 40, with their nonzero weights set at random. The average
matrix error for these maps is equal to 0.18 for a density of 20%
and 0.34 for a density of 40%. This means that the SRCGA
improves over the baseline by 25% for the sparser and by 28%
for the denser maps, respectively.

Additional insights concerning structural quality of the can-
didate FCM can be obtained from the analysis of the three
last columns in Table III. Specificity determines the ratio of
correctly assigned “nonzero” values, whereas sensitivity de-
termines the ratio of correctly assigned “zero” values in the
connection matrix of the candidate FCM when compared to
the input model. Using an approach described in the previous
paragraph, we calculated the baselines for these measures. The
baseline specificities are equal to 0.18 (20%) and 0.37 (40%),
the baseline sensitivities are equal to 0.82 (20%) and 0.63
(40%), and the baseline SS means are 0.30 (20%) and 0.47
(40%), respectively. In addition, ten random maps without any
density restrictions were generated for each setup, and the
following baseline was obtained: specificities of 0.95 (20%) and
0.94 (40%), sensitivities of 0.05 (20%) and 0.06 (40%), and
SS means of 0.10 (20%) and 0.11 (40%). The analysis of SS

mean values, which combine specificity and sensitivity, shows
that the SRCGA method outperforms the other considered ap-
proaches. This demonstrates that structurally accurate solutions
(evaluated not only by the number of nonzero relationships
but also based on their placement) are found by guiding the
learning process. Hence, this suggests that focusing the search
on a subspace with similar (density-driven) models is beneficial
for the learning of maps characterized by good quality that
is measured by the SS mean. Moreover, the proposed method
is between five times better (for large 40-nodes maps) and
about nine times better (for small five-node maps) than the
baseline that does not consider the density, and it improves
over the baseline with the known density by 40% and 16%
for the sparser and denser maps of size 40, respectively. When
compared against the RCGA, NHL, and DD-NHL, the SRCGA
provides substantially higher sensitivity and lower levels of
specificity. We note that both of these measures are relatively
balanced in the case of real RCGA, while the other methods
are characterized by high specificity (due to the fact that they
predict virtually all weights with nonzero values) and very low
specificity between 5% and 12%. Although RCGA and SRCGA
methods obtain the out of sample errors that differ “only”
at 90% significance for the 40 nodes maps (see Table IV),
the SS mean values of the proposed method are over three
times higher, and they demonstrate that the corresponding maps
are more useful for the static analysis. Overall, the results
for smaller maps suggest that, by using the additional density
parameter, the SRCGA method is capable of learning maps with
high structural quality. This parameter guides the evolutionary
learning process and effectively eliminates these maps that
could provide accurate dynamic modeling being structurally
significantly different from the original map, refer to the results
in Table III for RCGA, NHL, and DD-NHL methods. For larger
maps, even though the structural quality of SRCGA solutions
deteriorates, this method still outperforms the other approaches
by focusing the search only on a subset of the search space.

The time to compute the solutions is similar for all con-
sidered methods. We observe a moderate, about 20%–30%,
increase between the SRCGA and the RCGA methods. The
time for the NHL and DD-NHL method concerns learning of
100 models. Since these methods can learn a single model (in
contrast to RCGA-based methods that operate over a population
of 100 models), they provide a faster solution if the user would
be satisfied with a lower quality of the generated map. We
note that the quality of these faster solutions would be likely

STACH et al.: LEARNING OF FUZZY COGNITIVE MAPS USING DENSITY ESTIMATE 909

TABLE V
EXPERIMENTAL RESULTS WITH REAL-WORLD MODELS. THE DENSITY EST COLUMN REPORTS THE DENSITY ESTIMATE PARAMETER USED WITH

THE SRCGA LEARNING. THE SUBSEQUENT COLUMNS CORRESPOND TO EVALUATION MEASURES DESCRIBED IN SECTION IV-A. TIME, IN SAMPLE,
AND MATRIX, SPECIFICITY, SENSITIVITY, AND SS MEAN VALUES ARE AVERAGED ACROSS FIVE EXPERIMENTS FOR EACH SETUP (WITH

