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Availability of computational methods that predict disorder from protein sequences fuels rapid advancements in the
protein disorder field. The most accurate predictions are usually obtained with consensus-based approaches. However,
their design is performed in an ad hoc manner. We perform first-of-its-kind rational design where we empirically search
for an optimal mixture of base methods, selected out of a comprehensive set of 20 modern predictors, and we explore
several novel ways to build the consensus. Our method for the prediction of disorder based on Consensus of Predictors
(disCoP) combines seven base methods, utilizes custom-designed set of selected 11 features that aggregate base predic-
tions over a sequence window and uses binomial deviance loss-based regression to implement the consensus. Empirical
tests performed on an independent benchmark set (with low-sequence similarity compared with proteins used to design
disCoP), shows that disCoP provides statistically significant improvements with at least moderate magnitude of
differences. disCoP outperforms 28 predictors, including other state-of-the-art consensuses, and achieves Area Under the
ROC Curve of .85 and Matthews Correlation Coefficient of .5 compared with .83 and .48 of the best considered
approach, respectively. Our consensus provides high rate of correct disorder predictions, especially when low rate of
incorrect disorder predictions is desired. We are first to comprehensively assess predictions in the context of several
functional types of disorder and we demonstrate that disCoP generates accurate predictions of disorder located at the
post-translational modification sites (in particular phosphorylation sites) and in autoregulatory and flexible linker regions.
disCoP is available at http://biomine.ece.ualberta.ca/disCoP/.
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1. Introduction

Intrinsic disorder, which is defined as a lack of stable
structure in a native conformation, is prevalent in proteins.
According to some estimates, about 10% of proteins are
fully disordered (Tompa, 2002), about 33% of eukaryotic
proteins have at least one long (>30 consecutive amino
acids) intrinsically disordered region (Ward, Sodhi,
McGuffin, Buxton, & Jones, 2004), and a recent study of
67 eukaryotic proteomes demonstrates that on average
over 30% of residues are disordered (Xue, Dunker, &
Uversky, 2012). Intrinsically disordered regions were
shown to implement various important cellular functions,
including signal transduction, cell division, transcription
and translation. (Tompa, 2002). Recent works also show
that disorder is implicated in various human diseases
including cancer, cardiovascular, neurodegenerative, and
genetic diseases (Midic, Oldfield, Dunker, Obradovic, &
Uversky, 2009; Raychaudhuri, Dey, Bhattacharyya, &
Mukhopadhyay, 2009; Uversky, Oldfield, & Dunker,

2008)). In spite of these advances, our knowledge and
understanding of the functional roles of intrinsic disorder
is limited, particularly compared with the structured pro-
teins. This combined with the above-mentioned impor-
tance of the disorder strongly motivates further research in
this area. To date, only a relatively small number of about
700 proteins is annotated with the intrinsic disorder (Sick-
meier et al., 2007), and this limits further studies. Several
experimental methods can be used to characterize disor-
ders, such as NMR spectroscopy, circular dichroism spec-
troscopy, protease digestion, X-ray crystallography, etc.
However, they are characterized by a relatively low
throughput that cannot accommodate for the rapidly accu-
mulating number of known protein chains. This spurred
development of high-throughput computational methods
that predict intrinsic disorders from protein sequences.

