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Accurate identification of strand residues aids prediction and analysis of numerous
structural and functional aspects of proteins. We propose a sequence-based predictor,
BETArPRED, which improves prediction of strand residues and β-strand segments.
BETArPRED uses a novel design that accepts strand residues predicted by SSpro and
predicts the remaining positions utilizing a logistic regression classifier with nine custom-
designed features. These are derived from the primary sequence, the secondary struc-
ture (SS) predicted by SSpro, PSIPRED and SPINE, and residue depth as predicted
by RDpred. Our features utilize certain local (window-based) patterns in the predicted

SS and combine information about the predicted SS and residue depth. BETArPRED
is evaluated on 432 sequences that share low identity with the training chains, and
on the CASP8 dataset. We compare BETArPRED with seven modern SS predictors,
and the top-performing automated structure predictor in CASP8, the ZHANG-server.
BETArPRED provides statistically significant improvements over each of the SS pre-
dictors; it improves prediction of strand residues and β-strands, and it finds β-strands
that were missed by the other methods. When compared with the ZHANG-server, we
improve predictions of strand segments and predict more actual strand residues, while
the other predictor achieves higher rate of correct strand residue predictions when under-
predicting them.

Keywords: Strand residues; beta-strands; secondary structure; prediction.

1. Introduction

Protein secondary structure (SS), which includes helix, strand and coil states, con-
cerns spatially local structures formed through hydrogen bonds between backbone
atoms. The last three decades have seen intense research in the sequence-based pre-
diction of the SS.1 In the last 15 years, state-of-the-art three-state predictive accu-
racy (Q3) improved from about 70%2 to over 80%.3 Recent SS predictors employ
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a variety of machine learning-based models such as neural networks, support vector
machines, and regression. They can be categorized into standalone methods and
ensembles that combine multiple SS predictors. A majority of the standalone predic-
tors are based on different types of neural networks, including PHD,4 PSIPRED,5,6

SABLE,7 SSpro,8 YASPIN,9 PORTER,10 and SPINE.11 Their Q3 is relatively high
and ranges between 73% and 78% on the benchmark EVA5 dataset.9,12 The ensem-
ble predictors include CoDe,13 PROTEUS,3,14 and CDM,15 and they achieve Q3 of
up to 89.9% on their test datasets.3

The above methods attempt to solve the general three-state prediction prob-
lem; however, recent research shows that predicting specific SS types, such as coil
types including β- and γ-turns,16,17 also produces high-quality results. Empirical
analysis of two SS predictors, YASPIN and PORTER, reveals that their QE values
(accuracy of strand predictions) are lower than QH (accuracy of helix predictions)
by 7 to 16 percentage points.9,10 Jones et al. show that binary classification of
strand versus non-strand residues (either coils or helices) is characterized by lower
improvement over a baseline than the binary classification of helices or coils.18

Furthermore, fragments of protein sequence that fold into strands are character-
ized by numerous patterns with respect to the occurrence of certain amino acid
types, which were investigated in numerous studies over the last 30 years,19–23 and
which could be exploited to build effective predictors. At the same time, accurate
identification of strand residues aids numerous applications including predictions
of β-sheets24–26 and tertiary structure,27 elucidation of protein folding pathways,28

protein design,29 characterization of super-secondary structures and protein folding
patterns,30 and in investigations of certain mechanisms causing neurodegenerative
diseases.31 There is thus a clear need for methods that accurately predict strand
residues.

Virtually all modern SS predictors, including PSIPRED, SSpro, PORTER, and
PROTEUS, exploit local information in the sequence using a windowing approach
to compute their predictions. Their designs imply independence between positions
in the window, i.e. the predictions are based on neighboring AAs but do not exploit
relations between them. While this is acceptable when considering the AA sequence,
windowing the predicted SS sequence (e.g. in the second stage of PRIPRED), loses
vital information. This recently prompted development of a method that post-
processes predicted SS,32 and it inspires the development of our feature set. We
also note that certain residue characteristics, such as burying depth, that can be
predicted relatively accurately from the sequence33,34 and have not been considered
by existing SS predictors, could provide valuable predictive input. More specifically,
recent analysis shows that helices are about three times more abundant on the
protein surface when compared with strands, while their abundance in the protein
core is comparable, and twice as high compared to coils.33

We propose the BETArPRED predictor, which tackles the binary classifica-
tion problem of predicting strand residues from protein sequences. Our approach
is motivated by recent works demonstrating that ensemble-based SS predictors
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outperform standalone solutions.3,14,35 Similarly, combining multiple predictors
results in improvements in related predictive efforts, including prediction of protein
fold types,36,37 structural classes,38 quaternary structure type,39 transmembrane
helices,40 and disorder,41–43 to name a few. Encouraged by the success of the
ensemble-based predictors and the fact that correlations between neighboring SSs
are stronger than that between neighboring residues,44,45 we use SS predicted by
SSpro, PSIPRED and SPINE as our inputs. BETArPRED also uses residue depth
predictions computed with RDpred34 and sequence-derived information to generate
a small set of nine features that are fed into a logistic regression classifier. The fea-
tures utilize local (window-based) patterns in the predicted SS to exploit relations
between adjacent residues. They further combine information about the predicted
SS and residue depth, and consider global (sequence-wide) information concerning
chain length.

