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Abstract

The paper describes a hybrid inductive machine learning algorithm called CLIP4.

The algorithm first partitions data into subsets using a tree structure and then generates

production rules only from subsets stored at the leaf nodes. The unique feature of the

algorithm is generation of rules that involve inequalities. The algorithm works with the

data that have large number of examples and attributes, can cope with noisy data, and

can use numerical, nominal, continuous, and missing-value attributes. The algorithm’s

flexibility and efficiency are shown on several well-known benchmarking data sets, and

the results are compared with other machine learning algorithms. The benchmarking

results in each instance show the CLIP4’s accuracy, CPU time, and rule complexity.

CLIP4 has built-in features like tree pruning, methods for partitioning the data (for data

with large number of examples and attributes, and for data containing noise), data-

independent mechanism for dealing with missing values, genetic operators to improve

accuracy on small data, and the discretization schemes. CLIP4 generates model of data

that consists of well-generalized rules, and ranks attributes and selectors that can be

used for feature selection.
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1. Introduction

The paper describes a new supervised inductive machine learning (ML)

algorithm called CLIP4. It generates model of the data that consists of pro-

duction rules, plus feature and feature-value importance ranking that is cal-

culated from the generated rules.

It is the only algorithm to our knowledge that generates inequality rules,

which makes it complementary to many existing machine learning algorithms.

Below, we list major goals which any supervised inductive learning system

should possess to assure its wide applicability:

• Accurate classification––the generated rules need to accurately classify new

unseen during rule generation examples, even in the presence of noise.

• Simple rules––the generated rules should be compact. Less complex rules are

easier to comprehend. They also lead to more accurate classification than

complex rules [33].

• Efficient rule generation––the algorithm must scale up well to generate rules

for large data.
• Flexibility––the algorithm should work on wide range of problems. In case

of supervised ML, learning problems are characterized by the number of

examples (large that usually covers the state space, or small that usually cov-

ers only part of the state space), the number of attributes, the type of attri-

butes (discrete numerical, discrete nominal, continuous), the presence of

noise, and the missing value attributes.

The first three goals are typical in design of ML algorithms [17]. CLIP4
satisfies these three goals, as well as the last goal of flexibility. The four goals

are indispensable features of any state-of-the-art ML algorithm.

The paper first overviews current approaches to supervised inductive ML

and provides outline of the CLIP4 algorithm, along with an illustrative

example. Next, benchmarking results are presented, its performance is com-

pared with other ML algorithms, and significance of the results is dis-

cussed.
1.1. CLIP4 and other related algorithms

The first CLIP algorithm, the CLILP2 (Cover Learning using Integer Linear
Programming) was developed in 1995 [12,13]. The algorithm was later
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improved as CLIP3 [14,16]. The described here CLIP4 algorithm incorporates

major changes and improvements from its predecessors that result in more

accurate, efficient, and flexible algorithm.

CLIP4 is a hybrid algorithm that combines ideas of two families of inductive
ML algorithms, namely the rule algorithms and the decision tree algorithms. It

uses rule generation schema from AQ algorithms [38,56,59]. It also uses the tree

growing technique that divides training data into subsets at each level of the

tree, and pruning [4,74].

The main difference between CLIP4 and the two families of algorithms is

extensive use of the set covering (SC) problem. The SC constitutes core ope

ration performed many times by CLIP4. It is used to select the most dis-

criminating features, grow new branches of the tree, select data subsets from
which the algorithm generates the least overlapping and the most general

rules, and finally to generate rules from the leaf-subsets using a back-pro-

jection technique (described later). Solving the SC problem is also one of

operations used in the LAD algorithm [5]. Another algorithm that is a hybrid

of rule algorithms and decision tree algorithms is the CN2 algorithm [17,18]

which is a modification of the AQ algorithm that uses search strategy and

entropy measure in a way similar to the one used in decision tree algo-

rithms.
The main feature distinguishing CLIP4 from other ML algorithms is that it

generates production rules that involve inequalities, which makes it comple-

mentary to algorithms that generate rules that involve equalities, such as AQ

algorithms, decision trees ([72]), and a MetaSqueezer system ([49–51]). This

results in generating small number of compact rules for domains where attri-

butes have large number of discrete values, and when majority of them are

correlated with the target class. In contrast, generation of rules involving

equalities for such domains would results in generating dozens of very complex
rules.
2. The CLIP4 algorithm

2.1. Introduction

Learning concept descriptions, in the form of if-then rules or decision

trees, is the most popular form of machine learning [7]. Any supervised

inductive learning algorithm infers classification rules from training exam-

ples divided into two categories: positive and negative. The generated

rules should describe the positive examples and none of the negative exam-
ples.
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2.2. The algorithm

2.2.1. Solution of the set covering problem

Several key operations performed by CLIP4 are modeled and solved by the
SC problem. To make it more efficient we developed a new method for solving

the SC problem.

The SC problem [1,28] is a simplified version of the integer programming

(IP) model. The IP model is used for optimization of a function, subject to a

large number of constraints [64]. In the IP model several simplifications are

made to obtain the SC problem: the function that is subject of optimization has

all coefficients set to one, their variables are binary, i.e. xi ¼ f0; 1g, constraint
function coefficients are binary, and all constraint functions are greater or
equal to one. The SC problem is NP-hard [26,37] and thus only approximate

solution can be found.

An example SC problem and its matrix representation are shown in Fig. 1.

The solution to the SC problem can be found using the constraint coeffi-

cients matrix, which we call the BINary matrix. Its columns correspond to

variables (attributes) of the optimized function. Rows correspond to function

constrains (examples). The solution is obtained by selecting minimal number of

matrix columns in such a way that for every row there will be at least one
matrix cell with the value of 1 for the selected columns. All the rows for which

there is value of 1 in the matrix cell, in a particular column, are assumed to be

‘‘covered’’ by this column. The solution consists of a binary vector composed

of the selected columns.

For CLIP4 we need to have a fast solution to the SC problem since it is used

many times over, that significantly effects computation time. In the CLIP3

algorithm a simple greedy algorithm was used to obtain the SC solution

[14,15]. The new method, used in the CLIP4 algorithm, seeks solution of the
SC problem in terms of selecting minimal number of columns, which also have

the smallest total number of 1’s. This is solved by minimizing the number of 1’s
Fig. 1. Simplified SC problem and its solution shown in standard and matrix forms.
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that overlap among the columns and within the same row. The new solution of

the SC problem results in improved accuracy and generalization ability of

CLIP4-generated rules, see Section 4.4.

The pseudo-code of the CLIP4’s method for solving the SC problem fol-
lows:

Given: BINary matrix, Initialize: Remove all empty rows from the BINary

matrix; if the matrix has no 1’s then return error.

1. Select active rows that have the minimum number of 1’s––min-rows.

2. Select columns that have the maximum number of 1’s within the min-rows––

max-columns.

3. Within max-columns find columns that have the maximum number of 1’s in

all active rows––max-max-columns, if there is more than one max-max-col-

umn go to 4, otherwise go to 5.

4. Within max-max-columns find the first column that has the lowest number
of 1’s in the inactive rows.

5. Add the selected column to the solution.

6. Mark the inactive rows, if all the rows are inactive then terminate; otherwise

go to 1.

where: the active row is the row that is not covered by the partial solution,

and the inactive row is the row that is already covered by the partial solution.

The solution for the example using the new method is shown in Fig. 2a. The
example is as the one shown in Fig. 1, except that some matrix rows (con-

strains) are repeated. The solution consists of the second and fourth columns,

with no overlapping 1’s in the same rows. For comparison, Fig. 2b shows the

result obtained by the method used in CLIP3; there are two solutions

depending on how the choice of columns is performed: Solution one has one 1

overlapping in the first row; solution two has two 1’s overlapping in the first

and third rows.
2.2.2. The CLIP4 details

To describe the algorithm we first introduce some notations. Let us denote
the set of all training examples by S. The sets of the positive examples, SP, and
the negative examples, SN, must satisfy these properties: SP [ SN ¼ S,
SP \ SN ¼ £, SN 6¼ £, and SP 6¼ £. The positive examples are those that de-

scribe the class for which we currently generate rules, while the negative

examples are all remaining examples. Examples are described by a set of K
attribute-value pairs [57,58]: e ¼ ^K

j¼1½aj#vj] where aj denotes jth attribute with

value vj 2 dj, # is a relation (¼ , <, �, 6 , etc.), where K is the number of

attributes. An example e consists of set of selectors sj ¼ ½aj ¼ vj�. The CLIP4
algorithm generates rules in the form of:
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IFðs1 ^ � � � ^ smÞTHEN class ¼ classi;
where si ¼ ½aj 6¼ vj� is a selector.

We define SP and SN as matrices whose rows represent examples and
columns correspond to attributes. Matrix of the positive examples is denoted

as POS and the number of positive examples by NPOS, while matrix and the

number of negative examples as NEG and NNEG, respectively. Positive

examples from the POS matrix are described by a set of values: posi½j� where
j ¼ 1; . . . ;K, is the column number, and i is the example number (row

number in the POS matrix). The negative examples are described similarly by

a set of negi½j� values. CLIP4 also uses binary matrices (BIN) that are

composed of K columns, and filled with either 1 or 0 values. Each cell of the
BIN matrix is denoted as bini½j�, where i is a row number and j is a column

number. These matrices are results of operations performed by CLIP4, and

are modeled as the SC problem, and then solved using the method described

in Section 2.2.1.
. (a) Solution of the SC problem using the method developed for CLIP4, and (b) solution

he method developed for CLIP3.
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The low-level pseudocode of CLIP4 is shown in Fig. 3. Below we explain the

main phases of the algorithm.
Fig. 3. The low-level pseudo code of CLIP4.
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Phase I explanation:

• General idea

The positive data is partitioned into subsets of similar data in a decision-tree
like manner. Each node of the tree represents one data subset. Each level of the

tree is built using one negative example to find selectors that can distinguish

between all positive and this particular negative example. The selectors are

used to create new branches of the tree. During tree growing, pruning is used to

eliminate noise from the data, to avoid its excessive growth, and to reduce

execution time.