The computational predictors are categorized into four
groups (Peng & Kurgan, 2012a): (1) methods based on
relative propensity of amino acids including GlobPlot
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(Linding, Russell, Neduva, & Gibson, 2003), IUPred
(Dosztányi, Csizmok, Tompa, & Simon, 2005), FoldIndex
(Prilusky et al., 2005), Ucon (Schlessinger, Punta, & Rost,
2007); (2) methods that utilize machine learning, such as
DisEMBL (Linding et al., 2003), DISOPRED (Jones &
Ward, 2003), DISOPRED2 (Ward, McGuffin, Bryson,
Buxton, & Jones, 2004), DISpro (Cheng, Sweredoski, &
Baldi, 2005), RONN (Yang, Thomson, McNeil, &
Esnouf, 2005), PONDR family of predictors (Obradovic,
Peng, Vucetic, Radivojac, & Dunker, 2005; Obradovic
et al., 2003; Peng, Radivojac, Vucetic, Dunker, & Obrado-
vic, 2006; Peng et al., 2005; Romero et al., 2001; Vucetic,
Brown, Dunker, & Obradovic, 2003), IUP (Yang & Yang,
2006), Spritz (Vullo, Bortolami, Pollastri, & Tosatto,
2006), ProfBval (Schlessinger, Yachdav, & Rost, 2006),
DisPSSMP (Su, Chen, & Ou, 2006), IDPA (Su, Chen, &
Hsu, 2007), POODLE family of predictors (Hirose,
Shimizu, Kanai, Kuroda, & Noguchi, 2007; Shimizu,
Muraoka, Hirose, Tomii, & Noguchi, 2007), NORSnet
(Schlessinger, Liu, & Rost, 2007), OnD-CRFs (Wang &
Sauer, 2008), and most recently ESpritz (Walsh, Martin,
Di Domenico, & Tosatto, 2012) and SPINE-D (Zhang
et al., 2012); (3) methods based on a consensus-based
approach that combine multiple disorder predictors
including PreDisorder (Deng, Eickholt, & Cheng, 2009),
metaPrDOS (Ishida & Kinoshita, 2008), MD (Schlessing-
er, Punta, Yachdav, Kajan, & Rost, 2009), PONDR-FIT
(Xue, Dunbrack, Williams, Dunker, & Uversky, 2010),
MFDp (Mizianty et al., 2010), CSpritz (Walsh et al.,
2011), and MetaDisorder (Kozlowski & Bujnicki, 2012);
and (4) methods based on analysis of predicted 3D
structural models, such as PrDOS (Ishida & Kinoshita,
2007) and DISOclust (McGuffin, 2008). We note that
consensus-based predictors are also called ensembles
and meta-predictors, and we use these terms interchange-
ably. The interest in computational disorder prediction
continues (Monastyrskyy, Fidelis, Moult, Tramontano, &
Kryshtafovych, 2011; Noivirt-Brik, Prilusky, & Sussman,
2009) and new approaches that would provide improved
predictive quality are needed.

An interesting characteristic of the disorder predictors
is the fact that they are quite diverse in their design and
objectives. Firstly, the disorder is annotated using a few
different approaches and some predictors aim to find cer-
tain corresponding types/flavors of the disorder (Vucetic
et al., 2003). For example, DisEMBL (Linding et al.,
2003) includes three versions, one that aims to predict
loops/coils, as defined by DSSP (Kabsch & Sander,
1983), another to predict “hot loops” defined based on
B-factors, and the third that focuses on disorder defined
based on missing coordinates in X-ray structures. Simi-
larly, ESpritz (Walsh et al., 2012) is composed of three
versions, one for the disorder defined using the missing
coordinates, another using the disorder annotations for the
DisProt database (Sickmeier et al., 2007), and the third

based on the annotations extracted from NMR structures
(Martin, Walsh, & Tosatto, 2010). A few studies have
shown that predictors trained using a particular type of
annotations are usually less accurate in predicting
other types of disordered regions (Oldfield et al., 2005;
Schlessinger, Liu, et al., 2007; Vucetic et al., 2003). This
is expected and it suggests that a complete prediction of
all types of disorder requires combining these methods
together. Secondly, individual predictors use different
information generated from the input sequences. This
information includes position-specific scoring matrix
(PSSM) profiles, sequence complexity, hydrophobic-
ity, net-charge, interaction energy, predicted secondary
structure, intrachain contacts, solvent accessibility,
flexibility, etc. (Dosztanyi, Csizmok, Tompa, & Simon,
2005; Dosztányi, Mészáros, & Simon, 2010; Linding,
Russell, et al., 2003; Uversky, Gillespie, & Fink, 2000).
Thirdly, these methods utilize a wide range of models that
calculate the predictions, ranging from simple scoring
function to more sophisticated models, like Support
Vector Machines (SVMs), conditional random fields, and
various types of Neural Networks (NNs) (He et al., 2009;
Peng & Kurgan, 2012a). These three observations suggest
the results generated by these methods also likely vary;
certain methods may perform particularly well for certain
type of disorder or specific types of input chains. This
diversity motivates development of consensus-based pre-
dictors that combine multiple methods to improve overall,
across all types of disorder and all types of proteins,
predictive quality. These ensembles should improve
predictive performance given that the input methods are
characterized by orthogonality (Brown, Wyatt, Harris, &
Yao, 2005). Earlier research in disorder prediction indeed
demonstrates that a mixture of orthogonal methods
provides improvements (Oldfield et al., 2005), and a more
recent study further supports this finding (Peng & Kurgan,
2012b).