2. Methods

2.1. Datasets

We extracted a large dataset of low-similarity protein chains, which were deposited
into PDB46 between January 2007 and December 2008, to design and test the pro-
posed method. We selected recent depositions to remove potential bias with respect
to templates in the base SS prediction methods utilized in our solution. We further
filtered these proteins to consider only chains with high-quality structures; those
determined using X-ray crystallography with resolution <2.5 Å and R-value <0.25.
As in Cheng and Baldi24 and Lippi and Frasconi25 we retained the sequences that
have at least 50 residues and contain at least 10% strand residues. Next, using CD-
hit47 we reduced the sequence similarity within the dataset by selecting a subset
of chains that has pairwise sequence identity <40%. We additionally removed any
sequence that has >25% similarity to the sequences deposited in PDB before Jan-
uary 2007 using pairwise identity computed by BLAST. The final dataset consists
of 861 protein sequences. For each sequence we annotated strand residues using
DSSP.48 The dataset was randomly divided into two subsets, the TRAINING and
the TEST sets. The TRAINING dataset contains 429 protein sequences (103,390
residues and 25,697 strand residues), which are used to design and train the pre-
dictive model using five-fold cross validation. We chose this type of the test which
randomizes the selection of the five folds, instead of the jackknife cross validation
which leads to a unique non-randomized result49,50 and which was recently used in
related works,51–66 to reduce the computational time. The TEST dataset contains
432 sequences (106,405 residues and 25,648 strand residues) and is used to deter-
mine the out-of-sample prediction quality of BETArPRED. We further evaluate
BETArPRED on targets from the most recent CASP8 competition,67 excluding
three targets which we could not process using DSSP and another seven for which
the predictions of the top-performing tertiary structure predictor in CASP868 were
missing or could not be processed by the DSSP. The CASP8 dataset thus includes
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111 sequences (22,875 residues and 5,358 strand residues). The datasets are avail-
able at http://biomine.ece.ualberta.ca/BETArPred/BrP.htm.

2.2. Evaluation measures

The performance of BETArPRED is assessed using measures that quantify pre-
diction quality at the residue and the segment (β-strand) levels. The residue-level
measures include:

Acc (accuracy) = (TP + TN)/(TP + TN + FP + FN),

Qe obs (sensitivity) = (TP)/(TP + FN),

Qe pred = (TP)/(FP + TP),

where TP (true positives) is the number of correctly predicted strand residues,
TN (true negatives) is the number of correctly predicted non-strand residues, FP
(false positives) is the number of non-strand residues incorrectly predicted as strand
residues, and FN (false negatives) is the number of strand residues incorrectly
predicted as non-strand residues. As in Lin et al.9 and McGuffin and Jones,69 we
also compute four quality measures that quantify different types of prediction errors,
see Fig. 1. Over-prediction error, Oe, is defined as the number of FP residues where
the entire segment of the predicted strand residues (β-strand) does not overlap
with the actual strand residues. Similarly, under-prediction error, Ue, quantifies
the number of FN residues where none of the residues in the entire actual β-strand
is correctly predicted. The length error, Le, represents the total number of FN
residues and FP residues where some of the predicted strand residues overlap with
an actual β-strand and where the incorrect predictions form a segment that extends
to a terminus of the actual β-strand. The inner-segment error, We, is defined as
the number of FN residues which are inside an actual β-strand, i.e. the segment of
these incorrect predictions does not extend to a terminus of the actual β-strand.

The segment-level measures include segment overlap (SOVe) scores70 for
β-strands, and average strand segments coverage:

ASSC =

∑N
i=1

Sio

Sia

N
,

where Sio is the number of predicted strand residues that overlap with an actual
β-strand Si, Sia is the number of residues in the actual β-strand Si, and N is the
total number of β-strands in the dataset.

-----EEEE-----EEEE------EEEEEE----EEEE-  actual (native) structure
-EE---EEEE------EEEEE--EE--EE----------  prediction
-OO--LEEEL----LLEELLL--LEWWEEL----UUUU-  prediction errors

Fig. 1. Illustration of four types of prediction errors. The top line gives the true positions of strand
residues (E) and non-strand residues (-), the middle line shows a prediction, and the bottom line
annotates the errors using bold font where the over-prediction, under-prediction, length, and
inner-segment errors, are denoted with O, U, L, and W, respectively.
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We also compute the Qh obs, Qh pred, Qc obs, and Qc pred which evaluate the
prediction of helix and coil residues, Q3 to quantify the overall 3-state secondary
structure predictions, as well as SOV3 (for the 3-state secondary prediction), SOVh,
and SOVc measures. The measures are consistent with the measures applied in the
EVA platform.71