• Pseudo-code explanation (lines 2–23 in Fig. 3)

The tree, with nodes representing subsets of positive examples, is grown in
the top-down manner. At the ith tree level Ni subsets, represented by matrices

POSi;j (j ¼ 1; . . . ;Ni), are generated using Ni�1 subsets from the previous tree

level, and the single negative example negi. Each subset, represented by matrix

POSi;j (examples that constitute this matrix are denoted as posi;j), is trans-

formed into a BIN matrix of the size of the POSi;j matrix, using the negi
example, and then modeled and solved using the new SC method. The solution

is used to generate subsets for the next tree level, represented by POSiþ1;j

matrices.
• Important features

The algorithm grows a virtual ‘‘tree’’. The ‘‘tree’’ at any iteration consists

of only one, the most recent tree level. In addition, the virtual tree is pruned

so that even the one level that is kept has at most a few nodes. This result in

high memory efficiency. The data splits are done by generating not just one

‘‘best’’ division, based on the ‘‘best’’ feature say in terms of the highest value

of information gain, but by a set of divisions based on any feature that

distinguishes between the positive and the one negative example. This
mechanism of partitioning the data assures generation of the (possibly) most

general rules.

Phase II explanation

• General idea

A set of best terminal subsets (tree leaves) is selected using two criteria. First,

large subsets are preferred over small ones since the rules generated from them
can be ‘‘stronger’’ and more general, while all accepted subsets (between them)

must cover the entire positive training data. Second, we want to use the

completeness criterion. To that end, we first perform a back-projection of one

of the selected positive data subsets using the entire negative data set, and then

we convert the resulting matrix into a binary matrix and solve it using the SC

method. The solution is used to generate a rule, and the process is repeated for

every selected positive data subset.



K.J. Cios, L.A. Kurgan / Information Sciences 163 (2004) 37–83 45
• Pseudo-code explanation (lines 24–41 in Fig. 3)

The NNNEG
is the number of the tree leaves. The BIN is the binary matrix

used to select the minimal set of leafs that covers the entire positive data. Back-

projection results in a binary matrix BINi that has 1’s for the selectors that can
distinguish between positive and negative examples. The back-projection

generates one matrix for every best terminal subset (POSNNEG;i). It is computed

from the NEG matrix, by setting a value from NEG to zero if the same value

appears in the corresponding column in the POSNNEG;i matrix, otherwise the

value if left unchanged. The ith rule is generated by solving the SC problem for

the BINi matrix and adding a selector for every 1 that is in any column indi-

cated by the solution.

• Important features

The rule generation technique generates a rule directly from two sets of data

(negative data and the selected subset of positive data). It does not require the

use of logic laws like in the AQ algorithms, or storing and traversing the entire

tree as done in decision tree algorithms, but only by simple comparison of

values between the two matrices. Thus, the only data structures required to

generate the rules are lists (vectors) and matrices.

Phase III explanation:

• General idea

A set of best rules is selected from all the generated rules. Rules that cover

the most positive examples are chosen, which promotes selection of general

rules. If there is a tie between ‘‘best rules’’ the shortest rule is chosen, i.e. the

rule that uses minimal number of selectors.

• Pseudo-code explanation (lines 42–55 in Fig. 3)

To find the number of examples covered by a rule, we instead find
examples that are not covered by the rule, and subtract them from the total

number of examples. This is done because the rules consist of selectors

involving inequalities. The variable called coversi keeps the number of posi-

tive examples that are covered by the ith rule. After a rule is accepted

the positive examples covered by it are removed from the POS matrix (line

53).

• Important features

In Phase III more than one rule can be generated. The rules are accepted in
order from the most general and strong, to the weakest. The heuristic used for

accepting multiple rules states that the next rule is accepted when it covers at

least half of the number of examples covered by the previously accepted rule,

and that it covers at least half of the number of positive examples that were not

covered by any rule so far. CLIP4 generates multiple strong rules in a single

sweep through the data. The thresholds used in the pseudo-code in Fig. 3 are

described in Section 3.1.5.
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In what follows we estimate the complexity of the CLIP4 algorithm for

generation of rules for one class. Let us start with these notations:

• n is number of examples, and k is number of attributes;
• Ni, and NNNEG

are small constants, which are controlled by algorithm’s

thresholds (see Section 3.1.5);

• NPOS þ NNEG ¼ n––number of examples. Thus OðNPOSÞ ¼ OðNNEGÞ ¼ OðnÞ;
• length of the SOL vector is k;
• size of all POS and NEG matrices is kOðnÞ;
• we also require, and assume, that n � k

Before we estimate the complexity of CLIP4, we can estimate the complexity
of several operations performed by the algorithm:

• Estimation of complexity for solving the SC problem. This operation is de-

noted in the code in Fig. 3 by calling the following function: SolveSCProb-

lem(. . .)
Assumption: BIN matrix has size kOðnÞ
Lines 1–4: kOðnÞ each
Lines 5 and 6: Oð1Þ each
In the worst case entire algorithm (lines 1–6) are executed OðkÞ times, thus

the total complexity is:
kOðnÞ �OðkÞ ¼ Oðk2nÞ

• Estimation of complexity for pruning performed by CLIP4. This operation

is denoted in the code in Fig. 3 by calling the function: PruneMatrices(. . .)
Assumption: goodness criterion is computed in OðkÞ time

STEP 1: OðNi logNiÞ �OðkÞ ¼ Oð1Þ �OðkÞ ¼ OðkÞ to select the best nodes

STEP 2: OðNiÞ �OðNiÞ �OðnÞ ¼ Oð1Þ �Oð1Þ �OðnÞ ¼ OðnÞ to remove redun-

dant matrices; note: we look at the entire rows

STEP 3: OðNiÞ �OðnÞ ¼ Oð1Þ �OðnÞ ¼ OðnÞ to remove small matrices (below
thresholds)

Thus, the total complexity is: OðkÞ þOðnÞ þOðnÞ ¼ OðnÞ
• Estimation of complexity for the genetics operations performed by CLIP4.

This operation is denoted in the code in Fig. 3 by calling the following func-

tion: ApplyGeneticOperators(. . .)
Assumption: only one iteration of genetic operations is performed in line 12

of the code in Fig. 3, goodness criterion is computed in OðkÞ time

STEP 1: OðNi logNiÞ �OðkÞ ¼ Oð1Þ �OðkÞ ¼ OðkÞ to rank the individuals
STEP 2: OðNiÞ ¼ Oð1Þ to select half of the individuals with the best fitness

values

STEP 3: Performing crossover has complexity OðkÞ
Performing mutation has complexity OðkÞ
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ðOðkÞ þOðkÞÞ �OðNiÞ ¼ OðkÞ �OðNiÞ ¼ OðkÞ �Oð1Þ ¼ OðkÞ to per-

form genetic operations for the half of individuals with the worst

fitness values

Thus, the total complexity is: OðkÞ þOð1Þ þOðkÞ ¼ OðkÞ

To estimate complexity of the entire algorithm we break the process into

estimation of the complexity for particular phases of the algorithm:

1. Complexity of Phase I (lines 1–23 from the code in Fig. 3)

Line 1: OðknÞ to create both POS and NEG

Line 2: OðnÞ and applies to lines 3–23
Line 3: OðNiÞ ¼ Oð1Þ and applies to lines 4–10

Line 4: OðkÞ and applies to lines 5–9

Line 5: OðnÞ and applies to lines 6–9

Lines 6–9: Oð1Þ
Line 10: Oðk2nÞ
Line 11: OðnÞ
Line 12: OðkÞ
Line 13: Oð1Þ
Line 14: OðNiÞ ¼ Oð1Þ and applies to lines 15–20

Line 15: OðNiÞ ¼ Oð1Þ
Line 16: OðkÞ and applies to lines 17–19

Line 17: Oð1Þ
Line 18: OðnÞ and applies to line 19

Line 19 and 20: Oð1Þ
Line 21: OðNiÞ ¼ Oð1Þ and applies to lines 22

Line 22: Oð1Þ
Line 23: OðnÞ (see PruneMatrices(. . .), STEP 2)

Total complexity of Phase I is estimated as:
OðknÞ þOðnÞ � ½Oð1Þ � ½OðkÞ � ½OðnÞ � ½Oð1Þ þOð1Þ þOð1Þ þOð1Þ��

þOðk2nÞ� þOðnÞ þOðkÞ þOð1Þ þOð1Þ � ½Oð1Þ þOðkÞ � ½Oð1Þ
þOðnÞ þOð1Þ� þOð1Þ� þOð1Þ �Oð1Þ þOðnÞ�

¼ OðknÞ þOðnÞ � ½Oð1Þ � ½OðkÞ �OðnÞ þOðkÞ �Oðk2nÞ� þOðnÞ
þOðkÞ þOð1Þ � ½OðkÞ �OðnÞ� þOðnÞ�

¼ OðknÞ þOðnÞ � ½OðknÞ þOðk3nÞ þOðnÞ þOðkÞ þOðknÞ þOðnÞ�

¼ OðknÞ þOðkn2Þ þOðk3n2Þ þOðn2Þ þOðknÞ þOðkn2Þ þOðn2Þ

¼ OðknÞ þOðkn2Þ þOðk3n2Þ þOðn2Þ þOðknÞ ¼ Oðk3n2Þ
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2. Complexity of Phase II (lines 24–41 from the code in Fig. 3)

Line 24: kOðnÞ
Line 25: OðNNNEG

Þ ¼ Oð1Þ and applies to lines 26 and 27

Line 26: OðnÞ and applies to line 27
Line 27: OðnÞ
Line 28: Oðk2nÞ
Line 29: OðNNNEG

Þ ¼ Oð1Þ and applies to lines 30–41

Line 30: kOðnÞ
Line 31: OðkÞ
Line 32: OðkÞ and applies to lines 33–35

Line 33: OðnÞ and applies to lines 34, and 35

Line 34: Oð1Þ
Line 35: OðnÞ
Line 36: OðkÞ and applies to line 37

Line 37: OðnÞ
Line 38: Oðk2nÞ
Line 39: OðkÞ and applies to lines 40, and 41

Line 40: Oð1Þ
Line 41: OðnÞ
Total complexity of Phase II is estimated as:
kOðnÞ þOð1Þ � ½OðnÞ �OðnÞ� þOðnÞ þOðk2nÞ þOð1Þ
� ½kOðnÞ þOðkÞ þOðkÞ � ½OðnÞ � ½Oð1Þ þOðnÞ���

þOðkÞ �OðnÞ þOðk2nÞ þOðkÞ � ½Oð1Þ þOðnÞ�
¼ kOðnÞ þOðn2Þ þOðnÞ þOðk2nÞ þOð1Þ � ½kOðnÞ þOðkÞ
þOðknÞ �Oðkn2Þ� þOðknÞ þOðk2nÞ þOðkÞ þOðknÞ

¼ kOðnÞ þOðn2Þ þOðnÞ þOðk2nÞ þ kOðnÞ þOðkÞ
þOðknÞ �Oðkn2Þ þOðknÞ þOðk2nÞ þOðkÞ þOðknÞ ¼ Oðkn2Þ
3. Complexity of Phase III (lines 42–55 from the code in Fig. 3)

Line 42: Oð1Þ
Line 43: OðNiÞ ¼ Oð1Þ and applies to lines 44–55

(max # of rules ¼ # of leaf nodes)

Line 44: Oð1Þ and applies to lines 45–50
Line 45: Oð1Þ
Line 46: OðnÞ and applies to lines 47–49

Line 47: OðkÞ and applies to lines 48, and 49

Line 48: OðkÞ and applies to line 49

Line 49: Oð1Þ
Line 50: Oð1Þ
Lines 51–55: Oð1Þ
Total complexity of Phase III is estimated as:
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Oð1Þ þOð1Þ � ½Oð1Þ � ½Oð1Þ þOðnÞ � ½OðkÞ � ½OðkÞ �Oð1Þ�� þOð1Þ� þOð1Þ�

¼ Oð1Þ þOð1Þ � ½Oð1Þ � ½Oð1Þ þOðk2nÞ þOðknÞ� þOð1Þ� þOð1Þ�
¼ Oð1Þ þOð1Þ � ½Oð1Þ þOðk2nÞ þOðknÞ þOð1Þ� þOð1Þ
¼ Oð1Þ þOð1Þ þOðk2nÞ þOðknÞ þOð1Þ þOð1Þ ¼ Oðk2nÞ

e complexity of the entire algorithm is estimated as a sum of complexities
Th

for each of the phases as:
Oðk3n2Þ þOðkn2Þ þOðk2nÞ ¼ Oðk3n2Þ
Since the number of the generated rules and classes are usually small constants,

the above complexity describes complexity of generating all the rules for the

entire multi-class data. Thus, we estimate that the expected running time of the

algorithm is Oðk3n2Þ. Additionally, since number of attributes k is also usually
a small constant, we can estimate that the expected running time of the algo-

rithm is Oðn2Þ.
The CLIP4 algorithm satisfies all of the following inductive machine

learning conditions [36]:

• completeness––the set of classification rules describes all positive examples,

• consistency––the classification rule must describe none of the negative exam-

ples,
• convergence––the classification rules are generated in a finite number of

steps.

Additional condition, which requires generation of rules that involve min-

imal number of selectors, is also satisfied by the CLIP4 algorithm; it is done in

Phase III of the algorithm.

In a nutshell, the CLIP4 algorithm is memory-efficient thanks to keeping

only one level of the tree, generates general, strong rules thanks to its mech-
anism of data partitioning and strong heuristics for rules acceptance, and is fast

because of pruning and accepting multiple rules in one iteration. In addition, it

is robust to noisy and missing-value data, which is shown in the following

sections.
2.3. Example of a rule generation by the CLIP4 algorithm

This example illustrates the working of CLIP4. There are eight data

examples belonging to two classes (see Table 1). Three examples have miss-
ing values, denoted by ‘‘�’’. Class 1 is the positive class, class 2 the negative

class.



Table 1

Data for the example

Ex. # F1 F2 F3 F4 Class

1 1 2 3 * 1

2 1 3 1 2 1

3 * 3 2 5 1

4 3 3 2 2 1

5 1 1 1 3 1

6 3 1 2 5 2

7 1 2 2 4 2

8 2 1 * 3 2
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The (a) low-level and (b) high-level illustration of CLIP4 rule generation.

RULE 1: If F 1 6¼ 3 and F 1 6¼ 2 and F 3 6¼ 2 then class 1

RULE 2: If F 2 6¼ 2 and F 2 6¼ 1 then class 1

The first rule covers examples 1, 2 and 5, while the second covers examples 2,

3 and 4. Between them they cover all positive examples, including those with
Fig. 4. The (a) low-level and (b) high-level example of rule generation by CLIP4.
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missing values and none of the negative examples. The rules overlap since both

cover the second example.

The high-level view of the same example is shown in Fig. 4b. It shows how

CLIP4 performs tree generation, data partitioning, and rule generation.
3. Characteristics of the CLIP4 algorithm

CLIP4 retains the general structure of CLIP3 but it incorporates these new
additions:

• the new algorithm for solving the SC problem that results in more accurate

and general rules,

• handling of missing-values, continuous and nominal attributes,

• new tree-pruning technique that results in shorter execution time,

• application of genetic operators to improve accuracy of the algorithm for

small difficult data,
• attribute and selector importance ranking.
3.1. General characteristics

3.1.1. Handling missing values

Missing-value data are typical, with often only some of the attributes having

missing values. Thus, at the level of a single example it is desirable to use all the

attributes that have values and omit from computations only the attributes
with missing values.

In case of the CLIP4 algorithm, no examples with missing values are dis-

carded, neither missing values are filled with some computed values. The

algorithm takes advantage of all available values in the example and ignores

missing values during rule generation.

The attributes with missing values influence the first two phases of the

algorithm. They are omitted from being processed by filling the corresponding

cell in the BIN matrix with 0 when the new branch of the tree in phase I is
generated, and when the backprojection in phase II is performed (see Fig. 3).

The example in Fig. 4 shows how rules are generated from examples with

missing values. The mechanism for dealing with missing attribute values

implemented in CLIP4 assures that they are not used in the generated rules,

and at the same time all complete attribute values, even for the example that

has some missing attributes, are used during rule generation.

The advantage of CLIP4’s mechanism of dealing with missing values is that

the user can simply supply the data to the algorithm and obtain its model
without the need of using statistical methods to analyze the data with missing
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values, assuming that the remaining (complete) part of the data is sufficient to

infer the model.

3.1.2. Handling of nominal attributes and generation of rules for multi-class data

CLIP4 handles nominal data by automatic front-end encoding into

numerical values. The generated rules are independent of the encoding scheme

since the algorithm does not calculate distances, nor does it apply any metric

during rule generation; instead it uses the SC problem that is independent of

actual values of the attributes. For multi-class data CLIP4 generates separate

set of rules for every class, each time generating rules that describe the currently

chosen (positive) class.

3.1.3. Handling of continuous attributes

A machine learning algorithm can deal with continuous values in two ways:

• It can process continuous attributes itself.

• It can perform front-end discretization. This approach is taken by algo-

rithms that handle only numerical or nominal data, like AQ algorithms

[17,18] or the CN2 algorithm [38,59].

Discretization research shows that some ML algorithms that themselves

handle continuous attributes perform better with already discretized attributes

[9,39]. Discretization is usually performed prior to the learning process

[9,21,23,48,61].

The CLIP4 algorithm has these built-in front-end discretization algorithms:

• Equal-Frequency (EF) discretization [11]; a very fast unsupervised algorithm.

• A supervised discretization algorithm called CAIM ([48,52]). The CAIM
algorithm generates discretization schemes with the highest interdependence

between the class attribute and the discrete intervals, which improves accu-

racy of the subsequently used ML algorithm. It is one of the fastest super-

vised discretization algorithms.

3.1.4. Classification

An example is classified using sets of rules for all classes defined in the data.

Two classification outcomes are possible: example is assigned to a particular
class, or is left unclassified. To classify an example:

• All the rules that cover the example are found. If no rules cover the example

then it is unclassified, e.g. it may happen if the example has missing values

for all attributes that are used by the rules.

• For every class goodness of rules describing a particular class and covering

the example is summed. The example is assigned a class that has the highest
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summed value. If there is a tie then the example is unclassified. For each rule

generated by CLIP4, a goodness value that is equal to the percentage value

of the training positive examples that it covers is assigned. For details

see 3.4.

For instance: an example is covered by two rules from class 1 with corre-

sponding goodness values of 10 and 20. The example is also covered by two

rules from class 2 with corresponding goodness values of 50 and 5. Sum of

goodness values for class 1 is 30 and for class 2 is 55, and thus the example is

classified as belonging to class 2.

3.1.5. Thresholds

CLIP4 uses thresholds (default unless user chooses different ones) for tree

pruning and removal of noisy examples during rule generation process.

• Noise threshold (NT) determines which nodes (possibly containing noisy

positive examples) will be pruned from the tree grown in Phase I. The NT

threshold prunes every node that contains less number of examples than

the NT value.
• Pruning threshold (PT) is also used to prune nodes from the generated tree.

It uses a goodness value, which is identical to the fitness function, described

in Section 3.2, to perform selection of the nodes. The PT threshold selects

the first PT nodes with the highest fitness value and removes the remaining

nodes from the tree.

• Stop threshold (ST) determines when to stop the algorithm. The algorithm is

terminated when smaller than ST number of positive examples remains

uncovered. CLIP4 generates rules by partitioning the data into subsets con-
taining similar examples, and removes examples that are covered by the al-

ready generated rules. This has an advantage of leaving small subsets of

positive examples, which contain examples different than majority of exam-

ples already covered, for the subsequent rule generation process. If user hap-

pens to know the amount of noise in data then the ST should be properly set.

Both, NT and ST are specified as percentage of size of the positive data set

and thus are easily scalable.

3.2. Use of genetic operators to improve accuracy for small data

Genetic algorithms (GA) are search algorithms mimicking natural selection

processes [27]. They start with an initial population of ‘‘N’’ elements in the

search space, determine survival chances for its individuals, and evolve the

population to retain the individuals with the highest value of the fitness
function, while eliminating weaker individuals [15]. Some of the existing
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GA-based ML algorithms are LS-1 algorithm [68], GABIL algorithm [20],

CAGIN algorithm [29,30], and GA-MINER algorithm [24].