CORRESPONDING STANDARD DEVIATIONS), WHILE OUT OF SAMPLE VALUES ARE ADDITIONALLY AVERAGED ACROSS TEN EXPERIMENTS

PERFORMED FROM DIFFERENT INITIAL VECTORS. ABBREVIATIONS IN THE METHOD COLUMN: SRCGA—SPARSE RCGA,
D&C—DIVIDE AND CONQUER, SRCGA 37%—SRCGA WITH THE DEFAULT DENSITY ESTIMATE VALUE, I.E., 37%

lower than the values reported in Table III since these numbers
correspond to the best solution among the 100 experiments.
These quantified execution time values are affected by the
initial conditions and the quality of the source code, and thus,
these results should be treated as rough estimates, and they may
not reflect the underlying computational complexity. Estimation
of the computational complexity of the considered learning
methods is a challenging task that falls beyond the scope of
this paper and which deserves a separate contribution.

Table V shows the experimental results for the real-world
models. Results were also compared to those produced by the
divide and conquer strategy [38] applied to both RCGA and
SRCGA methods. We used divide and conquer setup with two
processors, i.e., the input data were split into two subsets since

the learning quality decreases statistically significantly for the
considered map sizes when using more processors [38]. For
the SRCGA method, the experiments with the correct density
estimate value, i.e., the actual density of the original map, are
supplemented by experiments with the default density estimate
value, i.e., 37%. We used the divide and conquer approach with
both SRCGA setups as well as with generic RCGA method.
In addition to the experiments that are analogous to the exper-
iments performed with the synthetic data, we also carried out
analysis of sensitivity of the proposed method to the density es-
timate parameter for the largest considered real-world map. The
value of this parameter was varied between 10% and 100% with
5% increments, and we investigated the influence of the setting
of the parameter values on the quality of the candidate FCM.

910 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 3, JUNE 2012

Fig. 3. Sensitivity of the proposed method to the setting of the density
estimate parameter. Bars show relative increase of the out of sample error
(scale to the left) and the matrix error (scale to the right) with respect to the
lowest error obtained for the density estimate that is equal to 40%. Labels on
the horizontal axis correspond to the difference between a given value of the
density estimate and the value for the density of 40%.

The SRCGA approach with the correct density estimate con-
sistently provides the smallest out of sample errors across the
three real-world maps. The second best errors are obtained by
the SRCGA with the default density estimate and by the generic
RCGA method. As expected, the application of the divide and
conquer strategy to each of the three RCGA methods (SRCGA
with correct density estimate, SRCGA with default density
estimate, and generic RCGA) increases the error value, but this
increase is not statistically significant at 90% confidence level,
as measured using the paired t-test. The values of the quality
measures are consistent with the experiments obtained for the
synthetic data that are reported in Table III.

Next, we analyze the results from Table V that concern the
SRCGA learning of the largest considered map with 13 nodes
with varying density estimate values. Both out of sample and
matrix errors have the lowest values when the density estimate
is equal to 40%, which is close to the actual density of 39%.
These results are similar to the results for the synthetic maps
with size of 10, which is comparable to the size of the slurry
rheology map. Fig. 3 shows the influence of the density estimate
on these two criteria for the learning of the slurry rheology map.

Both errors are upper bounded by the solution obtained from
the RCGA method which does not utilize information about the
density. This means that, even if the estimate of the density is
incorrect, the maps generated by the SRCGA will be still better
or at least equivalent, both in terms of the out of sample and
matrix errors, when compared to the maps generated by the
RCGA, NHL, and DD-NHL methods. We note that the RCGA
is equivalent to the SRCGA with the density estimate of 100%,
which is confirmed by the results in Table V. A relatively small
increase in the out of sample error (up to 15%) across the entire
range of the density estimate demonstrates that there are many
structurally different maps (of different densities) that exhibit
similar dynamic behavior. The classification results reported in
Table V show that the SRCGA outperforms other methods in
terms of the SS mean values. In order to put these numbers
into perspective, we compute the baseline by averaging ten
randomly generated maps with a density of 39%. The baseline
specificity, sensitivity, and SS mean are equal to 0.35, 0.63,
and 0.45, respectively. Table V shows that, when considering