2.3. Secondary structure predictions

We considered the key SS predictors listed by Rost72 which include PORTER,
PSIPRED, SSpro, SABLE, and YASPIN, as well as two recent predictors, SPINE
and PROTEUS2. PSIPRED is widely applied in prediction of various structural
properties such as solvent accessibility,73 fold,37 structural class,74 outer membrane
beta barrel protein types,75 folding rate,76 and β- and γ-turns,16,17 to name a few.
PROTEUS2 is a recent ensemble method that was selected due to its reported favor-
able performance when compared with eight competing SS predictors.3 YASPIN
was reported to provide high quality predictions of strand residues.9 PORTER (the
standalone version provided at http://distill.ucd.ie/porter/) and SSpro 4.0 were
selected due to their strong performance on the EVA server.71 We computed Acc,
Qe obs, Qe pred, SOV3, SOVh and SOVe values on the TRAINING set for each of the
seven predictors, see Table 1. We select the three methods with highest accuracy
(SSpro, PSIPRED, and SPINE) for BETArPRED. These methods also have high
SOVe, SOVh, SOV3 and Qe pred values, while their Qe obs is also relatively large.
SABLE and PORTER have low Qe obs, while PROTEUS and YASPIN over-predict
strand residues, leading to low Qe pred. The selected predictors have SOVe < SOVh,
again showing that helix residues are better predicted than strands.

2.4. Overall design

Our preliminary experiments indicated that a simple ensemble of SS predictions
yields a model that tends to mimic the strongest base method, and provides only
marginal improvements. Instead, we propose a novel type of ensemble in which we
accept the strand residue predictions of the strongest base method and (re)predict
the remaining residues. Table 1 shows that SSpro has the highest Qe pred values.

Table 1. The quality of the SS predictions on the TRAINING dataset for
the seven considered SS predictors. The methods are sorted by Acc.

SS predictor Acc Qe obs Qe pred SOVe SOVh SOV3

SSpro 89.02 70.49 82.64 74.76 80.78 77.33
PSIPRED 88.71 73.76 79.24 75.49 80.25 77.51
SPINE 88.68 72.01 80.27 75.51 80.02 77.23
SABLE 88.31 68.60 81.29 74.14 78.46 76.48
PROTEUS 87.95 82.42 72.65 78.89 79.24 77.51
PORTER 87.03 66.82 77.74 71.37 78.34 76.08
YASPIN 85.57 72.67 70.18 73.00 76.21 73.41
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Protein sequence 

SS predicted 
by SSpro

SS predicted 
by SPINE

SS predicted 
by PSIPRED

Residue depth 
predicted by RDpred

Feature-based sequence representation

Classifier
strands residues 

predicted by SSpro Predictions for the remaining residues

Predicted strand residues

Fig. 2. The overall design of the proposed prediction method.

Only about 17% of its strand residue predictions are incorrect. However, 29% of
the actual strand residues are missed by SSpro, and our ensemble is designed to
find them. The overall design of the proposed method is shown in Fig. 2. The input
protein sequence is fed into SSpro, SPINE and PSIPRED to obtain predicted SS.
The strand residues predicted by SSpro are passed to the final prediction. The
predicted SS, residue depth predicted with RDpred method,34 and the sequence
itself are used to compute a feature vector for the remaining residues. These features
combine both local (window-based) and global (sequence-based) information from
these sources. The feature vector is passed to a classifier, and the predicted strand
residues are merged with the predictions from SSpro. This design is empirically
compared against a typical ensemble that predicts all residues to demonstrate the
benefits of the proposed design in Sec. 2.6.

2.5. Features

We employ features generated at three levels: the predicted residue itself (raw
values), from a local window centered over the predicted residues (aggregated
local information), and the entire protein sequence (aggregated global informa-
tion). Window- and sequence-level features are used because strand residues form
β-strand segments (formation of β-strands involves local interactions) and since
β-strands form β-sheets that involve strand segments that may be dispersed over
the entire sequence. The features are obtained from three sources: the sequence,
the predicted SS, and the residue depth predicted with RDpred. RDpred predicts
three types of residue depths: two distance-based depths based on the MSMS77

and DPX78 methods, and a volume-based depth based on the SADIC algorithm.79

We employ all three depth predictions as they are complementary. Specifically,
the absolute correlations between these depth predictions range between 0.63 and
0.77.34 In total we extract 214 features. The first two letters in the prefixes of the
feature names indicate the information level (r, w, and p denote residue, window,
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and sequence-level features, respectively) and the type of the aggregation (a and s

correspond to no aggregation (values for individual amino acids are used), and to
aggregation of the predicted SS (SS segments or SS states), respectively).

2.5.1. Residue-level features

For each residue in a given sequence, the following nine features are computed:

• r a from N and r a from C quantify linear distance from the N- and C-termini
of a sequence, respectively (two features).

• r a ssi is the SS predicted using the ith method, where i = {PSIPRED, SSPro,
SPINE } (three features).

• r a score is the PSIPRED reliability score (one feature). The other two SS pre-
dictors do not provide reliability scores.

• r a depthj is the depth predicted by RDpred using the jth definition, where
j = {MSMS, DPX, SADIC} (three features).