CLIP4 uses GA to improve accuracy of the generated rules. CLIP4’s genetic

module works by exploiting a single loop through a number of evolving
populations. The loop consists of establishing the initial population and sub-

sequently performing selection of the new population from the old population,

alteration and evaluation of the new population, and substitution of the old

one with the new population. The above operations are performed until the

termination criterion is satisfied [27]. CLIP4 uses the GA in Phase I to enhance

the partitioning of the data and, possibly, to achieve more general leaf node

subsets.

The following components of the CLIP4’s genetic module are defined:

• Population and individual

Individual is defined as a node in the tree grown by the algorithm and

consists of: POSi;j matrix (jth matrix at the ith tree level) and SOLi;j (the

solution to the SC problem obtained from POSi;j matrix).

Population is defined as a set of nodes at the same level of the tree.

• Encoding and decoding scheme

There is no need for encoding using the individuals defined above since GA
operators are used on the binary SOLi;j vector.

• Selection of the new population

Initial population is the first tree level that consists of at least two nodes.

The following fitness function is used to select the most suitable individuals

for the next generation:
fitnessi;j ¼
number of examples that constitute POSi;j

number of subsets that will be generated from POSi;j at ðiþ 1Þth tree level
The fitness value is calculated as the number of rows of the POSi;j matrix di-

vided by the number of 1’s from the SOLi;j vector. The fitness function has high
values for the tree nodes that consist of large number of examples with low

branching factor. These two properties influence generalization ability of the

rules and speed of the algorithm.

The mechanism for selecting individuals for the next population follows:

• All individuals are ranked using the fitness function.

• Half of the individuals with the highest fitness values are automatically se-
lected for the next population (they will branch to create nodes for the next

tree level).

• The second half of the next population is generated by matching the best

with the worst individuals (the best with the worst, the second best with
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the second worst, etc.), and applying GA operators to obtain new individu-
als (new nodes on the tree). This matching promotes generation of new tree

branches that contain large number of examples.

An example of the selection mechanism used in CLIP4 is shown in Fig. 5.

• Operators

The GA module uses crossover and mutation operators. Both are applied

only to the SOLi;j vectors. The resulting ChildSOLi;j vector, together with the
POSi;j matrix of the parent with the higher fitness value, constitutes the new

individual. The selection of the SOLi;j matrix assures that the resulting indi-

vidual is consistent with the CLIP4 way of partitioning data.

Crossover

The crossover operator is defined as: ChildSOLi ¼ maxðParent1SOLi;
Parent2SOLiÞ where: Parent1SOLi and Parent2SOLi are the ith values of

SOLi;j vectors of the two parent nodes. Similar crossover operators based on

min or max functions are called flat crossover [63] and BLX-a cross-over

[22].

Mutation

Random mutation, with 10% chance, flips a value in the ChildSOL vector to

1, regardless of the existing value. The probability of mutation was established

experimentally during the benchmarking tests.

Each 1 in the ChildSOL generates new branch, except for 1’s taken from the

SOLi;j of the parent with higher fitness value. They are discarded because they
would generate branches redundant with branches generated by the parent.

The example of the crossover operation is shown in Fig. 6.

• Termination criterion

Termination criterion checks if the bottom level of the tree is reached. The

entire evolution process of the GA module is shown in Fig. 7.

The GA module is used when running CLIP4 on small data that cover only

a small portion of the state space, which results in generating rules that
potentially can cover not yet described part of the state space. Later in the

paper we show usefulness of the GA module.



Fig. 7. The evolution process performed by the GA module.

Fig. 6. Example of the crossover performed by the GA module.
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3.3. Pruning

The CLIP4 algorithm uses the pre-pruning technique to prune the tree

during the process of generating the tree. The pre-pruning stops the learning

process early although some positive examples may be not covered, and while

some negative examples are still covered ([17,25,73]).

CLIP4 prunes the tree grown in Phase I as follows:

• First, it selects a number (defined by the pruning threshold) of best nodes on

the ith tree level. The selection is performed based on the goodness criterion

that is identical to the fitness function described in Section 3.2. Only the se-

lected nodes are used to branch into new nodes that are passed to the

ðiþ 1Þth tree level.

• Second, all redundant nodes that resulted from the branching process are

removed. Two nodes are redundant if one contains positive examples, which
are equal or form a subset of positive examples of the other node. The

redundant node with the smaller number of examples is pruned first.
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• Third, after the redundant nodes are removed, each new node is evaluated

using the noise threshold. If the node contains less number of examples than

specified by the threshold then it is pruned.

The pre-pruning method used in the CLIP4 algorithm avoids some disad-

vantages of the basic pre-pruning. It preserves the consistency of the CLIP4

learning process because it never allows for the negative examples to be covered

by the rules. It also does not interfere with the completeness condition of the

rule generation process. The CLIP4’s pre-pruning increases accuracy of the

generated rules and lowers the complexity of the algorithm. An example of

pruning is shown in Fig. 8.
3.4. The data model

The CLIP4 algorithm generates a data model that consists of:

• Rules, which describe classes defined in the data.

• Ranked set of attributes and selectors, which can be used for feature selec-

tion and data analysis.

CLIP4 ranks attributes by assigning them a goodness value that quantifies
their relevance to a particular learning task. The attribute ranking can be used

as a weighted feature selection tool. This approach to feature selection is

similar to ReliefF [45] and Relief [40,41] algorithms. CLIP4 ranks selectors in

the same way as it ranks the attributes. The ranking provides additional insight

into the information hidden in the data.

Feature selection is a process of finding a subset of features from the original

set of features, optimal in the sense of the defined goal and criterion of a feature
Fig. 8. Example of pruning when generating ðiþ 1Þth tree level from the ith tree level: (a) without

the GA module and (b) with GA module active.
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selection task. In case of classification, the goal is to achieve the highest

predictive accuracy. Similar approaches for feature selection without signifi-

cant decrease of predictive accuracy, are described in [19,44].

Goodness of each attribute and selector is computed using the set of clas-
sification rules. All attributes with goodness value greater than zero are

strongly relevant to the classification task. Strong relevancy means that the

attribute cannot be removed from an attribute set without decrease of accu-

racy. The other attributes are irrelevant and thus can be removed from the

data.

The attribute and selector goodness values are computed as follows:

• Each generated rule has a goodness value that is equal to the percentage va-
lue of the training positive examples it covers. Each rule consists of one or

more pairs of selectors, i.e. attribute and its value.

• Each selector has a goodness value equal to the goodness of the rule it comes

from. Goodness of the same selectors from different rules is summed up, and

then scaled to the ð0; 100Þ range. 100 is assigned to the highest summed value

and remaining summed values are scaled accordingly.

• For each attribute, the sum of scaled goodness for all its selectors is com-

puted and divided by the number of attribute values to obtain the goodness
of the attribute.

The following example shows attribute and selector ranking on the MONKS1

data [70]:

• Number of instances: 432

• Number of attributes: 8

• Attribute information: class¼{0,1}, a1¼f1;2;3g, a2¼f1;2;3g, a3¼f1;2g,
a4 ¼ f1; 2; 3g, a5 ¼ f1; 2; 3; 4g, a6 ¼ f1; 2g

• No missing values

The MONKS1 has target concept for class 1 described in the following

form: ða1 ¼ a2Þ or ða5 ¼ 1Þ
The CLIP4 algorithm generated the following rules:
Rule 1. If a5 6¼ 2 and a5 6¼ 3 and a5 6¼ 4 then
class¼ 1

(covers 46% (29/62)
positive examples)

Rule 2. If a1 6¼ 1 and a1 6¼ 2 and a2 6¼ 2 and

a2 6¼ 1 then class¼ 1

(covers 27% (17/62)

positive examples)

Rule 3. If a1 6¼ 1 and a1 6¼ 3 and a2 6¼ 3 and

a2 6¼ 1 then class¼ 1

(covers 24% (15/62)

positive examples)

Rule 4. If a1 6¼ 2 a1 6¼ 3 and a2 6¼ 2 and a2 6¼ 3

then class¼ 1

(covers 14% (9/62)

positive examples)
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The above rules can be converted, using the domain knowledge, into:

The selectors, ordered in descending order by using their goodness values,

are:

(ða5; 1Þ; goodness 46), (ða1; 3Þ; goodness 27), (ða2; 3Þ; goodness 27),
(ða1; 2Þ; goodness 24), (ða2; 2Þ; goodness 24), (ða1; 1Þ; goodness 14),
(ða2; 1Þ; goodness 14).

After scaling to the 0–100 range, the recomputed goodness values are:

(ða5; 1Þ; goodness 100), (ða1; 3Þ; goodness 58.7), (ða2; 3Þ; goodness 58.7),
(ða1; 2Þ; goodness 52.2), (ða2; 2Þ; goodness 52.2), (ða1; Þ; goodness 30.4),
(ða2; 1Þ; goodness 30.4).

Thus for attribute a1 we have the following selectors and their goodness

values: (ða1; 3Þ; goodness 58.7), (ða1; 2Þ; goodness 52.2), (ða1; 1Þ; goodness

30.4). That gives the goodness of the attribute a1 as ((58.7 + 52.2 + 30.4)/
3¼ 47.1). Similarly, the goodness of attribute a2 is computed.

For attribute a5 we have the following selectors and their goodness values:

(ða5; 1Þ; goodness 100), (ða5; 2Þ; goodness 0), (ða5; 1Þ; goodness 0), (ða5; 1Þ;
goodness 0). Thus the goodness of attribute a5 is computed as: (100+ 0+ 0+

0)74¼ 25.0

The attributes a3, a4 and a6 have goodness value 0.

