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Protein fold is defined by a spatial arrangement of three types of secondary structures (SSs) including helices, sheets,
and coils/loops. Current methods that predict SS from sequences rely on complex machine learning-derived models and-
provide the three-state accuracy (Q3) at about 82%. Further improvements in predictive quality could be obtained with a
consensus-based approach, which so far received limited attention. We perform first-of-its-kind comprehensive design of
a SS consensus predictor (SScon), in which we consider 12 modern standalone SS predictors and utilize Support Vector
Machine (SVM) to combine their predictions. Using a large benchmark data-set with 10 random training-test splits, we
show that a simple, voting-based consensus of carefully selected base methods improves Q3 by 1.9% when compared to
the best single predictor. Use of SVM provides additional 1.4% improvement with the overall Q3 at 85.6% and segment
overlap (SOV3) at 83.7%, when compared to 82.3 and 80.9%, respectively, obtained by the best individual methods. We
also show strong improvements when the consensus is based on ab-initio methods, with Q3 = 82.3% and SOV3 =
80.7% that match the results from the best template-based approaches. Our consensus reduces the number of significant
errors where helix is confused with a strand, provides particularly good results for short helices and strands, and gives
the most accurate estimates of the content of individual SSs in the chain. Case studies are used to visualize the improve-
ments offered by the consensus at the residue level. A web-server and a standalone implementation of SScon are avail-
able at http://biomine.ece.ualberta.ca/SSCon/.
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Introduction

Secondary structure (SS) of proteins is defined as a con-
secutive fragment of protein sequence that corresponds to
a spatially local region in the associated tertiary structure
that has distinct geometrical shape. The SS is assigned
from protein folds using automated programs (Chen &
Kurgan, 2012; Martin et al., 2005). The most popular
program, Dictionary of SSs of Proteins (DSSP) (Kabsch
& Sander, 1983), assigns each amino acid in a protein
sequence to one of eight secondary structure types:
α-helix (coded as H), 310-helix (G), π-helix (I), isolated β-
bridge (B), β-sheet (E), hydrogen-bonded turn (T), bend
(S) and other structure (‘_’). Typically, these eight types
are mapped into three more general states as follows
(Eyrich et al., 2003): H, G and I map to helix (H); E and
B map to strand (E); and T, S and ‘_’ map to coil (C). The
SS can be predicted directly from the protein sequence
and most of the predictors consider the abovementioned
three states. Knowledge of SS is used to provide structural

hierarchy and classification of proteins, such as Structural
Classification Of Proteins (SCOP) (Murzin, Brenner,
Hubbard, & Chothia, 1995) and protein structure classifi-
cation at Class, Architecture, Topology and Homologous
superfamily levels (CATH) (Orengo et al., 1997). The pre-
dicted SS is also adopted for a wide variety of applications
including prediction of protein tertiary structure (Hilde-
brand, Remmert, Biegert, & Söding, 2009; Yang, Faraggi,
Zhao, & Zhou, 2011; Wu & Zhang, 2008), solvent acces-
sibility (Garg, Kaur, & Raghava, 2005), folding types
(Zhang et al. 2012); identification of post-translational
modification (Li, Hu, Niu, Cai, & Chou, 2012) and mem-
brane proteins (Mizianty & Kurgan, 2011); and prediction
of protein–protein (Mooney, Pollastri, Shields, & Haslam,
2012) and protein–ligand interactions (Chen, Mizianty, &
Kurgan 2012; Lu Wang, Chen, & Zhao, 2012; Zhang
et al., 2010), to name a few. These applications are
motivated by the fact that a number of well-performing SS
predictors were developed over the last few decades. A
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recent review discusses 12 SS predictors (Zhang et al.,
2011), which include well-known mature methods (Chen
& Kurgan, 2012; Pirovano & Heringa, 2010; Rost, 2009)
and a selection of new methods that were published in
high-impact venues and that are accessible to end users as
standalone implementation. The latter allows the users to
apply these methods for high throughput and fully auto-
mated batch predictions. These predictors can be divided
into two classes: (1) methods that utilize homology-based
modeling, which include PROTEUS (Montgomerie,
Sundararaj, Gallin, & Wishart, 2006; Montgomerie et al.,
2008) and SSpro (Cheng, Randall, Sweredoski, & Baldi,
2005; Pollastri, Przybylski, Rost, & Baldi, 2002); and (2)
ab initio methods such as PHD (Rost, 1996; Rost, Yach-
dav, & Liu, 2004), PSIPRED (Bryson et al., 2005; Jones,
1999), JNET (Cole, Barber, & Barton, 2008; Cuff & Bar-
ton, 2000), SABLE (Adamczak, Porollo, & Meller, 2005),
YASPIN (Lin, Simossis, Taylor, & Heringa, 2005), POR-
TER (Pollastri & McLysaght, 2005), OSSHMM (Martin,
Gibrat, & Rodolphe, 2006), SPINE (Dor & Zhou, 2007),
P.S.HMM (Won et al., 2007), and SPINEX (Faraggi
et al., 2009). The success of the ab initio methods pri-
marily comes from the utilization of evolutionary profiles
(Rost, 2001), and also from differences in the underlying
amino acid composition between different secondary
structure states. Figure 1 summarizes these differences;
somehow related relation between the composition and
protein folding was recently discussed in (Mittal &
Jayaram, 2011; Mittal, Jayaram, Shenoy, & Bawa, 2010).
According to the comparative survey in Zhang et al.
(2011), the best homology-based modeling algorithm is
SSpro, which obtains the three-state accuracy (Q3) at
about 82%, and the leading ab initio method is SPINEX