Fig. 4. Weight difference as a function of the density estimate. The baseline
(gray bars) was estimated by the weight difference value for the RCGA method,
which is independent of the density estimate.

the SS mean values, the results obtained with the SRCGA for
the density estimates between 20% and 70% are better than
the baseline. Therefore, the density estimate could be off by
as much as −20% or +30% with respect to the actual value,
and the SS mean would still be better than this baseline that is
calculated for the actual density.

Finally, we investigate the relationship between the density
estimate and the convergence of the method to the same can-
didate FCM. This experiment aims at finding whether similar
solution maps would be found if the input data (data matrix),
which correspond to the same underlying FCM, would change.
Solutions from the previous experiment were taken as a refer-
ence (reference models). We generated ten new random initial
vectors, used them to generate ten different data matrices from
the actual slurry rheology map, and performed learning for each
input data matrix. Next, we calculated the average difference
per concept (weight difference) for a given method according
to the following expression:

Weight difference =
1

NP

N∑
i=1

N∑
j=1

P∑
p=1

|eij − êij(p)| (11)

where eij is the edge weight between nodes Ci and Cj in
the reference model, êij(p) is the edge weight between nodes
Ci and Cj in the candidate FCM obtained from pth learning,
N = 13 is the number of nodes, and P = 10 is the number of
experiments.

Fig. 4 shows the relationship between the density estimate
value and weight difference. It shows that the SRCGA method
is capable of finding similar solutions for a given system when
the density estimate is lower or the same as the true density. For
the estimate of 40%, which is the closest to the actual density
of 39%, the SRCGA is over two times more consistent in
finding the same solution than RCGA (according to the weight
difference value). In the case when the density is overestimated,
the consistency of the proposed method decreased, but it is still
upper bounded by the weight difference value of the RCGA
method.

V. CONCLUSION

FCMs have received a well-deserved attention in recent
years. Numerous successful applications in various research

STACH et al.: LEARNING OF FUZZY COGNITIVE MAPS USING DENSITY ESTIMATE 911

and industrial domains clearly demonstrate the effectiveness
of this modeling technique. However, it seems that further
development of FCMs is somewhat constrained by deficiencies
that are present in their underlying theoretical framework. One
of the issues that have been recently investigated is to provide a
systematic approach to efficient design of FCMs.

In this paper, a new method for learning sparse FCMs from
data has been proposed. It aims at learning models that are
structurally more similar to real-world models when compared
with the FCMs obtained from current fully automated learning
approaches. Our examination of the published FCMs reveals
that the maps are relatively sparsely connected. This informa-
tion has been utilized to develop a new learning strategy, called
SRCGA, that guides the learning process toward finding maps
of a predefined density, determined by the density estimate
parameter. Based on literature review, we found that the average
density of the published models is around 37%; hence, this
value could be used as a density estimate if a user has no prior
knowledge about the modeled system’s density.

The proposed method exploits the modified RCGA. This
particular choice was motivated by the nature of the under-
lying optimization problem, which involves search through a
large continuous solution space with many suboptimal solu-
tions. We extended the generic RCGA to accommodate the
constraints imposed by the density estimate parameter. Ex-
perimental analysis of the SRCGA method on synthetic data
shows that, given a correct density estimate, it is capable of
producing models that are statistically significantly better at the
98% level of confidence than models generated by all other
considered learners for all tested setups, except for the 20 and
40 nodes maps when compared to the RCGA method where
the proposed method is statistically significantly better at the
95% and 90% level of confidence, respectively. Analysis of the
structural quality expressed by the matrix error reveals that the
SRCGA approach performs statistically significantly better (at
the 98% level of confidence) than all other considered methods
for all setups. Experiments with real-world models demonstrate
that, when the correct density estimate is unknown, the SRCGA
method is still able to develop models of a quality equivalent or
better than the quality offered by the other methods. In addition,
it converges to more similar maps when using different input
data that correspond to the same system.