2.5.2. Window-level features

One hundred and seventy-four features are computed for each residue in a given
protein sequence using a local widow. The maximal window size that we use is nine
(four residues on each side of the predicted residue). This size was selected since our
previous work suggests that formation of strands appears to be affected by residues
within three positions in the sequence.80 We extended the resulting seven residues-
wide window to include one more position, assuming that feature selection (which
is described in the next subsection) will remove features that are irrelevant. Among
the 174 features, 63 are generated using the predicted residue depths (in some cases
combined with the predicted SS):

• w a depthj frags is the average predicted depth according to the jth depth pre-
dictor in windows of size s = {3, 5, 9} centered on the predicted residue (3×3 = 9
features).

• w s mi avgdepth statek depthj is the average depth predicted for residues in
kth = {h, e, c} SS state in the window of size nine using the SS predictions
of the ith method and the jth depth definition (3× 3× 3 = 27 features). A value
of −1 is used when a given SS state is not predicted in the window.

• w s mi avgdepth segl depthj is the average predicted depth for the SS segment
that includes the predicted residue, where l = {h, e, c} is the SS type of the
segment extracted from the SS predicted by the ith method and where the jth
depth definition is used. The values for the remaining two SS types, l, for a given
i and j are set to −1. (3 × 3 × 3 = 27 features).

Another 87 features quantify composition of the predicted SS:

• w s mi statek is the count of the residues in the kth SS state in a window of size
nine using the SS from the ith method (3 × 3 = 9 features).
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• w s mi statek norm len is the count of the residues in the kth SS state in a
window of size nine, normalized by the window size, and using the SS predicted
by the ith method (3 × 3 = 9 features).

• w s mi dipepm is the count of the mth SS dipeptide in a window of size nine
using the SS predicted by the ith method, where m = {hh, ee, cc, hc, ec, ch, ce}
(7 × 3 = 21 features). We do not consider the dipeptides where strand residues
are next to helix residues, since they very rarely occur naturally, if at all.

• w s mi tripepn central res is the binary feature that denotes whether the pre-
dicted residue is in the nth SS tripeptide conformation (centered on the predicted
residue) using the SS predicted by the ith method, where n = {hhh, hcc, cch, hhc,
chh, hch, eee, ecc, cce, cec, eec, cee, ece, ccc, ech, hce} (16 × 3 = 48 features). We
do not consider the tripeptides where strand residues are next to helix residues.

The following nine features utilize the reliability scores for the SS predicted by
PSIPRED:

• w s mPSIPRED avg rel score statek is the average reliability score in a window
of size nine for the kth SS state (three features).

• w s mPSIPRED max rel score statek is the maximal reliability score in a window
of size nine for the kth SS state (three features).

• w s mPSIPRED min rel score statek is the minimal reliability score in a window
of size nine for the kth SS state (three features).

The next nine features quantify the number and size of predicted SS segments:

• w s mi max seg len and w s mi min seg len are the maximal and minimal length
of SS segments in a window of size nine using the SS predicted by the ith method
(3 + 3 = 6 features).

• w s mi seg number is the number of the SS segments in a window of size nine
using the SS predicted by the ith method (three features).

The final six features quantify the position of the predicted residue with respect
to the predicted SS segment that includes this residue:

• w s mi max interface distance and w s mi min interface distance are the maxi-
mal and minimal distances between the position of the predicted residue and the
two termini of the SS structure segment that includes this residues using the SS
predicted by the ith method (3 + 3 = 6 features).

2.5.3. Sequence-level features

A total of 31 features are computed by exploring the entire protein sequence:

• p a chain len is the length of the protein sequence (one feature).
• p s mi segs is the number of the SS segments predicted by the ith method (three

features).
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• p s mi segl norm len and p s mi segl norm total are the counts of the SS seg-
ments of lth type using the SS predicted by the ith method, normalized by the
chain length and by the total number of SS segments in the chain, respectively
(3 × 3 + 3 × 3 = 18 features).

• p s mi Eseg +/−1, p s mi Eseg +/−2 and p s mi Eseg +/−3 are the counts of
β-strands that are of length of up to +/−1, +/−2, and +/−3 residues, respec-
tively, when compared with the length of the β-strand that includes the predicted
residue using the SS predicted by the ith method. These features are set to −1
when the predicted residue in not in a β-strand (3 + 3 + 3 = 9 features).

The p s mi segl features bias the ensemble when predicting sequences that
are rich in certain types of SS conformations. The nine p s mi Eseg features
exploit the fact that β-sheets include up to several β-strands with similar segment
lengths.

2.6. Feature and classifier selection

Empirical feature selection will identify a subset of features that are effective in
predicting strand residues. At the same time, we require a classifier with favorable
predictive quality. These tasks were performed using the WEKA81 and LIBLIN-
EAR82 software packages. We considered two feature selection strategies: a filter-
based method in which feature sets are evaluated by their “association” with the
prediction outcomes, and a wrapper-based method in which feature sets are assessed
based on prediction quality using a given classification method.83

We applied two filter-based methods, consistency-based (CONS)84 and
correlation-based (CFS).85 The CONS method uses a ratio between the number
of inconsistent versus total number of data samples (residues) when the input data
are projected onto a given subset of features. Samples are considered inconsistent
if they have the same feature values and different predictions. The CFS method
defines a ratio between a correlation-based estimate of the predictive value of a
given feature set and its estimated redundancy. These two methods were shown
to reduce the dimensionality of the feature vector while maintaining or improving
prediction quality.84,85 For efficiency, we used best-first search with forward feature
selection to search through the space of the feature sets. We used these two selec-
tion methods on the TRAINING dataset using five-fold cross validation and we
combined the features selected in each fold together. We also took the union and
intersection of these two feature sets (denoted UNION and INTER, respectively).