that has Q3 around 80.5%. However, there is still room
left for further improvements since the theoretical upper
limit of the Q3 accuracy that can be achieved when
assigning SS structures from their experimentally deter-
mined folds is estimated to be 88% (Rost, 2003). One
attractive avenue to improve the predictive quality is to
utilize a consensus-based approach that combines results
from multiple predictors. This approach received limited
attention compared to other related fields, such as predic-
tion of disordered segments (Peng & Kurgan, 2012),
protein–ligand interactions (Plewczynski, Łaźniewski, von
Grotthuss, Rychlewski, & Ginalski, 2011), and transmem-
brane topology (Klammer, Messina, Schmitt, & Sonn-
hammer, 2009), to name a few, where the consensus was
shown to provide substantial improvements. The last,
related comprehensive study was published in 2003
(Albrecht, Tosatto, Lengauer, & Valle, 2003). The authors
considered seven SS predictors and investigated improve-
ments offered by a simple, majority vote-based consen-
sus. This study shows that significant, according to the
authors, improvements of about 1.5% in Q3 can be
obtained by implementing the considered consensus of
selected three methods. More recent works suffer from a
limited scope. The consensus of three SS predictors that
are combined with help of a neural network classifier in
PROTEUS (Montgomerie et al., 2006, 2008) and ensem-
ble of two predictors in Consensus Data Mining (Cheng,
Sen, Jernigan, & Kloczkowski, 2007) were shown to
improve predictive quality. In another study, consensus of
two SS predictors was found to reduce certain predictive
errors (Green, Korenberg, & Aboul-Magd, 2009). These
works combine a small set of methods that are selected
in an ad hoc fashion, often using in-house predictors.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

A R N D C Q E G H I L K M F P S T W Y V
Amino acid type

A
ve

ra
ge

 a
m

in
o 

ac
id

 c
om

po
si

tio
n 

ac
ro

ss
 

di
ffe

re
nt

 S
S 

st
at

es

Coil Helix Strand

Figure 1. Average amino acid composition across the three SS states computed over 10 different selected test data-sets (see ‘Data-
sets’ section for details). Error bars show the standard deviation of the compositions over the 10 data-sets.

2 J. Yan et al.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
A

lb
er

ta
] 

at
 0

8:
46

 0
6 

Fe
br

ua
ry

 2
01

3 



To this end, we design a novel consensus to improve
the predictive accuracy. We extend the results by
Albrecht et al. (2003) who considered simple majority
vote over the seven methods published before 2003. We
perform a large-scale investigation of different types of
consensuses, utilize a comprehensive list of the above-
mentioned 12 modern standalone SS predictors, and take
advantage of a more sophisticated model to combine their
predictions. Our resulting consensus achieves Q3 score of
85.6 and 82.3% when using all and only ab initio predic-
tors, respectively, resulting in 3.3% and 1.7% improve-
ments. We analyze these improvements at the residue, SS
segment, and sequence levels, in the context of the native
helix and strand contents, and using two case studies.

Materials and methods

Data-sets

We use a large benchmark data-set with 1975 proteins,
which was recently developed in (Zhang et al., 2011), to
design and assess the predictive performance of second-
ary structure predictors, including our consensus
approach. These proteins were extracted from PDB
(Berman et al., 2000) using PISCES culling server
(Wang & Dunbrack, 2003) to include structures solved
with high quality and that share low sequence similarity.
The pairwise sequence identity in this data-set is below
25%, and each chain has at least 20 residues in length.
We randomly split this data-set into two subsets, training
set that contains 987 proteins – which are used to design
the consensus model, and test set with 988 proteins,
which are utilized to perform out-of-sample evaluation
and comparison with existing standalone SS predictors.
The random split of the data-set into equally sized train-
ing/test data-sets is repeated 10 times, and the predictive
performance of all considered methods is evaluated using
the averaged results obtained from the 10 test sets. As
shown in the Results section, results over all splits are
similar and thus one particular division was selected to
provide detailed insights into the predictive performance
of our consensus. The corresponding selected training
and test data-sets are available at http://biomine-ws.ece.
ualberta.ca/SSCon/training.txt and http://biomine-ws.ece.
ualberta.ca/SSCon/test.txt, respectively.

Evaluation protocols

The predictive quality of SS predictors is evaluated using
a range of commonly used measures (Zhang et al.,
2011), including Q values that were reported in the EVA
platform (Eyrich et al., 2001; Koh et al., 2003). They
include Q3, which is defined as a fraction of correct pre-
diction using the three-state SS; QCobs, QHobs, and QEobs

that measure the percentage of the correct predictions

among all observed native coil, helix, and strand resi-
dues, respectively; and QCpre, QHpre, and QEpre that quan-
tify the percentage of the correct predictions among all
predicted coil, helix and strand residues, respectively. We
also compute segment overlap (SOV) values (Zemla,
Venclovas, Fidelis, & Rost, 1999), which measure the
amount of overlap between the observed and the pre-
dicted SS segments. They include SOV3, which is the
average overlap when considering the three SS states,
and SOVC, SOVH, and SOVE that estimate overlap for
the coil, helix, and strand segments, respectively.

An improvement offered by SScon, when compared
against each of the other considered methods, is quanti-
fied in terms of Q3 and SOV3 scores by calculating aver-
age increase in these measures together with the
corresponding standard deviations over the 10 random
training-test splits. We also evaluate statistical significance
of these improvements. The predictive quality measures
collected over the 10 runs were tested for normality using
Anderson–Darling test (Anderson & Darling, 1952) with
.05 significance level; if the measurements follows normal
distribution, then we use the paired t-test to investigate
significance; otherwise the Wilcoxon signed rank test was
performed; improvements were assumed significant when
p-value < .05. We also perform test of statistical signifi-
cance of the differences between pairs of predictors for
the selected training-test split. We randomly selected 50%
proteins from the selected test data-set to calculate the Q3

and SOV3 scores for all predictors. This was repeated 10
times and we compared the corresponding 10 paired
results using the same procedure as described above.