The data analysis results for the MONKS1 dataset follow:

ATTRIBUTE: a2 (47.1 goodness)

Values: 1 (30.4 goodness), 2 (52.2 goodness), 3 (58.7 goodness)

ATTRIBUTE: a1 (47.1 goodness)

Values: 1 (30.4 goodness), 2 (52.2 goodness), 3 (58.7 goodness)

ATTRIBUTE: a5 (25.0 goodness)

Values: 1 (100.0 goodness), 2 (0.0 goodness), 3 (0.0 goodness), 4 (0.0 goodness)

ATTRIBUTE: a6 (0.0 goodness)

Values: 1 (0.0 goodness), 2 (0.0 goodness)
ATTRIBUTE: a4 (0.0 goodness)

Values: 1 (0.0 goodness), 2 (0.0 goodness), 3 (0.0 goodness)

ATTRIBUTE: a3 (0.0 goodness)

Values: 1 (0.0 goodness), 2 (0.0 goodness)

Rule 1. If a5 ¼ 1 then class¼ 1

Rule 2. If a1 ¼ 3 and a2 ¼ 3 then class¼ 1
Rule 3. If a1 ¼ 2 and a2 ¼ 2 then class¼ 1

Rule 4. If a1 ¼ 1 and a2 ¼ 1 then class¼ 1
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The attribute and selector ranking fully agrees with the target concept.

CLIP4 picked attributes a2 and a1 with the highest goodness value, and

attribute a5 with goodness above zero only for selector ða5; 1Þ. We see that the

attribute ranking allows removing attributes a3, a4 and a6 as irrelevant. The
selector ranking gives additional insight into the a5 attribute by showing that

only its value of 1 is strongly relevant to the target concept.

The feature and selector ranking can be used to:

• Select only relevant features, and discard irrelevant features from the data.

User can simply discard all attributes that have goodness of 0, and still have

correct model of the data. After irrelevant attributes are removed the algo-

rithm generates the same set of rules and thus describes the data with the
same accuracy.

Experimental results (Section 4.7) show that between 5% and 100% of the

features were retained (with several with less than 50%), while the original

accuracy of the rules was kept. The number of the retained attributes de-

pends on the strength of their association with the target class.

• Provide additional insight into properties of the data. The selector ranking

can help in analyzing the data in terms of relevance of the selectors to the

classification task.
4. Experimental results

The CLIP4 algorithm is extensively tested on several benchmark problems.

The results are presented in the following sections. The benchmarking consists

of tests that show the algorithm’s perfomance, and tests that aim to show

specific features of the algorithm.

The benchmarking results are presented in the form of accuracy of the rules,

their number, number of selectors used (complexity of the rules), and time it
takes to generate the rules.
4.1. Experiments configuration

Since an algorithm’s execution time varies between different hardware

configurations we used the SPEC benchmarking tests [69] for direct compari-

son of performance between various algorithms. SPEC benchmark tests con-

tain several programs that perform floating-point or integer computations,

which are intended to measure computer performance.

The general benchmarking results for CLIP4 are compared with the results

of [54], who compared 33 learning algorithms using publicly available datasets,
and three different hardware configurations. By using the SPECint92 bench-
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marking test they converted all execution times into the execution time

achieved when using the DEC3000 model 300 System (DEC). In this paper,

execution times of the CLIP4 algorithm are also converted into simulations on

the DEC System.
There were two hardware configurations used to perform the tests: Intel

Pentium II 300 MHz with 128Mb RAM (I300), and Intel Pentium III 550 with

256Mb RAM (I550). The hardware configurations along with the corre-

sponding SPEC test results for all considered computer systems are given in

Table 2. To perform the recalculation of the execution times the following steps

are taken:

• The SPECint95 benchmarking test was used since our hardware configura-
tion was not reported in the SPECint92 test. Thus, the Intel Pro Adler 150

MHz (I150) system was used as a bridge between the SPECint92 and SPE-

Cint95 benchmarking test, since it was reported on both of them.

• The CPU time ratio for I150 using DEC as the reference is calculated as fol-

lows: DEC time¼ (I150 time) * (SPECint92 for I150)/(SPECint92 for

DEC)� (I150 time) * 3.5.

• The ratio to transform the time from the I150 to I300 is calculated as:

I150 time¼ (I300 time) * (SPECint95 for I300)/(SPECint95 for I150)� (I300
time) * 2.1.

• Both calculated above ratios are multiplied to calculate the CPU time be-

tween DEC and I300. The final formula for the I300 is:

DEC time� 7.3 * (I300 time).

Similar computations were performed for the I550 hardware configuration.
4.2. Datasets

CLIP4 was tested on 27 datasets. The range of the benchmarking is char-

acterized by:
Table 2

Computer hardware configuration used in the benchmarking tests and the corresponding results of

the SPEC benchmarking test

Workstation SPECint92

results

Workstation SPECint95

results

I150 Intel Pro 150

MHz (Alder)

243.9 1150 Intel Pro 150 MHz (Alder

System)

6.08

DEC DEC 3000

Model 300

66.2 1300 Intel Pentium II 300 MHz

SE440BX2

12.9

1550 Intel Pentium III 550 MHz 22.3
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• The size of training datasets: between 150 and about 30 K examples.

• The size of testing datasets: between 45 and 565 K examples.

• The number of attributes: between 4 and 1558.

• The number of classes: between 2 and 10.

The datasets were obtained from the University of California at Irvine

(UCI) Machine Learning Repository [3], and from StatLog project datasets

repository [71]. Summary information about the datasets is given in Table 3.

The following datasets from the UCI were used:

1. Wisconsin breast cancer (bcw)

2. Contraceptive method choice (cmc)
3. StatLog heart disease (hea) (originally from the StatLog project reposi-

tory)

4. Boston Housing (bos) (originally from the StatLog project repository)

5. LED display (led)

6. BUPA liver disorder (bld)

7. PIMA Indian diabetes (pid)

8. StatLog satellite image (sat) (originally from the StatLog project reposi-

tory)
9. Image segmentation (seg) (originally from the StatLog project reposi-

tory)

10. Thyroid disease (thy)

11. StatLog vehicle silhouette (veh) (originally from the StatLog project repos-

itory)

12. Congressional voting records (vot)

13. Waveform (wav)

14. TA evaluation (tae)
15. SPECT heart imaging (SPECT)

16. Adult (adult)

17. Internet advertisement (iad)

18. Mushrooms (mush)

19. Iris plant (iris)

20. Car evaluation (car)

21. Ionosphere (ion)

22. Forest CoverType (forc)
23. Monks problem that consists of the three datasets: Monk1, Monk2, and

Monk3 (m1, m2, m3)

The following datasets from the StatLog were used:

1. StatLog DNA (dna)

2. Attitude towards smoking restrictions (smo)



Table 3

Description of datasets used for benchmarking

Set Size # Clas-

ses

# Attri-

butes

Testing

data

Discretiza-

tion method

Missing

values

examples

Set Size #

Classes

#

Attributes

Testing

data

Discreti-

zation

method

Missing

values

examples

bcw 699 2 9 10CV N/A 2% spect 267 2 22 187 N/A No

cmc 1473 3 9 10CV N/A No adult 48842 2 14 16281 Equal

frequency

7%

dna 3190 3 61 1190 N/A No iad 3279 2 1558 10CV Equal

frequency

28%

hea 270 2 13 10CV Equal

frequency

No mush 8124 2 22 2441 N/A 30%

bos 506 3 13 10CV Equal

frequency

No iris 150 3 4 45 CAIM No

led 6000 10 7 4000 N/A No car 1728 4 6 432 N/A No

bld 345 2 6 10CV CAIM No ion 351 2 34 151 CAIM No

pid 768 2 8 10CV Equal

frequency

No forc 581012 7 54 565892 Equal

frequency

No

sat 6435 6 37 2000 Equal

frequency

No m1 556 2 6 432 N/A No

seg 2310 7 19 10CV Equal

frequency

No m2 601 2 6 432 N/A No

smo 2855 3 13 1000 Equal

frequency

No m3 554 2 6 432 N/A No

thy 7200 3 21 3428 Equal

frequency

No

veh 846 4 18 10CV Equal

frequency

No

vot 435 2 16 10CV N/A No

wav 3600 3 21 3000 Equal

frequency

No

tae 151 3 5 10CV Equal

frequency

No
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4.3. Experiments and results

The general benchmarking tests were divided into two parts:

• The comparison test that compares the results with the results of [54]; when

the authors compared 33 ML algorithms using 16 datasets.

• The flexibility test uses additional 11 datasets. It was designed to test the

flexibility of CLIP4 using both artificial and real datasets, datasets that have

large number of attributes or examples, and datasets described by binary,

categorical, or continuous attributes.

For all test we employed the same testing procedures as in the tests per-
formed by authors of the algorithms to which we compare CLIP4. Because of

that for some datasets we performed 10 fold cross-validation experiments, and

for others we used predefined test datasets; for details see Table 3.

4.3.1. The comparison test

The comparison test, Table 4, shows error rates, number of rules, number of
selectors, and the CPU execution time of CLIP4 for the 16 datasets. The CLIP4

results are compared to the results of Lim et al. (Lim, Loh and Shih, 2000).

Error rates (the maximum and minimum error rate values for all 33 tested

algorithms), median number of rules (the authors reported number of tree

leaves only for 21 decision tree algorithms), and CPU execution time (the

maximum and minimum CPU time values for all 33 tested algorithms) are

reported after them.

The mean error rate of the CLIP4 algorithm for the 16 datasets is 25.1%.
The POLYCLASS algorithm [46], which achieved the smallest mean error rate,

has mean error rate of 19.5%. The Lim, Loh and Shih calculated statistical

significance of error rates, which showed that a difference between the mean

error rates of two algorithms is statistically significant at the 10% level if they

differ by more than 5.9%. They reported that 26 out of 33 algorithms were not

statistically significantly different from POLYCLASS. The CLIP4 falls within

the same category, which places it among the best ML algorithms.

CLIP4’s CPU execution time, which was calculated using the DEC hard-
ware configuration, for the 16 datasets is 5.8 min. The Lim, Loh and Shih

reported that the mean CPU execution time for the 33 algorithms ranged be-

tween 6.9 s and 46.8 h. They categorized the tested algorithms into two groups:

algorithms that achieved mean CPU execution time below 10 min (22 algo-

rithms) and algorithms above the 10 min (11 algorithms). CLIP4 falls into the

first category. It is important to note that the POLYCLASS algorithm had

3.2 h mean execution time.