Learning FCMs from data is a difficult task due to the high
complexity and dimensionality of the underlying problem, i.e.,
the quadratic growth of the number of weights with respect
to the number of concepts. The automated learning methods
need to cope with a substantial challenge of existence of many
suboptimal solutions that are structurally considerably different
from each other. Consequently, such maps are not suitable for
the static analysis. The proposed SRCGA learning method is
the first method that considers structural features (density) of
the generated FCMs. The idea behind introducing this method
is to search the highly complex continuous space in a sound
manner by concentrating efforts only on a fairly small subspace.
Experimental results that concern both static and dynamic
properties of the FCMs learned with the SRCGA method are
promising. These results show that the density estimate can
be a useful parameter to improve the learning quality when
compared to the generic RCGA method that does not use any

prior information concerning the structure of the map. However,
further research toward a systematic approach to develop FCMs
from data is still needed.

REFERENCES

[1] J. Aguilar, “A dynamic fuzzy-cognitive-map approach based on random
neural networks,” Int. J. Comput. Cognition, vol. 1, no. 4, pp. 91–107,
Jan. 2003.

[2] J. Aguilar, “A survey about fuzzy cognitive maps papers,” Int. J. Comput.
Cognition, vol. 3, no. 2, pp. 27–33, Jun. 2005.

[3] R. Axelrod, Structure of Decision: The Cognitive Maps of Political Elites.
Princeton, NJ: Princeton Univ. Press, 1976.

[4] G. A. Banini and R. A. Bearman, “Application of fuzzy cognitive maps to
factors affecting slurry rheology,” Int. J. Mineral Process., vol. 52, no. 4,
pp. 233–244, Feb. 1998.

[5] D. Bhandari, N. R. Pal, and S. K. Pal, “Directed mutation in genetic
algorithms,” Inform. Sci., vol. 79, no. 3/4, pp. 251–270, Jul. 1994.

[6] S. Bueno and J. L. Salmeron, “Benchmarking main activation functions in
fuzzy cognitive maps,” Expert Systems With Applications, vol. 36, no. 3,
pp. 5221–5229, Apr. 2009.

[7] R. J. G. B. Campello and W. C. Amaral, “Towards true linguistic mod-
elling through optimal numerical solution,” Int. J. Syst. Sci., vol. 34, no. 2,
pp. 139–157, Feb. 2003.

[8] C. Carlsson and R. Fuller, “Adaptive fuzzy cognitive maps for hyper-
knowledge representation in strategy formation process,” in Proc. Int.
Panel Conf. Soft Intell. Comput., 1996, pp. 43–50.

[9] J. A. Dickerson and B. Kosko, “Virtual worlds as fuzzy cognitive maps,”
in Proc. Virtual Reality Annu. Int. Symp., 1993, pp. 471–477.

[10] J. A. Dickerson and B. Kosko, “Virtual worlds as fuzzy cognitive maps,”
Presence, vol. 3, no. 2, pp. 173–189, 1994.

[11] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning. Reading, MA: Addison-Wesley, 1989.

[12] F. Herrera, M. Lozano, and J. L. Verdegay, “Tackling real-coded genetic
algorithms: Operators and tools for behavioural analysis,” Artif. Intell.
Rev., vol. 12, no. 4, pp. 265–319, Aug. 1998.

[13] A. V. Huerga, “A balanced differential learning algorithm in fuzzy cog-
nitive maps,” in Proc. 16th Int. Work. on Qualitative Reasoning, 2002,
poster.

[14] R. I. John and P. R. Innocent, “Modeling uncertainty in clinical diagnosis
using fuzzy logic,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 35,
no. 6, pp. 1340–1350, Dec. 2005.

[15] M. S. Khan and A. Chong, “Fuzzy cognitive map analysis with genetic
algorithm,” in Proc. Indian Int. Conf. Artif. Intell., 2003, pp. 1196–1205.