Simple consensus methods

Motivated by the fact that a simple majority vote consen-
sus of three selected SS predictors was shown to
improve predictive quality (Albrecht et al., 2003), we
explore a few extended voting strategies by using
sequence window, weighting of positions in a window,
and ranking. Since, the consensus of three prediction
methods was reported to outperform combinations of
more than three predictors (Albrecht et al., 2003), we
evaluate all triplets of methods selected from among the
twelve considered standalone algorithms.

The Majority Vote predicts the SS state that corre-
sponds to the most frequent state outputted by three
different predictors. In case of a tie (each predictor out-
puts a different SS state), the state predicted by the
algorithm that has the best predictive quality (highest
Q3 value computed on a training data-set) is selected.
An extension of the majority voting, named Window-
based Majority Vote (although in fact it implements
plurality vote), uses a local window of size three cen-
tered on the predicted residues; use of larger window
sizes was found not to improve the predictive quality.
This approach is motivated by several studies (Jones,

Standalone Secondary Structure Predictors 3
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1999; Madera, Calmus, Thiltgen, Karplus, & Gough,
2010; Montgomerie et al., 2006) that use a window
over an initially predicted SS to refine the SS predic-
tions. Residues inside the window are assigned with the
Q3 values of the corresponding input predictors. For
each SS state, we sum the Q3 values assigned to resi-
dues in the window of that predicted state, and the
consensus predicts the SS state with the highest cumu-
lative Q3 value. In case of a tie, we choose one of the
SS states that are tied that has the highest Q3 value for
the predicted residue (center of the window). We also
further extend the window-based voting by weighting
positions in the window. The Weighted Window-based
Majority Vote calculates weighted sum of the Q3 values
where the position in the middle of the window has
weight of .5, and the two flaking positions have
weights of .25. We also consider two consensuses that
utilize ranking instead of voting, based on the Q3 and
SOV3 values, respectively. The Ranking on Q3 method
ranks the results from the three input predictors based
on QC (number of correct predictions for two-class
prediction: coil vs. non-coil residues), QH (helix vs.
non-helix residues), and QE (strand vs. non-strand resi-
dues) values. The three methods are ranked according
to their Q values, computed using a training data-set,
for a given SS state. The consensus will output the SS
state that corresponds to the predicted SS state that has
the best ranking. In case of a two- or three-way tie, we
invoke the Majority Vote method. The Ranking on
SOV3 applies the same procedure but is uses SOVC,
SOVH and SOVE instead of the Q values. An example
calculation of these five consensuses is shown in
Table 1.

We consider two scenarios for each consensus type.
The first enumerates all combination of three methods
from the considered 12 standalone SS predictors. The
second considers all triplets of the 10 ab initio methods.
The values of the quality measures that are used by these
consensuses are estimated based on a training data-set.

Support vector machine (SVM)-based consensus

Our use of SVM is motivated by its recent successful
applications in related meta-predictors, including predic-
tors of disordered regions (Mizianty, Stach, Chen, &
Kedarisetti, 2010) and transmembrane topology (Klam-
mer et al., 2009). Our SVM-based consensus, named
SScon5, uses predictions from five SS predictors includ-
ing SSpro, PROTEUS, SPINEX, PSIPRED and
PORTER, as shown in Figure 2. These five standalone
predictors are implemented using different architectures.
SSpro uses neural networks and PSI-BLAST-derived
profiles (homology analysis). PROTEUS integrates
structural alignment with three SS prediction methods
(PSIPRED, JNET and TRANSSEC) and applies a jury-
of-experts to generate a consensus result. SPINEX is a
multistep neural network that couples SS prediction with
the prediction of solvent accessibility and backbone
torsion angles in an iterative manner. PSIPRED is a two
stage neural network that uses PSI-BLAST profiles in
the first stage and an initial SS prediction in the second
stage. PORTER is based on a two-level ensemble of 45
neural networks. Our SScon5 takes advantage of the
architectural differences between these predictors that
possibly leads to some complementarity of their predic-
tions, which in turn can be exploited in a consensus. The
selection of the five out of the twelve considered predic-
tors is motivated by our results using simple consensus
methods (see ‘Evaluation of Simple Consensus Methods’
Section and Table 3), where we show that these five
predictors are consistently selected to provide the best
predictive quality. We also designed a second consensus
that utilizes three ab initio SS predictors: SPINEX,
PSIPRED, and PORTER, which is called SScon3.

Our SVM-based consensus predictor consists of three
steps, see Figure 2. In the first step, the five (or three)
predicted SSs are converted into a vector of numerical
features that are fed into the SVM classifier, which in
turn predicts one of the three SS states. Three types of
features are calculated. They include the three-state SS

Table 1. Example calculation of secondary structure (SS) generated by the considered five consensus-based methods using the three-
state SS generated by three input SS predictors. Residues that require a tiebreaker are in bold font. ‘X’ is used to mark the values of
the quality measures (Q3, QC, QH, QE, SOVC, SOVH, and SOVE) used by a given consensus. The hardcoded values of these quality
measures are pre-calculated using a training data-set.