The CLIP4 algorithm achieves error rates that are statistically similar to the
algorithm that achieved the smallest error rates among all the algorithms tes-



Table 4

The comparison test results

Set Reported error

rates for the 33

ML algorithms

CLIP4

error rates

Reported median

# of leaves/rules

for the 21 algo-

rithms

CLIP4

# of

rules

Reported CPU time

for the 33 ML algo-

rithms

CLIP4 CPU time (s) CLIP4 # of

selectors

Min Max Min (s) Max (h) 1300 DEC¼ I300 * 7.3

bcw 3 9 5 7 4.2 4s 2.7 0.7 5.1 121.6

cmc 43 60 53 15 8 12s 23.9 6.3 46 60.7

dna 5 38 9 13 8 2s 475.2 90.8 662.8 90

hea 14 34 28 6 11.6 4s 3.3 0.3 2.2 192.3

bos 22 31 29 11 10.5 9s 5.5 4.9 35.8 133.5

led 27 82 29 24 41 1s 12.4 22.8 166.4 189

bld 28 43 37 10 9.7 5s 1.5 0.9 6.6 272.4

pid 22 31 29 7 4 7s 2.5 0.8 5.8 64.1

sat 10 40 20 63 61 8s 73.2 506.4 3696.7 3199

seg 2 52 14 39 39.2 28s 75.6 84.2 614.6 1169.9

smo 30 45 32 2 18 1s 3.8 12.4 90.5 242

thy 1 89 1 12 4 3s 16.1 23.5 164.2 119

veh 15 49 44 38 21.3 14s 14.1 6.2 45.3 380.7

vot 4 6 6 2 9.7 2s 25.2 0.6 4.4 51.7

wav 15 48 25 16 9 4s 4.3 5.9 43.1 85

tae 33 69 40 20 9.3 6s 10.2 0.1 0.7 273.2

Mean 17.1 45.4 25.1 17.8 16.8 6.9s 46.8 h 47.9 s 5.8 min 598.5
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ted, and has CPU execution time smaller than 10 minutes. These results place it

among 18 top algorithms out of the 33 tested by Lim, Loh and Shih.

The mean number of rules generated by CLIP4 for the 16 datasets is 16.8.

Lim, Loh and Shih reported the median number of tree leaves (equivalent to
the number of rules) for the 21 tested decision tree algorithms, as 17.8. The

number of rules generated by the CLIP4 algorithm is lower than the reported

median. In addition, only 10 out of the 21 algorithms achieved lower mean

number of leaves than CLIP4.

The mean number of selectors generated by the CLIP4 algorithm for the 16

datasets was 589.5, which translates into about 35 selectors per rule.

4.3.2. The flexibility test

The flexibility test reports error rates, number of rules, number of selectors

and CPU execution time achieved by CLIP4 for the 11 datasets. For each

dataset, the error rate, the number of rules (or tree leaves), and the reference

where these results were reported, are shown in Table 5. The bold values in the

second and fourth columns describe the lowest reported error rates and the

minimum number of rules.
For three datasets (adult, car, m2), two types of results, depending on the

user-chosen CLIP4’s thresholds (see Section 3.1.5), are shown. The first set of

results was generated with the aim of minimizing the error rates, and the

second by a user who aims to generate low number of rules at the price of

slightly higher error rates. The results for these datasets are shown, as high-

lighted rows, in Table 5, and can be summarized as follows:

• adult dataset: 3.1% error rate increase as a trade-off for generating 3.5 times
less rules;

• car dataset: 2.7% error rate increase as a trade-off for generating 1.5 times

less rules;

• m2 dataset: 7.5% error rate increase as a trade-off for generating 2.4 times

less rules.

Adjusting the thresholds allows the user to significantly decrease number of

the generated rules at the cost of slight increase of the error rate. In many
applications, where it is important to understand the generated rules, the latter

may be desired.

The flexibility of the CLIP4 algorithm was tested by applying the algorithm

to the datasets with large number of examples (adult dataset) and large number

of attributes (iad dataset).

The error rate for the adult dataset is the same as the best reported rate for

the FSS Na€ıve Bayes algorithm. On the other hand, when error rate is traded

for decrease in the number of rules, 71 instead of 254 rules are generated, at the
expense of 3.1% higher error rate. Both sets of rules use on average about 105



Table 5

Results of the flexibility test

Set Error rates reported for other ML

algorithms algorithm (error rate)

References # of rules/leaves

reported for other

algorithms

CLIP4 er-

ror rates

CLIP4 #

of rules

CLIP4

CPU time

1300 (s)

CLIP4 #

selectors

spect CLIP3 (16.0) [47] CLIP3 (3) 13.9 1 0.20 9

adult NBTree(16.0) [42] Not reported 14.0 254 52,324 26,670

C4.5 (15.5), C4.5-auto (14.5),

Voted ID3-0.6 (15.6), T2 (16.8), 1R

(19.5), CN2 (16.0), HOODG

(14.8), FSS Naive Bayes (14.0),

IDTM (14.5), Naive-Bayes (16.1),

NN-1 (21.4), NN-3 (20.3), OC1

(15.0)

[3] 17.1 72 16,839 7561

iad C4.5 (2.8) [53] C4.5 (25) 3.9 6.7 14,528.2 203.3

mush C4.5 (0.0), NBTree (3.5) [42] Not reported

STAGGER (5.0) [66] 0.0 2 257.4 18

HILLARY (5.0) [35]

iris AQ (9.2), AQ15 (8.8), C4.5 (7.3),

ID3 (4.9)

[10] OPTG (3.6) OPTT (4.0) 4.4 4 0.3 11

OPTG Tree (4.8), OPTT Tree (4.4) [55]

CLIP3 (5.7) [15]

car HINT (0.0), C4.5 (7.0) [75] Not reported 4.2 32 59.5 283

6.9 22 56.9 177

ion NN-backprop (4.0), NN-linear

perceptron (9.3), NN-nonlinear

perceptron (8.0)

[65] Not reported 4.4 1 1.8 129

forc NN-backprop (30.0), Linear

Discriminant Analysis (42.0)

[2] Not reported 45.6 63 21,542.4 2438
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Table 5 (continued)

Set Error rates reported for other ML

algorithms algorithm (error rate)

References # of rules/leaves

reported for other

algorithms

CLIP4 er-

ror rates

CLIP4 #

of rules

CLIP4

CPU time

1300 (s)

CLIP4 #

selectors

M1 ID3 no windowing (16.8), ID3

windowing (1.4), ID5R (20.2),

AQR (4.1), CN2 (0.0), HCV (0.0),

C4.5 (24.3), C4.5 rules (0.0), C4.5-

S (0.0), C4.5-S rules (0.0)

[70] CLIP3 (4), ID3 no win-

dowing (62), ID3 win-

dowing (28), ID5R (52),

AQR (36), CN2 (10),

HCV (7)

0.0 4 0.9 15

CLIP3 (0.0) [14]

m2 ID3 no windowing (30.9), ID3

windowing (32.1), ID5R (30.8),

AQR (20.4), CN2 (31.0), HCV

(18.7), C4.5 (35.0), C4.5 rules

(34.7), C4.5-S (29.6), C4.5-S rules

(36.9)

[70] CLIP3 (10), ID3 no

wind (110), ID3wind

(110), ID5R (99), AQR

(83), CN2 (58), HCV

(39)

9.7 12 4.39 85

CLIP3 (17.3) [14] 17.2 5 3.16 35

m3 ID3 no windowing (4.4), ID3 win-

dowing (5.6), ID5R (4.7), AQR

(13.0), CN2 (11.9), HCV (9.7),

C4.5 (2.8), C4.5 rules (3.7), C4.5-S

(0.0), C4.5-S rules (0.0)

[70] CLIP3 (2), ID3 no wind

(31), ID3 wind (29),

ID5R (28), AQR (36),

CN2 (24), HCV (18)

2.8 1 0.29 2

CLIP3 (2.8) [14]
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Fig. 9. Comparison of CLIP4 error rates with error rates reported in the literature, for the datasets

used in the flexibility test.
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selectors per rule. Thus, the complexity of the rules does not change when the

number of rules is greatly reduced.

The error rate for the iad dataset is 3.9%, when the best reported error rate

for this dataset was 2.8% for C4.5 algorithm. However, CLIP4 generated only
6.7 rules, which is 3.7 times less than the number of rules generated by C4.5.

The CLIP4 rules use only 30 selectors per rule, despite the fact that the iad

dataset has 1558 attributes and over 3100 possible selectors.

CLIP4 handles highly dimensional data by generating small sets of rules

with the same error rates as the best reported algorithms, while being flexi-

bile in deciding whether the low error rate or low number of rules is the

priority.

Fig. 9 compares error rates achieved by CLIP4 and error rates reported in
the literature. For the 11 dataset, the minimum, mean and median error rates

were calculated and the difference between each of these values and the CLIP4

error rate is plotted. For example, a positive value for the reported minimum

error rates for the SPECT dataset means that the CLIP4 achieved lower error

rate than any other reported error rate.

CLIP4 has the smallest error rate among the reported error rates for six out

of 11 datasets. For eight out of 11 datasets, the CLIP4 has lower error rate than

the mean or median reported error rate. The results for the m2 dataset show
that even when trading decrease in the error rate for smaller number of rules,

the error rate is lower than the lowest reported error rate and the number of

generated rules is twice smaller than the smallest reported number of rules.

The number of rules was reported only for six datasets. The CLIP4 algo-

rithm generated the smallest number of rules for five out of these six datasets,

and for the sixths dataset it generated just 0.4 rule more.



Table 6

Comparison of results for CLIP4 and CLIP3 algorithms

Set CLIP3 algorithm CLIP4 algorithm CLIP3 reference

Error rate # Rules Error rate # Rules

m1 0 4 0 4 [14]

m2 17.3 10 9.7 12

m3 2.8 2 2.8 1

bcw 7.6 Not reported 5 4.2

spect 16.0 3 13.9 1 [47]
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4.4. Comparison between CLIP3 and CLIP4 algorithms

Since CLIP4 is a successor of the CLIP3 algorithm [14,16], we compare the

two in Table 6, which shows error rates and number of rules on five datasets,

on which the CLIP3 algorithm was previously tested.