The wrapper-based selection was performed simultaneously with classifier selec-
tion. We consider three classifiers: logistic regression (LOG),86 a normalized Gaus-
sian radial basis function (RBF) network,87 and a linear-kernel based Support Vec-
tor Machine (SVM).82 The RBF network requires setting the number of clusters,
k, and we use two variants with k = 1 and k = 2, referred to as RBF(1) and
RBF(2), respectively. We also parameterized the value of complexity constant C

for the SVM for each of the feature sets using five-fold cross validation. As with the
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filter-based selection, we used best-first search to generate feature subsets that were
inputted into the four classifiers, LOG, RBF(1), RBF(2), and SVM. Each of the fea-
ture sets was evaluated on the TRAINING dataset using five-fold cross validation.
We evaluate the classifiers using three indices: Accuracy (ACC), average of Qe pred

and Qe obs (AVG), and SOVe. Consequently, we have three feature sets for each
classifier.

Next, we used the same four classifiers to compare predictive quality of all
selected feature sets (four selected using filter-based methods and three from using
the wrapper-based method). Each of the 28 experiments (4 classifiers × 7 sets) used
the five-fold cross validation on the TRAINING dataset. Additionally, we repeated
the same procedure with a standard ensemble, in contrast to the proposed design
that accepts strand residues predicted by SSpro and predicts the remaining residues.
The complete results are given in Table A.1 in the Supplementary Materials. Table 2
compares the two best models, with the highest accuracy and the highest SOVe,
for both ensemble configurations against the three base SS predictors. Table A.1
shows that two solutions attained highest accuracy for the proposed design and
we chose the solution with higher Qe pred. Table 2 reveals that the best results, in
terms of both high accuracy and SOVe, are obtained by the LOG classifier and
wrapper-based feature selection evaluated using accuracy (the last row in Table 2).
This feature set includes only nine features (details are shown in Sec. 3.2). We also
compared the two best models for the proposed and the alternative designs on the
TEST and CASP8 datasets. The results, which are summarized in Table A.2 in the
Supplementary Materials, confirm that the chosen ensemble provides favorable pre-
dictive quality as measured by accuracy, SOVe and the best trade-off between Qe obs

and Qe pred. Thus, the proposed BETArPRED method uses the strand residues pre-
dicted by SSpro and predicts the remaining residues utilizing the LOG classifier and
the nine features.

Table 2. Results of five-fold cross-validation on the TRAINING dataset for
the two best performing feature sets, according to accuracy and SOVe,
using the proposed design (by taking strand residues predicted by SSpro
and predicting the remaining positions), the alternative design that pre-
dicts all residues, and for the PSIPRED, SSpro and SPINE. The pro-
posed/alternative design rows encode the classifiers (SVM, RBF(1), and
LOG) and feature selections (SOVe, AVG, and ACC) used.

Predictor Acc SOVe Qe obs Qe pred

SSpro 89.02 74.76 70.49 82.64
PSPRED 88.71 75.49 73.76 79.24
SPINE 88.68 75.51 72.01 80.27
Alternative design SOVe + SVM 55.39 79.34 82.73 33.69

AVG + RBF(1) 89.54 77.31 75.62 80.92
Proposed design SOVe + SVM 55.59 80.27 84.64 34.06

ACC + LOG 89.51 78.19 76.63 80.15
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3. Results

3.1. Comparison with related methods

Our predictions are assessed using residue (Acc, Qe obs, Qe pred, Oe, Ue, Le, and We)
and β-strand segment quality indices (ASSC and SOVe). We compare BETArPRED
with the seven SS predictors on the TEST and CASP8 datasets. For the CASP8
dataset we also include the best automated 3D structure predictor from the CASP8
competition,68 the ZHANG-server, with the predicted structure processed using
DSSP to obtain the positions of beta residues. We include results on the entire
CASP8 dataset and also on its two subsets that include sequences with at least one
strand residue and 10% of strand residues, respectively. This is because most of
the quality indices (Qe obs, Ue, Le, We, ASSC, and SOVe) could not be measured
for chains with no strand residues and they may provide statistically unreliable
estimates when the number of strand residues is low. In particular, for chains with
no strand residues they would default to zero and cannot quantify how many strand
residues are incorrectly predicted. The complete results are given in Table A.3 in
the Supplementary Materials. Table 3 summarizes results on the TEST set (chains
with at least 10% strand residues) and the CASP8 set (again, chains with at least
10% strand residues) and gives statistical significance of improvements on both
datasets. We compared results for individual proteins between BETArPRED, each
of the seven SS predictors, and the ZHANG-server. When a given quality measure
for both predictors is normally distributed (per the Shapiro–Wilk test of normality
with p < 0.05), we applied the paired t-test and otherwise we used the Wilcoxon
rank sum test. Table A.4 in the Supplementary Materials provides these results for
different versions of the CASP8 dataset.