Sequence/consensus type SS sequence Q3 QC QH QE SOVC SOVH SOVE

Input predicted SS Method 1 CCHHHHHCCCCE 78 74 82 73 74 82 78
Method 2 CCCEHHHHHHEE 79 77 77 75 77 85 75
Method 3 CCEEEHHCCEEE 80 82 85 78 82 77 73

SS generated by consensus Majority Vote (MV) CCEEHHHCCEEE X
Window-based MV CCCEHHHHCCEE X
Weighted Window-based MV CCCEHHHCCCEE X
Ranking on Q3 CCEEEHHCCEEE X X X X
Ranking on SOV3 CCEEHHHCCHEE X X X X

4 J. Yan et al.
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state predicted by each of the five (three) input predic-
tors, which uses binary encoding, that is, helix (H) is
encoded as 001, strand (E) as 010, and coil (C) as 100.
We also utilize probability and confidence values that are
associated with the predictions; SPINEX, PSIPRED, and
PORTER generate probabilities for each of the three SS
states, PROTEUS generates a single confidence value,
and SSpro generates neither. As a result, SScon5 and
SScon3 use 25 and 18 features, respectively. In the sec-
ond step, we utilize SVM with the Radial Basis Function
(RBF) kernel to (re)predict the SS from the 25 (or 18)
features. We parameterized the complexity parameter C
and the width of the RBF function γ for this classifier
using fivefold cross validation on the training data-set.
To reduce computational complexity, we randomly
selected 20% of residues from the four training folds and
we used the entire fifth fold to perform the evaluation.
Moreover, we executed parameterization by first fixing C
to its default value of 1 and searching for the best per-
forming (that results in highest Q3) γ = 2

n where n=�5,

�4, … ,5. Next, we used the selected to search for the
best scoring C = 2n where n=�5, �4, … ,5. We run this
parameterization for both SScon5 and SScon3. In the
third step, we filter the resulting predictions to remove
inconsistencies. Specifically, we remove the predicted
isolated helical residues, that is, CHC prediction is
replaced with CCC, CHE with CCE, EHC with ECC,
and EHE with EEE. The SVM model was trained on the
whole training data-set using the selected parameters,
and this model was tested and compared with other
predictors on the corresponding test set.

Our empirical results demonstrate that each of the
three steps utilized by SScon5 (SScon3) provides
improvements, when tested based on the fivefold cross
validation on the selected training data-sets. In the first
step, using the 25 (18) features which were fed into the
SVM classifier with default parameters, our SScon5
(SScon3) improves Q3 by 1.6% (.2%) compared with the
best-homology based (ab initio) method. In the second
step, parameterization of the SVM classifier provides

Table 2. Comparison of predictive quality for default and optimized SVM parameters based on the fivefold cross validation on the
selected training data-set.

Predictor

SVM parameters Q3

Default Optimized Default Optimized

SScon5 C= 1, γ= .01 C= 2, γ = 1 83.9 85.3
SScon3 C= 1, γ= .01 C= 1, γ = 4 80.7 82.2

SSpro PROTEUS SPINEX PSIPRED PORTER 

Predicted SS state Predicted confidence value Predicted probability of SS state 

Input sequence 

25 features 18 features

Support vector machine classifier with optimized parameters 

Predicted SS state 

Step 1

Step 2

Step 3

5*3=15  
features 1 feature 3*3=9 features 3*3=9 features 

SScon5 SScon3 

3*3=9  
features 

 Filtration of predictions 

Figure 2. Architecture of our SVM-based consensus predictor. The SScon5 predictor is denoted using solid black lines and SScon3
using dashed gray lines. Boxes with thicker borders describe the standalone predictors utilized in our design.
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further improvement of 1.4% (total improvement is
1.6%+ 1.4%= 3.0%) and 1.5% (total 1.5%+ .2%= 1.7%)
for the SScon5 and SScon3, respectively; see Table 2. In
the last step, the filtration of inconsistent predictions
provides additional slight increase in Q3 by .02 and
.01%, respectively.

Results

Evaluation of simple consensus methods

Motivated by results in Albrecht et al. (2003), we select
the best triplet of input SS predictors for each of the five
considered types of simple voting/ranking-based consen-
suses using the selected training data-set. The best set of
methods is selected based on Q3 values; we use SOV3 in
case of similar best Q3 values (within .01). We consider
two cases, when using all 12 standalone SS predictors
and when selecting from the 10 ab initio predictors. We
use the quality measures estimated based on the training
data-set when implementing the consensuses. The results
on the corresponding selected test data-set are summa-
rized in Table 3.

We observe that the simplest majority vote consensus
outperforms other voting- and ranking-based consen-
suses, which means that use of a local window in the
predicted SS and ranking does not lead to improvements.
This suggests that when the triplet of the input SS
predictors is carefully selected, the improvements are
due to complementarity between these methods and the
predictions at a given residue are sufficient to compute a
well-performing consensus. On the other hand, use of
ranking biases the consensus toward the best performing
method, which potentially limits gains due to the
complementarity between methods.

The selected triplets of SS predictors are consistent
across different consensus types. The methods selected
from among the 12 SS predictors include SSpro, PRO-
TEUS, and SPINEX. These methods are characterized
by the highest overall Q3 values (averaged over 10 runs
of random training-test split), which are given in Table 4.
Moreover, their predictive performance across the three
SS states is complementary, that is, SSpro obtains high
QCobs and QEpre, PROTEUS has high QEobs, QCpre,
and QHpre, and SPINEX achieves high QHobs. When

Table 3. Comparison of predictive quality on the selected test data-set for the five considered consensus-based SS predictions
designed using the best performing (based on Q3 on the training data-set) triplets of SS predictors selected from the 12 standalone SS
predictors and from the 10 ab initio standalone SS predictors. The selected best methods from each group are shown in bold font.