The error rates achieved by the CLIP4 algorithm for the five datasets are

lower than the error rates of the CLIP3 algorithm. The biggest improvement

was achieved for the m2 dataset.

The number of generated rules by CLIP4 is lower for the spect and the m3

datasets. Only for the m2 dataset CLIP4 generated two more rules than CLIP3.
The results show that less complex and smaller rule sets generated by the

CLIP4 algorithm gave better or the same error rates. Similar results were

observed for decision tree algorithms [33].
4.5. Results for datasets with missing values

One of the features of the CLIP4 algorithm is its ability to handle datasets

with missing values. Among the 27 datasets considered, four contained missing

values. Table 7 shows error rates and the number of rules for CLIP4 and other

algorithms.

CLIP4 achieved the lowest error rates for adult and mush datasets. It also

generated the smallest number of rules for the two datasets for which the
number of rules was reported.
Table 7

Results on datasets with missing values

Set Missing

values

examples

Reported error

rates

Reported

median# of

leaves/rules

References CLIP4

error rates

CLIP4 #

of rules

Min Max

bcw 2% 3.0 9.0 7 [54] 5.0 4.2

adult 7% 14.0 21.4 Not reported [3,42] 14.0 254

iad 28% 2.8 2.8 25 [53] 3.9 6.7

mush 30% 0.0 5.0 Not reported [35,42,66] 0.0 2
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The reason for generating small number of rules can be explained by the fact

that CLIP4 uses the entire information from the data, including values from

examples that have missing values, while generating the rules. Thus, the rules

generated by the algorithm cover all examples, including those with missing
values, which improves generalization ability of the rules.

4.6. Results for small datasets using genetics operators

One of the features of CLIP4 is the use of genetic algorithms (GAs) to

improve accuracy of the rules on small difficult datasets. Table 8 shows error
rates, the number of rules, the number of selectors and the CPU execution

time, while showing just the error rates and number of rules for other algo-

rithms on the six datasets.

Fig. 10 shows error rates, number of rules, number of selectors and CPU

time for CLIP4 with and without the GAs. For example, a positive value of

the error rate for the post dataset means that the CLIP4 with GAs achieved

lower error rate than without. The difference in the number of selectors is

divided by 50 and the difference in CPU time is divided by 500 to scale the
graph.

Below we comment on the CLIP4 results:

• With GAs it achieved better accuracy for all six datasets. Improvement ran-

ged from 0.6%, for the bld dataset, to 7.1% for the post dataset. Average de-

crease of the error rate, for the 6 datasets, was 2.8%.

• With GAs it generated on average 0.9 rules less. The rules involved the same

number of selectors as the rules generated by the CLIP4 without the GAs.
Thus, using the GAs slightly decreases the number of rules while maintain-

ing the same complexity of the rules.

• CPU time to generate the rules using the GAs is higher. The ratio between

the CPU time of the CLIP4 with the GAs and without the GAs ranged from

2.0 for the post dataset to 14 for the hea dataset, and depended on the size

and the number of classes in the data.

The 5% confidence level t-statistics test was used for comparing the results of
CLIP4 with and without GAs. CLIP4 with GAs performed statistically sig-

nificantly better than without GAs for the pid and post datasets. The error rates

of the rules generated with GAs are similar to the mean or median results

reported for the 33 ML algorithms. For the post dataset, the CLIP4 with GAs

error rate is much smaller than the reported one. The CLIP4 with GAs gen-

erates smaller number of rules than the median number of rules reported for

the 33 ML algorithms for four out of five datasets. For the pid dataset the

CLIP4 with GAs generated only three rules as compared to seven rules gen-
erated by the reported algorithms.



Table 8

Results of CLIP4 with and without GAs

Set Size Reported error rates CLIP4 without GAs CLIP4 with GAs

Min Max # of rules/

leaves

Reference Error

rates

#

Rules

CPU time

1300 (s)

# of

selectors

Error

rates

#

Rules

CPU time

1300 (s)

# of

selectors

bld 345 28 43 10 [54] 36.6 9.7 0.9 272.4 36.0 9.6 5.7 273.9

pid 768 22 31 7 29.3 4 0.8 64.1 26.2 4 6.3 61.6

hea 270 14 34 6 27.8 11.6 0.3 192.3 26.3 10.7 4.2 169.8

sat 6435 10 40 63 20.5 61 506.4 3199 19.1 57 2402.1 3010

veh 846 15 49 38 43.5 21.3 6.2 380.7 40.4 21 49.8 360.1

post 90 48 48 Not reported [8] 46.4 18 1.0 88 39.3 18 2.0 92
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Fig. 10. Comparison of the results with and without GAs.
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Better accuracy and smaller number of rules generated with GAs show that

the use of GAs improves the results not by increasing the number of the

generated rules but by improving generalization ability of the rules so they

cover previously uncovered part(s) of the state space. GAs should be used only

for relatively small datasets because of high computational cost.

4.7. Results of feature selection via attribute ranking

The ranking of features can be used to select relevant features. CLIP4 ranks

features by assigning to them goodness values. If a feature has goodness value

equal to zero then it can be removed from the data, and CLIP4 will generate

the same set of rules as using all features. CLIP4 selects all features with

goodness values that are greater than zero as features that are strongly relevant
to the classification task.

Table 9 shows the number of strongly relevant features, selected by CLIP4,

for 27 datasets.

CLIP4 discovered that all features are strongly relevant for nine out of 27

datasets. For eight datasets the CLIP4 algorithm discovered that only less than

50% of the original features are necessary to maintain minimum error rate.

These datasets are:

• iad: 5% (73.7/1558) of features were discovered as strongly relevant,

• ion: 15% (5/34) of features were discovered as strongly relevant,

• mush: 23% (5/22) of features were discovered as strongly relevant,

• spect: 32% (7/22) of features were discovered as strongly relevant,

• dna: 33% (20/61) of features were discovered as strongly relevant,

• m3: 33% (2/6) of features were discovered as strongly relevant,

• thy: 43% (9/21) of features were discovered as strongly relevant,

• m1: 50% (3/6) of features were discovered as strongly relevant.



Table 9

Number of strongly relevant features selected by CLIP4

Experiments not involving the cross-validation Experiments involving cross-validation (all mean values)

Set Total #

features

# Relevant

features

Set Total #

features

# Relevant

features

Set Total #

features

# Relevant

features

Set Total #

features

# Relevant

features

dna 61 20 mush 22 5 bcw 9 8.7 vot 16 13.7

led 7 7 iris 4 4 cmc 9 8.5 tae 5 5

sat 37 37 car 6 6 hea 13 11.7 iad 1558 73.7

smo 13 12 ion 34 5 bos 13 12.5

thy 21 9 forc 54 51 bld 6 6

wav 21 18 m1 6 3 pid 8 8

spect 22 7 m2 6 6 seg 19 18

adult 14 13 m3 6 2 veh 18 18
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Table 10

Comparison of feature selection results between CLIP4 and feature selection algorithms

Set Total #

features

CLIP4 #

relevant

features

Reported results

Plain ML

algorithm

Feature selection algorithm #

selected features (algorithm)

References

bcw 10 9.8 7(C4.5)

9.1(ID3)

3.9(C4.5-BSF), 5.9(NB-BSF),

5.3(ID3-BSF)

[43]

pid 8 8 8(C4.5),

8(1D3)

4.8(C4.5-BSF), 4.4(NB-BSF),

5.7(ID3-BSF)

[43]

5.3(FSV), 6(SVM) [6]

8(ReliefF 0), 4(ReliefF 0.01),

6(CFS)

[32]

mush 22 5 9.5(CFS) [31]

4.2(MDL) [62]

vot 16 13.7 16(ReliefF 0), 16(ReliefF 0.01) [32]

8.2(CFS) [31]

hea 13 11.7 13(ReliefF 0), 12(ReliefF 0.01),

7(CFS)

[32]

ion 34 5 33(ReliefF 0), 33(ReliefF 0.01),

16(CFS)

[32]

10.4 (FSV)6, 11.1 (SVM)6 [6]

seg 19 18 18(ReliefF 0), 15(ReliefF 0.01),

10(CFS)

[32]

bos 13 12.5 9(ReliefF), 4(CFS) [32]

bld 6 6 4.5(FSV), 5.8(SVM) [6]

m1 6 3 5(C4.5),

6(ID3)

3(C4.5-BSF), 4(NB-BSF),

3(ID3-BSF)

[43]

3(MDL) [62]

m2 6 6 6(C4.5),

6(ID3)

3(ID3-BSF) [43]

5.2(MDL) [62]

m3 6 2 2(C4.5),

6(ID3)

2(C4.5-BSF), 2(NB-BSF),

2(ID3-BSF)

[43]

3(B&B), 2(DTM), 4(Focus),

3(LVW)

[31]

2.3(MDL) [62]
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For the first three datasets, the user can achieve over 75% compression rate

by removing all irrelevant attributes and still maintain the same error rate.

Table 10 shows the reported in the literature results that consist of the

number of features selected by a feature selection algorithm for the 12 datasets

and the number of features selected by a machine learning algorithm for the

five datasets. These results are compared with the results achieved by CLIP4.

For five datasets for which the number of selected features by a ML algo-

rithm is reported, CLIP4 selected similar to C4.5 number of strongly relevant
features, and smaller number of features than ID3. The difference between the

feature selection results of the CLIP4 and any other ML algorithms is that the

CLIP4 additionally ranks the selected features by assigning goodness values to
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them. Thus, the user can decide to remove some of the strongly relevant fea-

tures that have low goodness value and rules generated with the data described

by the kept features would give error rates only slightly higher than the error

rates of rules generated using all strongly relevant features. Also, feature
ranking performed by CLIP4 provides user with quantitative information

about the relevance of each feature to the classification task. For example, if

feature X has a goodness of 100% for class Y, then the user knows that feature

X is the highest correlated feature to class Y.

To compare the number of features selected by CLIP4 with other feature

selection algorithms, the mean number of features selected was computed.

Furthermore, the percentage value of the selected features to the total number

of features was computed, and used to compare the algorithms. Table 11 shows
the number of features selected by CLIP4, the mean number of features se-

lected by other feature selection algorithms, and the percentage of the features

selected for the 12 datasets.