A few meta-predictors of intrinsic disorder were
already developed. PreDisorder averages the outputs of
the methods that were evaluated in CASP8, except for a
few inaccurate predictors (Deng et al., 2009). MD
employs four predictors and utilizes a NN to combine
them (Schlessinger et al., 2009). PONDR-FIT also adopts
a NN to combine predictions generated by six methods
(Xue et al., 2010). metaPrDOS (Ishida & Kinoshita,
2008) and MFDp (Mizianty et al., 2010) use SVM to
implement the ensemble composed on seven and three
disorder predictors, respectively. Finally, the two newest
meta-predictors perform relatively simple averaging of
predictions provided by three methods in the case
of CSpritz (Walsh et al., 2011) and weighted averaging
of thirteen methods in the case of MetaDisorder
(Kozlowski & Bujnicki, 2012). We note that the methods
that compose the consensus are selected in a relatively
ad hoc fashion, based on an arbitrary inclusion of the
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largest possible number of methods (Deng et al., 2009;
Kozlowski & Bujnicki, 2012), their availability to the
authors and predictive quality measured per individual
method (Ishida & Kinoshita, 2008), and their availability
to the authors combined with an argument that individual
methods differ in their aims or design (Mizianty et al.,
2010; Schlessinger et al., 2009; Walsh et al., 2011; Xue
et al., 2010). Moreover, the authors usually consider a
relatively narrow set of predictors (Ishida & Kinoshita,
2008; Mizianty et al., 2010; Schlessinger et al., 2009;
Walsh et al., 2011; Xue et al., 2010), or otherwise they
do not use a rational approach to select a subset of meth-
ods that positively contribute to the final result (Deng
et al., 2009; Kozlowski & Bujnicki, 2012); the latter
may lead to the inclusion of methods that negatively
affect the predictive performance.

To this end, we propose a new consensus-based dis-
order predictor that implements three novel ideas. First,
we utilize a first-of-its-kind empirical/rational approach
to select the best performing set of predictors out of a
comprehensive set of 20 input methods. Second, moti-
vated by the recent success of the averaging-based con-
sensuses (Kozlowski & Bujnicki, 2012; Walsh et al.,
2011), we explore more advanced averaging-based
approaches to combine the predictions. We empirically
compare simple averaging and two more sophisticated
solutions that use different types of regressions. Third,
instead of using raw values predicted by the input meth-
ods, we designed a set of features that aggregate the raw
values utilizing a sliding window. We perform empirical
feature selection to find the best performing features, and
the resulting set of 11 aggregation-based features that are
generated based on predictions from the selected seven
methods are inputted into our regression. Moreover, our
consensus is optimized using a new measure that aims to
maximize true positive rate, especially when low false-
positive rate is desired; this means that our method can
be used to generate a conservative set of high-quality
disorder predictions. Empirical tests on an independent
benchmark set of proteins (that shares low sequence sim-
ilarity to the proteins used to design our approach) show
that our method for prediction of disorder based on Con-
sensus of Predictors (disCoP) offers improved predictive
performance. We are also the first to perform comprehen-
sive evaluation of disorder predictions in the context of
different functional types of disorder.

2. Materials and methods

2.1. Evaluation criteria

The assessment of the predictors is consistent with the
CASP9 experiment (Monastyrskyy et al., 2011) and we
also evaluate predicted disorder content. We evaluate
predictions at three levels: (1) the binary values that
predict whether a given residue is disordered or is not

disordered; (1) the real values that quantify probability
of disorder for each residue; and (3) the disorder content
computed for the entire protein sequence. The binary
predictions are assessed by the following three measures:

Sensitivity ¼ TP

TPþ FN

Specifity ¼ TN

TNþ FP

MCC ¼ TP� TN� FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞp

where TP (true positives) and TN (true negatives) are
the counts of correctly predicted disordered and struc-
tured residues, respectively, and FP (false positives)
and FN (false negatives) are the counts of incorrectly
predicted disordered and structured residues, respec-
tively. Matthews correlation coefficient (MCC) was
recommended in CASP9 (Monastyrskyy et al., 2011);
its values range between �1 and 1 with 0 denoting
random prediction and higher absolute values denoting
more accurate predictions. We do not compute Q2
accuracy that was deemed unsuitable in CASP9
(Monastyrskyy et al., 2011). Moreover, the balanced
accuracy, which is defined as average of sensitivity and
specificity, can be easily inferred from the two individ-
ual measures that we report, and we do not report Sw
that was shown to be linearly correlated with the
balanced accuracy.