SS predictors Consensus type
Best triplet of
SS predictors Q3 QCobs QHobs QEobs QCpre QHpre QEpre SOV3 SOVC SOVH SOVE

12 standalone SS
predictors

Majority Vote
(MV)

SSpro,
PROTEUS,
SPINEX

84.4 83.3 88.7 78.8 79.7 89.3 84.4 82.5 78.5 83.0 78.9

Window-based
MV

SSpro,
PROTEUS,
SPINEX

83.7 82.7 87.8 78.6 78.5 89.3 83.9 81.8 77.1 81.5 78.8

Weighted
window-based
MV

SSpro,
PROTEUS,
SPINEX

84.0 83.1 87.9 79.0 78.9 89.6 83.9 82.4 77.9 82.2 79.0

Ranking on
Q3

SSpro,
PROTEUS,
SPINEX

83.8 84.7 88.7 74.1 78.1 89.3 85.6 81.5 77.4 83.0 77.5

Ranking on
SOV3

SSpro,
PROTEUS,
SPINEX

83.5 83.0 86.7 78.8 78.2 88.6 84.4 80.8 76.8 82.3 78.9

10 ab initio
standalone SS
predictors

Majority Vote
(MV)

PSIPRED,
PORTER,
SPINEX

81.7 82.6 86.2 72.5 75.5 87.9 83.2 79.8 75.7 80.9 74.8

Window-based
MV

PSIPRED,
PROTER,
SPINEX

81.2 82.3 85.9 71.5 74.8 87.5 83.2 79.1 74.2 79.9 74.4

Weighted
window-based
MV

PSIPRED,
PORTER,
SPINEX

81.5 82.5 86.1 72.1 75.2 87.6 83.3 79.5 74.8 80.3 74.8

Ranking on
Q3

PSIPRED,
PORTER,
SPINEX

81.7 82.6 86.2 72.5 75.5 87.9 83.1 79.8 75.7 81.0 74.9

Ranking on
SOV3

SPINE,
PORTER,
SPINEX

81.1 82.1 85.8 71.3 74.9 87.3 82.3 78.9 75.1 80.1 74.3

6 J. Yan et al.
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excluding the homology-based predictors, the selected
triplet consists of SPINEX, PSIPRED, and PORTER;
these methods are ranked 1st, 2nd, and 4th according to
their Q3. The likely reason why 3rd best SPINE was
excluded is that it is similar to the SPINEX. Once again,
these methods complement each other, that is, SPINEX
outperforms the other methods in QHobs and QEpre, PSI-
PRED does well in QEobs, while PORTER provides high
QCobs and QHpre. This complementarity and consistency
motivated our choice of these five methods (note that
SPINEX is selected in both cases) to implement the
SVM-based consensuses.

The majority vote-based consensuses of these
selected triplets of SS predictors provide relatively good
improvements over the individual predictors; similar
results were also observed in Albrecht et al. (2003). As
shown in Table 4, which is based on the results averaged
over the 10 randomly selected test data-sets, the combi-
nation of SSpro, PROTEUS, and SPINEX improves Q3

by 1.9% compared to the best Q3 of the individual pre-
dictor SSpro and SOV3 by 1.5% compared to the best
SOV3 of PROTEUS. Considering the theoretical limit of
Q3 at 88% (Rost, 2003), this improvement corresponds
to 100%� (84.2–82.3)/(88–82.3) = 33.3% of the possible
improvement in Q3. Similarly, consensus of the three
ab initio methods provides 1.1% improvement in Q3

(that corresponds to 14.9% of the possible improvement)
and 1.4% in SOV3 compared to the best performing
SPINEX in Q3 and PSIPRED in SOV3, respectively.
This shows consistency of the improvements, which hold
at both residue and segment levels.

To summarize, the majority vote-based consensuses
of three well-performing and complementary SS predic-
tors outperform other considered simple consensus- and
ranking-based approaches. Next, we compare these con-
sensuses with a more sophisticated SVM-based solution.

Comparison of consensus and standalone predictors

We randomly split the benchmark data-set 10 times into
two equal sized parts, training and test data-sets. The
pairwise sequence similarity between these data-sets is
below 25%. For each pair of the data-sets, we built our
SVM-based consensus on the training data-set and then
evaluated it on the corresponding test data-set. Table 4
compares the average (over the 10 test data-sets) predic-
tion quality of the two versions of the SVM-based con-
sensuses, SScon5 and SScon3, the two best simple
majority vote (MV) consensuses which are selected from
all, named MVall, and ab initio only, named MVabinitio, SS
predictors, and the 12 considered standalone algorithms.

Considering the standalone algorithms, SSpro
achieves the highest Q3 of 82.3% and SPINEX is the
best among the ab initio algorithms with the Q3 of
80.6%. The SScon5 and SScon3 substantially improve
the predictive quality when compared with the above top

single predictors. SScon5 obtains Q3 = 85.6% and
SOV3 = 83.7%, which improve the corresponding values
obtained by the best majority vote consensus MVall by
(average over the 10 test sets ± the corresponding stan-
dard deviation) 1.4%± .1% and by 1.3%± .2%, respec-
tively. The total improvement over the best standalone
predictor is 3.3%± .1% in Q3 and 2.8%± .2% in SOV3;
this translates into 100%(85.6–82.3)/(88–82.3 = 58% of
the possible improvement in Q3. The improvements
obtained with SScon5 are statistically significant in both
Q3 and SOV3 when compared with all other considered
approaches over the 10 test data-sets. SScon3 that uti-
lizes only ab initio methods achieves Q3 = 82.3% and
SOV3 = 80.7%, which is higher than the corresponding
best majority vote consensus MVabinitio by .7%± .05% in
Q3 and by 1.0%± .1% in SOV3, respectively. The total
improvement in Q3 over the best ab initio method, which
is 1.7%± .1%, equals to 100%� (82.3–80.6)/(88 – 80.6)
= 23% of the possible improvement in Q3. SScon3
significantly outperforms all considered ab initio solu-
tions in both Q3 and SOV3 and provides predictions that
are equivalent in the predictive performance to the pre-
dictions from the homology modeling-based approaches.