BETArPRED achieves the highest SOVe and accuracy on the TEST dataset.
The ASSC, SOVe, Qe obs, and Ue of BETArPRED are statistically significantly bet-
ter at 0.05 when compared with six out of the seven SS predictors. When compared
with the remaining PROTEUS which over-predicts strand residues, BETArPRED
significantly improves Qe pred, accuracy, Le and We. The results on the CASP8 con-
firm these findings. We note statistically significant improvements in SOVe, ASSC,
Qe obs, and Ue. Overall, the results indicate that BETArPRED better predicts indi-
vidual strand residues (highest accuracy among SS predictors on both CASP8 and
TEST sets) as well as β-strands (highest SOVe, except for YASPIN on the CASP8
set). Importantly, the low values of the Ue, which are significantly lower than most of
the other predictors including SSpro, demonstrate that our method finds β-strands
that were missed by other methods. When compared with the ZHANG-server, our
method significantly improves prediction of strand segments (as measured by ASSC
and SOVe) and is inferior in the context of prediction of strand residues. We note
that ZHANG-server under-predicts strand residues and these predictions have high
quality, while BETArPRED finds significantly more actual strand residues (higher
Qe obs).
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Table 3. Summary of results of the BETArPRED and the seven representative SS predictors on

the TEST dataset and the CASP8 dataset with chains that include at least 10% of β-residues.
Results on the CASP8 dataset also include the top-performing automated 3D predictor, ZHANG-
server. The second and the last sets of rows report results of the statistical significance tests which
compare the proposed BETArPRED against the seven SS predictors (and ZHANG-server on the
CASP8). The “– – –”/“– –”/“–” means that BETArPRED is worse with p < 0.02/0.05/0.1, the
“+++”/“++”/“+” means that BETArPRED is better with p < 0.02/0.05/0.1, and “=” denotes
that the BETArPRED and the other methods are not significantly different.

Dataset/test type Predictor ASSC SOVe Qe obs Qe pred Acc Oe Ue Le We

TEST BETArPRED 76.20 79.46 76.60 78.95 89.41 1.46 2.22 6.89 0.02
SSpro 70.58 75.72 71.08 82.03 89.25 1.16 2.86 6.69 0.03
PSIPRED 72.13 75.53 72.97 77.96 88.49 1.29 3.13 7.07 0.03
SPINE 70.00 74.87 70.71 79.33 88.48 1.31 2.99 7.17 0.06

SABLE 67.01 73.37 67.43 79.45 87.92 1.24 3.42 7.41 0.02
PROTEUS 80.23 77.68 79.99 71.59 87.50 1.35 2.16 8.64 0.09
PORTER 65.01 70.90 66.17 76.97 87.05 1.47 2.57 7.53 0.02
YASPIN 73.00 73.16 72.81 68.32 85.28 2.71 3.45 8.55 0.01

Significance of the
differences when
compared to
BETArPRED
on the TEST
set

SSpro +++ +++ +++ – – – = – – – +++ = =
PSIPRED +++ +++ +++ = + – – +++ = =
SPINE +++ +++ +++ = +++ = +++ = +++
SABLE +++ +++ +++ = +++ = +++ + =
PROTEUS – – – = – – – +++ +++ = = +++ +++
PORTER +++ +++ +++ = +++ – – ++ + =
YASPIN +++ +++ +++ +++ +++ +++ +++ +++ – – –

CASP8
99 chains with
at least 10%
strand residues

BETArPRED 76.15 80.15 76.23 80.22 89.05 1.43 2.39 7.19 0.04
ZHANG-server 67.95 72.77 68.35 90.47 90.06 0.46 3.01 6.43 0.04
SSpro 70.60 76.63 70.97 83.30 88.99 0.96 2.99 7.01 0.05
PSIPRED 72.47 75.30 73.37 77.60 87.84 1.34 3.27 7.54 0.02
SPINE 71.76 76.53 71.86 80.59 88.43 1.28 3.06 7.15 0.07
SABLE 67.63 75.00 67.95 80.43 87.64 1.32 3.52 7.50 0.01
PROTEUS 75.35 74.98 75.95 72.70 86.62 1.50 3.17 8.69 0.02
PORTER 63.51 69.70 64.19 75.26 85.52 1.48 3.73 9.25 0.02
YASPIN 79.16 80.33 79.38 73.84 87.60 1.77 2.74 7.88 0.01

Significance of the

differences when
compared to
BETArPRED
on the CASP8
set with 99
chains

ZHANG-server ++ + ++ – – – – – – – – = – – =

SSpro ++ + +++ – = = = = =
PSIPRED = ++ = = = = +++ = =
SPINE + + + = = = ++ = =
SABLE +++ +++ +++ = = = +++ = =
PROTEUS +++ ++ = +++ +++ = +++ = =
PORTER +++ +++ +++ + +++ = +++ = =
YASPIN = = = +++ + = = = –