The receiver operating characteristic (ROC) curve,
which represents relation between true positive rates
(TPR) =TP/(TP + FN) and false-positive rates (FPR)
= FP/(FP +TN), is used to evaluate the predicted proba-
bility. We compute the Area Under ROC curve (AUC)
that ranges between .5 (for a random predictor) and 1
(for a perfect predictor). Since we aim to produce a con-
sensus that focuses on generating high TPRs for the low
FPRs (left-hand-side part of the ROC curve), we intro-
duce another measure called constrained AUC. Given
that the maximum number of false positives (structured
residues predicted as disordered) equals to the number of
all positives (natively disordered residues), we calculate
the constrained AUC using the FPR values with the
upper bound = FP/(FP + TN) =P/N, where P is the num-
ber of positives and N is the number of negatives
(natively ordered residues). In other words, the con-
strained AUC is the area under the ROC curve con-
strained to the FPR range between 0 and the upper
bound, that is, area where number of false positives will
not exceed the number of native positives. The upper
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bound is the ratio of native disordered and ordered resi-
dues in the TRAINING dataset and equals .299. Since
the maximal possible value of the constrained AUC is
equal to the upper bound, we normalize it (using min-
max normalization) to the [0, 1] range. Higher values of
the constrained AUC correspond to better predictive
quality for the low FPR range. We use the constrained
AUC to optimize the design of our consensus.

The quality of the disorder content prediction is
assessed using difference between the predicted and
native disorder content (DDC) = (average_predicted_con-
tent�average_native_content). The disorder content is
defined as a ratio between the number of disordered and
all residues in a given dataset of proteins. The DDC
measure shows whether a given predictor over-predicts
(DDC value is positive) or under-predicts (DDC value is
negative) the disorder at the chain level.

2.2. Datasets and evaluation protocols

The proposed disCoP is designed and tested on a large
benchmark dataset that was originally developed to vali-
date the MFDp predictor (Mizianty et al., 2010). The
sequences were harvested from the PDB and the DisProt
databases. After removing sequences that share > 25%
identify and four sequences for which some considered
methods (NORSnet, Profbval, Ucon and MD) failed to
produce predictions, 305 proteins from DisProt and 205
proteins from PDB are included. The chains collected
from PDB were annotated following the protocol from
CASP (Monastyrskyy et al., 2011). The annotations for
chains from the Disprot database were enriched with
PDB REMARK 465 annotations following (Sirota et al.,
2010). Specifically, the chains taken from Disprot were
searched using PSI-BLAST (Altschul et al., 1997)
against PDB (3 iterations, e-value < .001) and we
selected the best hit with sequence identityP 98% (over
aligned region) and alignment coverageP 90%. Using
the alignment, the PDB-based disorder/order annotations
were mapped for the aligned region and we kept the ori-
ginal disorder annotations from Disprot. The resulting

510 proteins were divided into equally sized TRAINING
(with 255 proteins) and TEST (255 proteins) datasets;
we note that the chains in the test set share at most 25%
similarity to the chains from the training dataset.

The TRAINING dataset was used to empirically
design the disCoP consensus. This was performed using
threefold cross-validation to assure that we do not overfit
this dataset; we divided the chains such that each of the
three folds has similar number of amino acids and frac-
tion of disordered residues. The resulting model was
tested and compared with other disorder predictors on
the TEST dataset. We generated two additional subsets
of the TEST dataset. The first subset called TEST_-
SHORT includes 234 chains that are shorter that 1000
residues; this was motivated by the fact that the most
recent meta-predictor MetaDisorder (Kozlowski &
Bujnicki, 2012) cannot predict longer chains. We used
this dataset to compare with MetaDisorder, its input pre-
dictors, and the other predictors considered in this work.
The second subset, called TEST_FUNCTION, is utilized
to evaluate disorder predictions when considering differ-
ent functional types of disorder. The annotation of the
types is based on the DisProt database that defines 38
functional subclasses (Dunker, Brown, Lawson, Iakou-
cheva, & Obradovic, 2002; Sickmeier et al., 2007). The
TEST dataset covers 16 functions and we further
removed the subclasses with less than five proteins since
they would not have enough data for a statistically sound
evaluation. Key characteristics of the remaining 6 sub-
classes in the TEST dataset are shown in Table 1. Using
TEST_FUNCTION, we assess the predictions of disorder
for the subset of disordered residues that correspond to a
given functional subclass. We combine the disordered
residues annotated with a given functional subclass with
a subset of structured residues from the same chains to
maintain the ratio between disordered and ordered resi-
dues from the TRAINING dataset. We repeat the selec-
tion of the ordered residues 10 times and we report the
average (over the 10 repetitions) AUC values.