Importantly, the improvements offered by SScon5 are
consistent across the three SS states, that is, the SOVH,
SOVE, and SOVC values of SScon5 are higher than the
corresponding values of any the other considered meth-
ods. SScon5 also shows improvements in terms of QHobs,
QCpre and QEpre. We emphasize the relatively large
increases compared to the standalone methods in SOVH

by 3.7% and in QHobs by 3.2%, which imply that our
SScon5 predictor is able to correctly predict more helical
segments. Although QCobs score of SScon5 is lower by
.8% than the highest QCobs achieved by SSpro, our
consensus obtains QCpre that is higher by 4.8%. This
suggests that SSpro overpredicts coil residues compared
to SScon5. Similarly, SScon5 has a 5.8% deficit in QEobs

that is coupled with a large 12.3% improvement in QEpre

when compared with PROTEUS; this implies that PRO-
TEUS overpredicts strand residues compared to SScon5.

SScon3 provides improved values of QEobs, QCpre,
QHpre and all SOV scores (SOVC, SOVH, and SOVE)
compared with the corresponding MVabinitio consensus
and standalone ab initio algorithms. Although SScon3
has QCobs and QEpre lower by 1.2% and 1.3%, respec-
tively, compared to the best MVabinitio, its QCpre and
QEobs are higher by 1.8% and 3.7%, respectively. Simi-
larly, the drop by .5% in QHobs compared to the best
SPINEX is matched with the 2.2% increase in QHpre.
The above shows that SScon3 provides consistent
improvements over the three SS states.

Next, we investigate the predictive quality based on
a single split into the selected training and test data-sets;
see Table 5. We observe that the improvements offered
by our consensuses, when compared with the other
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considered predictors, are consistent with the average
improvements over the 10 randomly selected test
data-sets; see Tables 4 and 5. Hence, we use the results
on the selected test data-set in the subsequent sections;
this simplifies our analysis without the loss of generality.

Overall, our analysis reveals that the SVM-based
consensus substantially improves the prediction quality
compared to both standalone methods and simpler con-
sensuses and that these improvements are maintained
over the three SS states.

Next, we analyze these results in more detail at the
residue, SS segment, and sequence levels using the
selected test data-set.

Predictions at residue level

We investigate the predictive quality at the residue level
considering the eight SS states that are defined in DSSP.
We assume that a given one of the eight SS states is cor-
rectly predicted if it matches the corresponding predicted
three-state SS, for example, H, G or I states are assumed
correct if they are predicted as H. Table 6 shows the
Qobs values for three states: α-helix (H), β-bridge (B),
and β-sheet (E); the remaining states are either infrequent
(G and I) or of potentially lesser interest (coils). SScon5
outperforms the other methods by at least 1.4% in Qobs

for α-helices, 1.2% for β-bridges, and 2.1% for β-sheets,
except for PROTEUS that has higher values for β-bridge
and β-sheet residues. However, PROTEUS in general
overpredicts strand residues, that is, it has QEobs = 86.5
and QEpre = 72.6 compared with QEobs = 81 and
QEpre = 85.2 for SScon5 (see Table 5), which explains
these results. Similarly, SScon3 improves Qobs for
β-bridge and β-sheet residues compared to the corre-
sponding MVabinitio and standalone ab initio methods.

We also analyze the abundance of significant errors
where helix is predicted as a strand or vice versa; see
the last row in Table 6. We calculate a fraction of these
mispredictions among all residues in the selected test
data-set. The results reveal that the best standalone
method PROTEUS makes these errors for .64% of resi-
dues. Although the majority vote-based consensuses and
SScon3 fail to improve over this error rate, SScon5

reduces this number to .62% while providing substan-
tially higher overall predictive accuracy (see Table 5).
The rate of these ‘strong’ errors obtained by SScon5 is
substantially lower, by at least 47%, compared to the
other standalone methods.

Predictions at secondary structure segment level

We study the predictive quality at the SS segment level.
We assume that a given helix or strand segment (exclud-
ing β-bridges) is correctly predicted if at least 50% resi-
dues in that segment are predicted correctly. Figure 3
compares eight predictors, including both SVM-based
consensuses (SScon5 and SScon3), the two majority
vote-based combinations (MVall and MVabinitio), and the
five best standalone SS predictors (SSpro, PROTEUS,
SPINEX, PSIPRED, and PORTER), for prediction of
short and long SS segments. We define a short helical/
strand segment as having 8/6 or less consecutive resi-
dues; otherwise the segment is considered to be long.
The two cut-offs are selected to best highlight improve-
ments offered by SScon5.

Overall, as it was shown in Zhang et al. (2011),
longer helices are easier to predict, see Figure 3(A).
SScon5 outperforms the other solutions in the prediction
of helical segments. In particular, it provides larger
improvements, between 4.3 and 14.5% higher success
rates, for the harder to predict short segments. Although
PROTEUS achieves the best performance on the strand
segments, as mentioned before, it also overpredicts the
strand residues. Excluding PROTEUS, our SScon5 pro-
vides stronger predictions for the strand segments, again
with a larger magnitude for the shorter strands. The
improvements range between 7.9 and 14.5%, see Figure 3
(B). SScon3 also provides improvements for both short
and long strand segments when compared with the corre-
sponding ab initio approaches.