[16] B. Kosko, “Fuzzy cognitive maps,” Int. J. Man-Mach. Stud., vol. 24,
pp. 65–75, 1986.

[17] B. Kosko, Fuzzy Engineering. Englewood Cliffs, NJ: Prentice-Hall,
1997.

[18] D. E. Koulouriotis, I. E. Diakoulakis, and D. M. Emiris, “Learning fuzzy
cognitive maps using evolution strategies: A novel schema for modeling
and simulating high-level behavior,” in Proc. IEEE Congr. Evol. Comput.,
2001, pp. 364–371.

[19] D. E. Koulouriotis, I. E. Diakoulakis, D. M. Emiris, E. N. Antonidakis,
and I. A. Kaliakatsos, “Efficiently modeling and controlling complex dy-
namic systems using evolutionary fuzzy cognitive maps,” Int. J. Comput.
Cognition, vol. 1, no. 2, pp. 41–65, Jun. 2003.

[20] K. C. Lee, W. J. Lee, O. B. Kwon, J. H. Han, and P. I. Yu, “Strategic plan-
ning simulation based on fuzzy cognitive map knowledge and differential
game,” Simulation, vol. 71, no. 5, pp. 316–327, Nov. 1998.

[21] J. Lis, “Genetic algorithm with the dynamic probability of mutation in
the classification problem,” Pattern Recognit. Lett., vol. 16, no. 12,
pp. 1311–1320, Dec. 1995.

[22] Y. Miao, “Dynamic cognitive networks—An extension of fuzzy cog-
nitive map,” IEEE Trans. Fuzzy Syst., vol. 9, no. 5, pp. 760–770,
Oct. 2001.

[23] S. T. Mohr, “The use and interpretation of fuzzy cognitive maps,” M.S.
thesis, Rensselaer Polytechnic Inst., Troy, NY, 1997.

[24] T. D. Ndousse and T. Okuda, “Computational intelligence for distributed
fault management in networks using fuzzy cognitive maps,” in Proc. IEEE
Int. Conf. Commun. Converging Technol. Tomorrow Appl., 1996, vol. 3,
pp. 1558–1562.

[25] E. Oja, H. Ogawa, and J. Wangviwattam, “Learning in nonlin-
ear constrained Hebbian networks,” in Artificial Neural Networks,
T. Kohonen, K. Makisara, O. Simula, and J. Kangas, Eds. Amsterdam,
The Netherlands: Elsevier, 1991, pp. 385–390.

912 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 42, NO. 3, JUNE 2012

[26] E. Papageorgiou, C. Stylios, and P. Groumpos, “Fuzzy cognitive map
learning based on nonlinear Hebbian rule,” Lecture Notes Comput. Sci.,
vol. 2903, pp. 256–268, 2003.

[27] E. Papageorgiou, C. D. Stylios, and P. P. Groumpos, “Active Hebbian
learning algorithm to train fuzzy cognitive maps,” Int. J. App. Reasoning,
vol. 37, no. 3, pp. 219–249, 2004.

[28] K. E. Parsopoulos, E. I. Papageorgiou, P. P. Groumpos, and
M. N. Vrahatis, “A first study of fuzzy cognitive maps learning using
particle swarm optimization,” in Proc. IEEE Congr. Evol. Comput., 2003,
pp. 1440–1447.

[29] C. E. Pelaez and J. B. Bowles, “Applying fuzzy cognitive maps knowledge
representation to failure modes effects analysis,” in Proc. IEEE Ann.
Symp. Reliab. Maintainability, 1995, pp. 450–456.

[30] A. Siraj, S. Bridges, and R. Vaughn, “Fuzzy cognitive maps for decision
support in an intelligent intrusion detection system,” in Proc. IFSA World
Congr. 20th NAFIPS Int. Conf., 2001, vol. 4, pp. 2165–2170.

[31] S. N. Sivanandam and S. N. Deepa, Introduction to Genetic Algorithms.
New York: Springer-Verlag, 2007.