3.2. Comparison of 3-state secondary structure predictions

The outputs of BETArPRED are combined with the predictions from SSpro, which
obtained the highest accuracy on the training dataset (see Table 1), to gener-
ate the three-state secondary structure predictions. More specifically, we predict
strands for all residues predicted by BETArPRED as strands and we use predic-
tions from SSpro for the non-strand residues predicted by BETArPRED. Since by
design BETArPRED predicts all strand residues predicted by SSpro as strands, the
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SSpro predictions for the non-strand residues predicted by BETArPRED are either
coil or helix residues. Our objective is to evaluate the impact of the improved strand
residue and segment predictions provided by BETArPRED on the prediction of the
other two secondary structure states. We compare these three-state predictions
with the corresponding predictions produced by the considered secondary struc-
ture predictors on the TEST and the CASP8 sets, see Table 4. The results show
that the improved prediction of the strand residues provided by BETArPRED does
not have a detrimental effect on the prediction of helix and strand residues. The
overall three-state predictive quality measured using Q3 and SOV3 for the three-
state secondary structure generated using predictions from BETArPRED is the
highest for both datasets. A direct comparison between the three-state predictions
generated by SSpro and the SSpro predictions augmented using the BETArPRED
outputs demonstrates that the latter increases both Q3 and SOV3 values on the
TEST and CASP8 datasets. We observe a small decrease in the SOVh, similar
SOVc, and substantially improved SOVe values when comparing the SSpro and the
BETArPRED-based predictions.

3.3. Analysis of the selected features

Table 5 lists the features used by BETArPRED. They utilize all considered input
predictions at all three information levels. The features use the residue-level SS
predicted by PSIPRED and SPINE, local information extracted from the SS pre-
dicted by PSIPRED, SPINE and SSpro, a combination of the local predicted SS
and residue depth quantified using both volume and distance based definitions, and
sequence-level information concerning the chain length. Figure 3 visualizes values
of two pairs of these features. Both plots show how a given combination of a pre-
dicted depth-based feature with a feature that utilizes predicted SS is helpful in
annotation of the strand versus non-strand residues. Note that “predicted SS” that
defines features on the x-axis comes from a different predictor than for the y-axis.
When the predicted SS of the residue is a strand (x-axis in the bottom panel) or
when this residue is located inside a strand segment (x-axis in the top panel), the
values of the average depth of the predicted helical conformations in the vicinity
of this residue (y-axes) provide evidence on its proper classification. If there are no
predicted helices (−1 on the y-axis), then it is most likely a strand conformation
(the marker is green). The higher the average depth of the predicted helices (shown
on the y-axis), the smaller the likelihood that our prediction should be a strand
(the marker is more red). This agrees with the underlying biology, as it is more
likely that the predicted helical conformation is correct if its depth is higher.33

3.4. Case study

We selected the galactose mutarotase related enzyme Q5FKD7 (PDBid 3DCD)
among the CASP8 targets to demonstrate predictions of our method. This chain
contains about 45% strand residues with several short and longer segments. Figure 4
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Table 5. Features used by the BETArPRED.

Feature name Description

r s ssPSIPRED Residue-level predicted SS by PSIPRED and
SPINEr s ssSPINE

w s mPSIPRED tripepeee central res
w s mPSIPRED tripepece central res
w s mSPINE tripepece central res
w s mSSpro tripepcch central res

Local predicted by PSIPRED, SPINE, and
SSpro SS of tripeptides, including EEE, ECE,
and CCH combinations, centered on the
predicted residue

w s mPSIPRED avgdepth segh depthMSMS

w s mSSpro avgdepth stateh depthSADIC

Local average predicted depth of the predicted
helix residues and helical segments predicted
by PSIPRED and SSpro

p a chain length Sequence-level chain length

shows side-by-side the actual DSSP-derived SS, the results from BETArPRED, and
the predictions from the ZHANG-server and SSpro. The results reveal that the
proposed predictor finds three β-strands in the middle of the sequence that were
missed by SSpro, adding a total of 16 strand residues to the SSpro predictions, out
of which 12 are correct and 4 are incorrect. BETArPRED correctly finds additional
β-strands as a trade-off for a few over-predicted strand residues located at the
termini of the correctly predicted β-strands. The ZHANG-server under-predicts

(a)

Fig. 3. Scatter plots of two pairs of features used by the BETArPRED. Size of the markers denotes
number of residues and color denotes their membership (green for strand residues and red for non-
strand residues). (a) The y-axis quantifies the average predicted depth of helical residues predicted
by SSpro in a window of size 9 centered on the predicted residue. Value of −1 is used when there
are no predicted helices in the window. The x-axis shows whether the predicted residue is in the
EEE segment, as predicted by PSIPRED. (b) The y-axis quantifies the average predicted depth
for the helix segment predicted by PSIPRED that includes the predicted residues. Value of −1 is
used when the predicted residue in not in a helix segment. The x-axis shows the SS predicted by
SPINE for the predicted residue.

J.
 B

io
in

fo
rm

. C
om

pu
t. 