Predictions at sequence level

We analyze the predictive performance at the sequence
level by comparing the overall predicted content of each
of the three SS states. The content is defined as a
fraction of residues in a helix, strand, and coil SS states.

Table 6. Comparison of predictive quality on the selected test data-set at the residue level considering the α-helix, β-bridge, and β-
sheet SS states, and the misclassifications between helix and strand residues. The first three rows show the Qobs values for α-helices
(% of α-helices of predicted as H), β-bridges (% of β-bridges predicted as E), and β-sheets (% of β-sheets predicted as E). The last
row shows the fraction of predictions where helix is classified as strand and vice versa. Best results are shown in bold font.

SVM-based
consensuses

Simple
consensuses Standalone predictors

SScon5 SScon3 MVall MVabinitio SSpro PROTEUS SPINEX PSIPRED PORTER

α-helix (H) 95.9 92.5 94.5 91.7 90.1 93.4 93.1 89.4 88.6
β-bridge (B) 36.2 23.0 29.8 17.9 35.0 48.2 18.3 20.7 18.1
β-sheet (E) 83.3 79.6 81.2 75.3 74.7 88.4 75.0 75.1 69.5
Mispredictions helix ↔ strand .62 1.21 .95 1.15 1.61 .64 1.18 1.89 1.77
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We compute the absolute difference of the SS content
predicted by the considered standalone and consensus
predictors and the native content computed with DSSP.
The average of the three absolute differences and the dif-
ferences for each SS state on the selected test data-set
are compared in Table 7. SScon5 provides predictions
with the most accurate SS content values for strands and
coils and the overall smallest average (across the three
SS states) error in content, which is at .7%. This means
that the predictions from our consensus properly balance
the amount of helix, strand, and coil conformation. To
compare, the selected best performing individual SS pre-
dictors have the average errors between 1.6 and 3.3%.
Similarly, SScon3 has low average error at 1%, while
the corresponding ab initio solutions have errors at 1.6%
or higher. We also note the overprediction of strands by
PROTEUS, which we mentioned in previous sections;
PROTEUS predicts on average 27% of residues in strand
conformation while there are 22.7% based on the native
annotations. The standalone predictors, except for PRO-
TEUS, generally overpredict the coil residues. We note

that SS content can be computed using specialized pre-
dictors, which are faster to compute as they usually do
not require the calculation of multiple sequence align-
ment. However, this comes as a trade-off for a lower
predictive quality (Chen, Stach, Homaeian, & Kurgan,
2011; Homaeian, Kurgan, Ruan, Cios, & Chen, 2007).

Mapping of improvements on two-dimensional strand
vs. helix content space

We analyze the improvement in Q3 offered by SScon5
and SScon3 against the corresponding simple majority
vote consensuses, MVall and MVabinitio, respectively, and
the best standalone methods, SSpro and SPINEX, respec-
tively. We map these improvements into two-dimensional
space defined by the native amount of helix (Hcontent) and
strand (Econtent) residues. The space is binned based on
the two content values to have as even as possible num-
ber of protein chains; see Table 8. For each bin, we calcu-
late the difference in average Q3 score between a given
SVM-based consensus and another method (majority vote
consensus or best standalone method). A heat map of

Table 7. Comparison of the predictive quality on the selected test data-set at the sequence level. The native, defined with DSSP, and
predicted SS content and the corresponding average (across the 3 SS states) absolute differences are shown. The best results are
shown in bold font.

SS state Native content

SVM-based
consensuses

Simple
consensuses Standalone methods

SScon5 SScon3 MVall MVabinitio SSpro PROTEUS SPINEX PSIPRED PORTER

Helix .386 .390 .383 .383 .378 .378 .367 .393 .383 .372
Strand .227 .216 .214 .211 .198 .196 .270 .201 .206 .191
Coil .388 .394 .403 .405 .424 .426 .362 .406 .411 .437
Average absolute difference n/a .007 .010 .012 .024 .026 .029 .017 .016 .033
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Figure 3. Comparison of predictive quality on the selected test data-set at the segment level. The bars represent fractions of short
(segment size 68) and long (>8) helix segments (panel A), and short (66) and long (>6) strand segments (panel B), for which at
least 50% residues are correctly predicted.
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these differences in the two-dimensional space is given in
Figure 4. SScon5 offers improved predictions compared
to both the corresponding simple consensus and the
standalone method across the entire two-dimensional
space. Larger improvements are for proteins with medium
to high strand content (over 20% of strand residues) and
medium to low helix content (50% of less helix residues);
see Figure 4(A) and (B). Similar observations are also
true for SScon3. This ab initio only consensus provides

higher magnitude of improvements for chains with over
25% of strand residues and below 50% helix residues;
see Figure 4(C) and (D).

Case studies

We use two case studies selected from the selected
test data-set to illustrate mechanisms that lead to the
improvements offered by our SScon5 and SScon3

Figure 4. Improvements in Q3 evaluated on the selected test data-set and mapped into two-dimensional space defined by strand
(Econtent) and helix content (Hcontent) offered by: SScon5 compared to majority vote-based consensus MVall (panel A); SScon5
compared to the best standalone predictor SSpro (panel B); SScon3 compared to the majority vote-based consensus of ab initio
methods MVabinitio (panel C); SScon3 compared to the best standalone ab initio predictor SPINEX (panel D). White color denotes
cells with no proteins.