[32] W. Stach, L. A. Kurgan, and W. Pedrycz, “Numerical and linguistic pre-
diction of time series with the use of fuzzy cognitive maps,” IEEE Trans.
Fuzzy Syst., vol. 16, no. 1, pp. 61–72, Feb. 2008.

[33] W. Stach and L. Kurgan, “Modeling software development project using
fuzzy cognitive maps,” in Proc. 4th ASERC Workshop Quantitative Soft
Softw. Eng., 2004, pp. 55–60.

[34] W. Stach, L. Kurgan, and W. Pedrycz, “Parallel learning of large
fuzzy cognitive maps,” in Proc. Int. Joint Conf. Neural Netw., 2007,
pp. 1584–1589.

[35] W. Stach, L. Kurgan, W. Pedrycz, and M. Reformat, “Genetic learning
of fuzzy cognitive maps,” Fuzzy Sets Syst., vol. 153, no. 3, pp. 371–401,
Aug. 2005.

[36] W. Stach, L. Kurgan, W. Pedrycz, and M. Reformat, “Learning fuzzy cog-
nitive maps with required precision using genetic algorithm approach,”
Electron. Lett., vol. 40, no. 24, pp. 1519–1520, Nov. 2004.

[37] W. Stach, L. A. Kurgan, and W. Pedrycz, “Data-driven nonlinear Hebbian
learning method for fuzzy cognitive maps,” in Proc. World Congr. Com-
put. Intell., 2008, pp. 1975–1981.

[38] W. Stach, L. A. Kurgan, and W. Pedrycz, “A divide and conquer method
for learning large fuzzy cognitive maps,” Fuzzy Sets Syst., vol. 161, no. 19,
pp. 2515–2532, Oct. 2010.

[39] W. Stach, L. A. Kurgan, and W. Pedrycz, “A survey of fuzzy cognitive
map learning methods,” in Issues in Soft Computing: Theory and Applica-
tions, P. Grzegorzewski, M. Krawczak, and S. Zadrozny, Eds. Warszawa,
Poland: Exit, 2005, pp. 71–84.

[40] W. Stach, L. A. Kurgan, and W. Pedrycz, “Expert-based and computa-
tional methods for developing fuzzy cognitive maps,” in Advances in
Theory, Methodologies, Tools and Applications, Studies in Fuzziness and
Soft Computing, vol. 247, M. Glykas, Ed. New York: Springer-Verlag,
2010, pp. 23–41.

[41] M. A. Styblinski and B. D. Meyer, “Signal flow graphs vs. fuzzy cognitive
maps in application to qualitative circuit analysis,” Int. J. Man-Mach.
Stud., vol. 35, no. 2, pp. 175–186, Aug. 1991.

[42] C. D. Stylios and P. P. Groumpos, “Fuzzy cognitive map in modeling
supervisory control systems,” J. Intell. Fuzzy Syst., vol. 8, no. 2, pp. 83–
98, Mar. 2000.

[43] C. D. Stylios and P. P. Groumpos, “Fuzzy cognitive maps: A model
for intelligent supervisory control systems,” Comp. Ind., vol. 39, no. 3,
pp. 229–238, Jul. 1999.

[44] C. D. Stylios and P. P. Groumpos, “Modeling complex systems using
fuzzy cognitive maps,” IEEE Trans. Syst., Man, Cybern. A, Syst., Humans,
vol. 34, no. 1, pp. 155–162, Jan. 2004.

[45] C. D. Stylios and P. P. Groumpos, “The challenge of modelling supervi-
sory systems using fuzzy cognitive maps,” J. Intell. Manuf., vol. 9, no. 4,
pp. 339–345, Sep. 1998.

[46] A. K. Tsadiras, “Using fuzzy cognitive maps for e-commerce strategic
planning,” in Proc. 9th Panhellenic Conf. Informat., 2003, pp. 142–151.