B
io

l. 
20

11
.0

9:
67

-8
9.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 V
IR

G
IN

IA
 C

O
M

M
O

N
W

E
A

L
T

H
 U

N
IV

E
R

SI
T

Y
 L

IB
R

A
R

IE
S 

on
 0

2/
03

/1
7.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



January 28, 2011 15:40 WSPC/185-JBCB S0219720011005355

82 K. D. Kedarisetti et al.

(b)

Fig. 3. (Continued )

DSSP: -EEEEE---EEEEEE-E--EEEEEEE-----E-E-------------EEE---------EEEE--EEEE----E-----E-EEEEEE--
SSpro: --EEEE---EEEEEE----EEEEEE-----EEEEE------------EEEE--------EEEE--EEEE-----------EEEEE----
BrP: --EEEE---EEEEEE----EEEEEEE----EEEEE------------EEEE--------EEEE--EEEE----------EEEEEE----
ZHANG: -EEEEE----EEEEE----EEEEEE-----E----------------EE-----------EEE--EEE-------------EEE-----

DSSP: EEEEEEE------------EEEEEEEEEE--EEEEEEEEEE-----EEE-EEE--EEE-----------EEEEEE----EEE--EE--E
SSpro: EEEEEEE-----------EEEEEEEEEE---EEEEEEEEEE---------------EE-----------EEE-----------------
BrP: EEEEEEEE---------EEEEEEEEEEE---EEEEEEEEEE------EEE-----EEE-----------EEEE-----EEEE-------
ZHANG: --EEEE-------------EEEEEEEEEE--EEEEEEEEEE-----EE---EE--E--------------EEEE----E----------

DSSP: E-----EEE-----EE----------EEEE-----EEEEEEE-----EEEEEEE---EEEEE--------EEEEEEEE----E-----E
SSpro: -------------------------EEEEE------EEEEE------EEEEE-----EEEEE--------EEEEE--------------
BrP: --------------EE---------EEEEE------EEEEEE-----EEEEEE----EEEEE--------EEEEE--------------
ZHANG: --------------EE--------EE-----------EEEE------EEEEEE-----EE------------E----------------

DSSP: -------EEE----EEEEEEEEEEE--------
SSpro: -------EEE----EEEEEEEEEEE----EE--
BrP: -------EEE----EEEEEEEEEEE----EE--
ZHANG: --------EE----EEEEEEEEEE---------

Fig. 4. Comparison of the SSpro, BETArPRED (BrP), and ZHANG-server (ZHANG) predictions

with the actual DSSP-derived SS structure for the galactose mutarotase related enzyme Q5FKD7
(PDBid 3DCD). The DSSP, SSpro, BrP and ZHANG are shown in four consecutive rows where
“–“ and “E” denote non-strand and strand residues, respectively. The sequences are split into
multiple rows. DSSP is annotated such that bold indicates strand residues missed by SSpro and
BrP, and underlined bold shows β-residue segments found by BrP and missed by SSpro. BrP is
annotated such that bold/underlined bold indicate mistakes/improvements when compared with
SSpro.

the strand residues; only 88 residues were correctly identified, while BETArPRED
correctly predicts 115 out of a total of 140 strand residues. The SOVe and accuracy
of BETArPRED are 86.6 and 87.0, respectively, while for SSpro and ZHANG-server
they are 79.8 and 84.0, and 74.5 and 80.7, respectively. The Ue of BETArPRED is
3.7 which is lower by 3.7 and 3.3 when compared with SSpro and ZHANG-server,
indicating that our method finds a few extra β-strands. At the same time, this
comes as a trade-off for the Qe pred of BETArPRED that is lower by 2 and 5.8
when compared with SSpro and ZHANG-server.
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4. Conclusions

BETArPRED is shown to improve predictions of strand residues and strand seg-
ments when compared to a wide range of modern SS predictors. It could thus be
useful in prediction of higher level structures such as β-sheets.24–26 Its predictions
are also competitive when compared with the best-performing tertiary structure
predictor. Since BETArPRED performs well for low identity chains, its outputs
could be useful in the context of the development of improved sequence profile-
profile alignments.27 The improvements stem from the novel design, which uses
features that aggregate and combine information coming from three SS predictors
and the residue depth predictor. The dataset and the prediction model are freely
available at http://biomine.ece.ualberta.ca/BETArPred/BrP.htm. Since develop-
ment of user-friendly and publicly accessible web-servers increases the practical
value of predictors,88 we plan to provide a web-server for the method presented in
this paper.

Although the BETArPRED provides high quality predictions, there is still room
for further improvement. One potential approach could be to exploit strand-strand
interactions. This could be done with the help of scoring profiles that reflect inter-
strand amino acid pairing preferences; these were recently proposed and successfully
used to predict relative orientation of a pair of strand segments.89 These profiles
could be utilized to score the predicted strand residues with respect to their poten-
tial match with strand residues on another predicted strand segment. Such an
approach would reflect the long range interactions between strand segments that
are not covered by the current local window-based predictors. Another useful source
of information that could be used to improve the strand predictions is related to
position-specific propensities of amino acid types in strand segments. Recent work
shows that these propensities are highly position-specific and that they follow a
characteristic periodic pattern in inner positions with respect to the cap residues
at both termini of the strand segments.23 Finally, a simple extension of the current
method could be to use flexible windows as proposed by Chou and colleagues,90–92

instead of the fixed-size windows, to extract local information.
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