Table 8. Two-dimensional space defined by the binned native amount of helix (Hcontent) and strand (Econtent) residues. The values
correspond to the percentage of proteins from the selected test data-set in a given bin.

Hcontent

Econtent

<.2 (%) .2–.25 (%) .25–.35 (%) .35–.45 (%) >.45 (%)

>.7 11.1 .0 .0 .0 .0
.5–.7 13.5 .0 .0 .0 .0
.375–.5 17.1 7.4 4.3 .0 .0
<37.5 4.4 5.5 14.7 11.8 10.1

12 J. Yan et al.
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predictors. We focus on the predictions of strand and
helix segments and compare predictions from the two
SVM-based consensuses, the two majority vote-based
consensuses, and the 5 top-scoring standalone SS
predictors.

The first case study is the PA4017 protein (PDBid:
2A35 chain A) that has 208 amino acids; see Figure 5
(A). SScon5 and PROTEUS outperform the other con-
sidered predictors; they predict all strand and helix seg-
ments. The three boxes regions (residues 45–46, 74–77,
and 169–186) show where SScon5 ‘borrows’ from the
predictions of PROTEUS, which is one of the inputs to
SScon5; this leads to the strong predictive performance
of our consensus. At the same time, predictions of PRO-
TEUS that are shown in underline and bold font indicate
the strand residues that are overpredicted by this method
but correctly predicted by SScon5. This is possible based
on the predictions from the other methods used in our
consensus. The example shows that the SVM-based
meta-predictor, in contrast to the majority vote consensus
(MVall) that makes mistakes in the three boxes regions,
efficiently combines the input SS predictions without
relying on the majority.

The second case study concerns 263 residues long
ferredoxin-NADP(H) reductase (PDBid: 2BGI chain A);
see Figure 5(B). In this case SScon5 and SSpro outper-
form the other considered methods, particularly in the
four boxes regions (residues 2–13, 86–94, 99–102, and
186). They successfully predict a short 310 helix at posi-
tions 99–102 and the β-bridge at position 186. The
SScon5 not only successfully transfers these predictions
into its outputs, but also removes some of the mistakes
generated by SSpro; these errors, which are shown in
underline and bold font, were removed using the other
four SS predictions that are inputted into SScon5. We
also note that the MVall consensus was unable to provide
correct predictions in the boxed regions.

Although these case studies should not be consid-
ered typical, they highlight how the SVM-based con-
sensus improves over the majority vote and other
individual predictors, and what types of improvements
are to be expected. For instance, in previous sections
we show that improvements are stronger for shorter
helix and strand regions and for proteins with larger
content of strand residues, which is corroborated in
these two case studies.

Conclusions

The availability of SS that is predicted from protein
chains fueled numerous investigations related to the pre-
diction and characterization of structural and functional
aspects of proteins. We show that SS predictions can be

improved based on a well-designed consensus. The
novelty of our investigation lies in the comprehensive
scope (use of a dozen of modern standalone SS predic-
tors), careful design, and detailed evaluation.

We show that a simple majority vote-based consen-
sus provides improvement if it utilizes a well-selected set
of input predictors. These improvements are at about 2%
in Q3 and 1.5% in SOV3 compared to the best perform-
ing individual SS predictors. The other considered
versions of the majority vote- and ranking-based consen-
suses are less effective than the majority vote.

Furthermore, we demonstrate that use of SMV to
implement the consensus leads to additional improve-
ments. Our study also reveals that consensus should uti-
lize base/input SS predictors that are characterized by
strong predictive performance and complementarity
across different SS states.The total improvement offered
by the SVM-based consensus over the best standalone
predictor is 3.3% in Q3 and 2.8% in SOV3; the improve-
ments offered by our SScon5 method are consistent
across the three SS states. The SScon5 achieves
SOV3 = 83.7% and Q3 = 85.6%, which is close to the the-
oretical limit of 88%. The SVM-based consensus of
ab initio methods, SScon3, also provides strong
improvements over the corresponding standalone ab initio
methods with Q3 = 82.3% and SOV3 = 80.7%; these
results are on par with the predictive quality of the best
template-based approaches.

We also performed in-depth analysis of the improve-
ments generated with the help of the SVM-based consen-
suses. We show that SScon5 reduces the number of
significant errors where helix is confused with a strand,
SScon5 and SScon3 perform particularly well for the
prediction of short helices and strands, and they provide
predictions with the overall amounts of helix, strand, and
coil residues that are close to their native ratios. Finally,
we demonstrate that SScon5 and SScon3 provide larger
improvements for proteins with medium to high strand
content and medium to low helix content.

Our future work will consider prediction of richer
or different SS alphabets. As one potential extension,
instead of using the three state alphabet (helix, strand
and coil/loop), we plan to adopt the eight-state alpha-
bet defined by DSSP like it was done in the SSpro8
predictor (Pollastri et al., 2002). Another option is to
consider other SS assignments, similarly to SPINEX
(Faraggi et al., 2009) where DSSP-based annotation
was replaced by a consensus-based SKSP assignment
(Zhang, Dunker, & Zhou, 2008), which utilizes four
assignment methods.

For user’s convenience, a web server and a stand-
alone implementation of SScon5 and SScon3 models are
available http://biomine.ece.ualberta.ca/SSCon.
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List of abbreviations

C Coil
DSSP Dictionary of secondary structures of proteins
E Strand
H Helix
MV Majority vote
RBF Radial basis function
SOV Segment overlap
SVM Support vector machine
SS Secondary structure
SScon3 Secondary structure prediction based on consensus of

3 ab initio predictors
SScon5 Secondary structure prediction based on consensus of

5 predictors
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