[47] A. K. Tsadiras, “Comparing the inference capabilities of binary, triva-
lent and sigmoid fuzzy cognitive maps,” Inform. Sci., vol. 178, no. 20,
pp. 3880–3894, Oct. 2008.

[48] A. K. Tsadiras, I. Kouskouvelis, and K. G. Margaritis, “Making political
decisions using fuzzy cognitive maps: The FYROM crisis,” in Proc. 8th
Panhellenic Conf. Inf., 2001, vol. 2, pp. 501–510.

[49] D. Yaman and S. Polat, “A fuzzy cognitive map approach for effect-based
operations: An illustrative case,” Inf. Sci., vol. 179, no. 4, pp. 382–403,
Feb. 2009.

Wojciech Stach (M’05) received the M.Sc. de-
gree in automation and robotics (with honors) from
the AGH University of Science and Technology,
Krakow, Poland, in 2003 and the Ph.D. degree in
software engineering and intelligent systems from
the University of Alberta, Edmonton, Canada, in
2010.

He is currently working as a Scientific Research
Analyst on projects that use data mining and ma-
chine learning in auto insurance risk assessment. He
was involved in research projects related to software

engineering and intelligent systems with special emphasis on software project
management, systems modeling, and data mining. His work on fuzzy cognitive
maps was published in two book chapters as well as several journal and
conference papers.

Witold Pedrycz (M’88–SM’94–F’99) received the
M.Sc., Ph.D. and D.Sci. degrees from the Silesian
University of Technology, Gliwice, Poland.

He is a Professor and Canada Research Chair
(CRC—computational intelligence) with the Depart-
ment of Electrical and Computer Engineering, Uni-
versity of Alberta, Edmonton, Canada. He is also
with the Systems Research Institute, Polish Academy
of Sciences, Warsaw, Poland. In 2009, he was elected
as a foreign member of the Polish Academy of
Sciences. His main research directions involve com-

putational intelligence, fuzzy modeling and granular computing, knowledge
discovery and data mining, fuzzy control, pattern recognition, knowledge-
based neural networks, relational computing, and software engineering. He
has published numerous papers in this area. He is also an author of 14
research monographs covering various aspects of computational intelligence
and software engineering.

Dr. Pedrycz has been a member of numerous program committees of IEEE
conferences in the area of fuzzy sets and neurocomputing. He is intensively
involved in editorial activities. He is the Editor-in-Chief of Information Sci-
ences and the Editor-in-Chief of IEEE TRANSACTIONS ON SYSTEMS, MAN,
AND CYBERNETICS—PART A. He currently serves as an Associate Editor
of the IEEE TRANSACTIONS ON FUZZY SYSTEMS and is a member of a
number of editorial boards of other international journals. In 2007, he received
a prestigious Norbert Wiener award from the IEEE Systems, Man, and Cyber-
netics Council. He was a recipient of the IEEE Canada Computer Engineering
Medal 2008. In 2009, he received a Cajastur Prize for Soft Computing from
the European Centre for Soft Computing for “pioneering and multifaceted
contributions to Granular Computing.”

Lukasz A. Kurgan (M’02) received the M.Sc.
degree in automation and robotics (with honors;
recognized by an Outstanding Student Award) from
the AGH University of Science and Technology,
Krakow, Poland, in 1999 and the Ph.D. degree in
computer science from the University of Colorado,
Boulder, in 2003.

He is an Associate Professor with the Department
of Electrical and Computer Engineering, University
of Alberta, Edmonton, Canada. His research interests
include applications of machine learning in struc-

tural bioinformatics. He authored and coauthored several machine learning
algorithms and methods for high-throughput prediction of protein and short
RNA structure and function. He published more than 70 peer-reviewed journal
articles. He currently serves as an Editor of PLoS ONE, BMC Bioinformatics,
Neurocomputing, Open Proteomics Journal, Journal of Biomedical Science and
Engineering, Open Bioinformatics Journal, and Protein and Peptide Letters
journals.

Dr. Kurgan has been a member of numerous conference committees in
the area of bioinformatics, data mining, machine learning, and computational
intelligence.