CLIP4 selected similar number of features to the number of features selected

by other feature selection algorithms for six out of 12 datasets. For five

datasets the CLIP4 selected more features, and for the ion dataset fewer fea-

tures than the other feature selection algorithms.

CLIP4 performs lossless feature selection by selecting all strongly relevant
features and thus the lowest possible error rate is maintained. On the other

hand, some of the reported feature selection algorithms select smaller subset of

features, but at the price of generating rules with higher error rates than the

rules generated using all features. To decrease the number of features selected

by CLIP4 we can keep only a subset of strongly relevant features, by keeping
Table 11

Comparison of feature selection results between CLIP4 and the mean results achieved by other

feature selection algorithms

Set Total # features CLIP4 # relevant

features

% # selected

by CLIP4 to

the total # of

features

Reported mean

# selected fea-

tures

% Reported

# selected to

the total # of

features

bcw 10 9.8 98 5.0 50

pid 8 8 100 5.5 69

mush 22 5 23 6.7 30

vot 16 13.7 86 13.4 84

hea 13 11.7 90 10.7 82

ion 34 5 15 20.7 61

seg 19 18 95 14.3 75

bos 13 12.5 96 6.5 50

bld 6 6 100 5.2 87

m1 6 3 50 3.2 53

m2 6 6 100 4.1 68

m3 6 2 33 2.0 33
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features that for instance have goodness value grater than some threshold

value.

Although CLIP4 selects more features than other feature selection algo-

rithms the feature selection process is performed by the algorithm, in addition
to its main task of generating the rules. It is also done at a fraction of the

computational cost of feature selection performed by some feature selection

algorithms. Moreover, CLIP4 ranks the selected features, an operation very

rarely performed by classical feature selection algorithms.
4.7.1. Feature ranking

CLIP4 ranks features by assigning goodness values to them. The feature

ranking helps to quantify the correlation between a feature and the classifi-

cation task.

Table 12 shows results of feature ranking for 15 datasets for which no cross-

validation experiments were performed; the strongly relevant features along
with their goodness values are shown.
Table 12

Results of the feature ranking performed by the CLIP4 algorithm

Set The ranked strongly relevant features: feature (goodness value)

dna 34 (29.5), 36 (27.4), 6 (25.6), 35 (22.0), 5 (10.0), 16 (6.54), 18 (4.52), 17 (4.52), 23 (4.31),

56 (3.88), 37 (3.88), 22 (3.88), 20 (3.88), 13 (3.88), 48 (3.23), 43 (1.29), 19 (0.5), 8 (0.5), 7

(0.5), 39 (0.43)

led Digit2 (71.7), Digit5 (67.3), Digit1 (65.1), Digit4 (59.4), Digit7 (58.7), Digit3 (52.3),

Digit6 (51.9)

sat 1 (60.7), 2 (59.5), 10 (54.3), 26 (51.2), 9 (48.9), 19 (47.9), 22 (47.8), 25 (47.7), 34 (45.4),

18 (44.8), 21 (42.4), 3 (42.3), 13 (41.3), 11 (40.4), 33 (38.0), 7 (34.5), 6 (33.0), 29 (29.8),

15 (29.8), 27 (29.4), 17 (29.4), 23 (28.5), 4 (28.0), 16 (26.7), 5 (25.4), 20 (24.4), 31 (24.0),

14 (22.1), 24 (19.8), 12 (19.6), 30 (18.2), 8 (17.7), 35 (17.5), 28 (16.2), 32 (15.3), 36 (6.34)

smo Knowledge (64.3), Education (62.8), Weight (51.7), Age (44.5), Smoking3 (21.5),

Smoking2 (19.8), Smoking1 (13.8), WorkToronto (10.3), Smoking4 (8.8), Sex (6.44),

WorkHome (4.94), Residence (1.72)

thy 17 (75.8), 21 (53.9), 19 (43.7), 1 (30.6), 20 (24.7), 16 (17.0), 8 (16.9), 3 (16.9), 6 (16.2)

wav 1 (78.8), 4 (66.8), 5 (64.7), 16 (61.6), 12 (59.2), 10 (56.1), 15 (55.9), 13 (55.9), 14 (54.6), 7

(54.3), 6 (51.6), 9 (51.1), 17 (48.7), 18 (36.0), 11 (34.2), 19 (33.1), 8 (21.9), 3 (6.51)

spect 21 (50.0), 18 (50.0), 17 (50.0), 16 (50.0), 10 (50.0), 8 (50.0), 7 (50.0)

adult workclass (65.1), occupation (62.3), education (54.3), capital-gain (53.3), age (49.3),

marital-status (40.7), hours-per-week (40.6), relationship (33.1), capital-loss (32.1),

race (23.7), fnlwgt (18.0), native-country (12.9), sex (0.16)

mush Spore-print-color (73.2), Habitat (70.5), Stalk-color-below-ring (53.6), Odor (27.4),

Stalk-surface-above-ring (13.3)

iris PetalLength (67.6), SepalLength (64.1), PetalWidth (30.8), SepalWidth (3.81)

car persons (72.4), safety (57.3), maint (55.1), lug_boot (43.1), doors (42.9), buying (42.1)

ion 9 (52.6), 26 (52.5), 8 (51.0), 22 (50.8), 10 (50.8)

M1 2 (47.1 goodness), 1 (47.1), 5 (25.0)

M2 5 (76.8), 4 (72.9), 1 (72.9), 2 (72.4), 3 (65.0), 6 (60.8)

M3 5 (75.0), 2 (66.7)
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Only for the led, sat, car, iris and m2 datasets all the attributes had goodness

values greater than zero for all features, and thus were selected as the strongly

relevant attributes.

For the dna dataset only five out of 20 strongly relevant features had
goodness values greater than 10%, and similarly for the smo dataset only eight

out of 12 strongly relevant features had goodness values greater than 10%.

For the led dataset, CLIP4 discovered that all the features are equally rel-

evant to the classification task. Similarly, for the spect and ion datasets, the

selected strongly relevant features were discovered to be equally relevant to the

classification task.

For the smo dataset, the knowledge, education, weight and age features were

discovered as significantly more relevant to the classification task as the other
eight strongly relevant features. Similarly, the 17th, 21st and 43rd feature from

the thy dataset were discovered as significantly more relevant to the classifi-

cation task than the other six strongly relevant features.

The feature ranking performed by the CLIP4 algorithm reveals additional

information in addition to selecting the strongly relevant features.

CLIP4 also ranks selectors by assigning goodness values to them. The

selectors ranking provides still another insight into properties of the features. It

shows the importance of the specific feature values rather than importance of
the entire attribute.

4.8. Analysis of the results

The purpose of benchmarking was to provide the answer to whether CLIP4

satisfies the four (see Section 1) goals of a good supervised inductive learning
system.

1. Does CLIP4 generate rules that result in accurate classification?

The benchmarking tests show that it generates rules that accurately classify

new examples, even in the presence of noise. CLIP4 achieves error rates that

are statistically similar to error rates achieved by the most accurate algo-

rithm among the 33 algorithms tested.

2. Does CLIP4 generate simple rules?
CLIP4 keeps the rules compact by pruning that prevents generation of rules

that cover small number of examples, and the new algorithm for solving the

SC problem that promotes generation of general rules. The benchmarking

tests show that CLIP4 generated small number of compact rules.

3. Does CLIP4 generate rules efficiently?

Efficiency of the algorithm was measured by the CPU execution time. The

CLIP4 uses pruning that greatly reduces its computational complexity. The

benchmarking tests showed that the average CPU execution time of CLIP4
on the 16 datasets was 5.8 min. This result places CLIP4 among the 22
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fastest algorithms out of the 33 state-of-the-art ML algorithms that achieved

the average CPU execution time below 10 min. The theoretical estimation of

the expected running time of the algorithm also shows that is can be suc-

cessfully applied to large datasets.
4. Is CLIP4 flexible?

CLIP4 was tested on datasets consisting of thousands of examples and

hundreds of attributes (discrete numerical, discrete nominal, continuous,

binary), including noisy and missing value examples. The tests show that

CLIP4 achieves low error rates and generates small number of compact

rules.

The benchmarking tests also show that other features of the CLIP4 algo-
rithm are very useful:

• Use of genetic algorithms to improve generalization abilities and error rates

of the generated rules on small data.

• Use of feature selection and ranking that is used as a feature selection and

data analysis tool.

• Mechanism for handling datasets with missing values, which uses the entire

information to improve error rates of the generated rules.
5. Summary and conclusions

One of the very important issues is the size and dimensionality of data that

can be processed by any given machine learning algorithm. Both, the re-

searchers and users need to deal with the problem that a system works for

‘‘three examples’’ but is not scalable [67]. Only few learning algorithms can deal
with large highly-dimensional data; CLIP4 algorithm is one of them.

Another issue is the flexibility of a learning algorithm. It should work with a

variety of datasets to be applicable to real-life problems. In summary, the main

advantages of the CLIP4 algorithm are:

• The unique feature of the algorithm is generation of rules from selectors that

involve inequalities. For domains where attributes have large number of dis-

crete values, and when majority of them are correlated with a single class,
this feature results in generation of more compact or smaller number of

rules, as compared with rules that are based on equality selectors only.

• Its flexibility; it works with highly dimensional data due to its mechanisms of

pruning and solving the set covering problem.

• Its ability for providing solutions to multiple learning tasks; it does not only

generate classification rules but also performs feature selection and feature

and selector ranking, which helps in constructing accurate data models.
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The CLIP4 algorithm incorporated ideas from domains like decision trees,

rule algorithms, genetic algorithms, feature selection algorithms, and discreti-

zation methods, to achieve its flexibility and functionality.

The key features of any state-of-the-art algorithm are its flexibility, appli-
cability to a wide range of problems, and ability to solve multiple learning

tasks. The benchmarking tests show that the CLIP4 algorithm is applicable to

diverse types of data. They place it among the most efficient learning algo-

rithms. CLIP4 can perform simultaneously several learning tasks like rule

induction, feature selection, and feature and selectors ranking. Other features

of the CLIP4 algorithm are its ability to work with small, difficult datasets, and

its easy implementation since it uses only tables and lists.
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