The TRAINING and TEST datasets are available at
http://biomine.ece.ualberta.ca/disCoP/.

Table 1. Summary of the annotations of the six subclasses of disorder in the TEST dataset.

Functional subclass # Proteins # DRs
# Disordered
residues

Average length
of DRs Notes

Protein–protein binding 60 79 8724 110.43 Binds to protein partner(s)
Substrate or ligand binding 28 43 2906 67.58 Binds to substrate(s) and/or ligand(s)
Flexible linkers or spacers 16 24 576 24.00 Provides separation and permits

movement between adjacent domains
Protein-DNA binding 11 15 917 61.13 Binds to DNA
Phosphorylation 10 10 1857 185.70 Guides the addition of a phosphate
Autoregulatory 6 9 631 72.5 Involved in the regulation of protein

function/activity

Note: DR stands for disordered region. The subclasses are sorted by the number of proteins that include them.
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We also assess significance of the improvements
offered by the disCoP consensus. We compare disCoP
with any of the other considered predictors using ten
repetitions of a randomly select subset of 50% of proteins
in the TEST (or TEST_SHORT) datasets. The results for a
given pair of predictors are compared using the Student’s
t-test, if distributions were normal, or with the Mann–
Whitney U-test, if not. Distribution type was verified
using the Anderson–Darling test using the p-value of .05.

2.3. Considered disorder predictors

We consider a comprehensive set of methods that are
accessible to the end users as either standalone software
or a web server, which are published on a reputable
peer-reviewed scientific venue or were evaluated in a
CASP experiment, and which are not restricted to short
chains (e.g. like MetaDisorder can only predict chains
with less than 1000 residues). These methods cover the
four types of disorder predictors and include:

• two relative propensity-based methods: IUPred
(Dosztanyi et al., 2005) and Ucon (Schlessinger,
Punta, et al., 2007)

• eight machine learning-based predictors: DISO-
PRED2 (Ward, McGuffin, et al., 2004), DRIP-
PRED (MacCallum, 2004), RONN (Yang et al.,
2005), VSL2B (Peng et al., 2006), ProfBval
(Schlessinger et al., 2006), NORSnet (Schlessinger,
Liu, et al., 2007), ESpritz (Walsh et al., 2012), and
SPINE-D (Zhang et al., 2012)

• four consensus-based methods: MD (Schlessinger
et al., 2009), MFDp (Mizianty et al., 2010),
PONDR-FIT (Xue et al., 2010), and CSpritz
(Walsh et al., 2011)

• two 3D prediction–based predictors: PrDos (Ishida &
Kinoshita, 2007) and DISOclust (McGuffin, 2008).

We used IUPred and CSpritz in both of their ver-
sions, one for prediction of short and the other for long
disordered segment. The ESpritz method includes three
versions, which address three types of disorder annota-
tions: based on missing coordinates in X-ray structures,
using annotations from DisProt and based on NMR
structures (Martin et al., 2010). Including the different
versions of IUPred, CSpritz, and ESpritz, we consider
total of 20 methods; see Supplementary Table S1 and
Supplementary Figure S1.

2.4. Selection of consensus model

We consider three models to implement the consensus,
including a simple average (SA) and two linear regres-
sion-based models.

2.4.1. Simple average

The output of the consensus is computed as an arithme-
tic average of the probabilities generated by the input
methods. Similar approach was utilized in PreDisorder
(Deng et al., 2009), in one of the designs considered in
MD (Schlessinger et al., 2009), and in CSpritz (Walsh
et al., 2011). The main advantages of this approach are
simplicity and speed. However, it does not consider pre-
dictive quality and orthogonality of the input methods,
as it treats all of them equally. An improved strategy
based on a weighted average was recently used in Meta-
Disorder (Kozlowski & Bujnicki, 2012), where weight
values were optimized by a genetic algorithm.

2.4.2. Regression-based consensuses

We use an empirical approach to generate a weighted
average. For a given set of predictors, we use regression
that fits the consensus-based predictions into the native
disorder annotations (based on a training dataset) to cal-
culate the weights. This way, the resulting weights
should accommodate for the orthogonality of the input
methods. Given a set of real-valued and binary-valued
outputs (features) obtained from the input (base) predic-
tors for each residue X2Rt�n and the target native
binary annotation of disorder y2 {� 1, 1}t�1, a general
form of regression is

w ¼ arg min
w
ðLð f ðX ;wÞÞ; yÞ þ aRðwÞÞ

where t is the number of residues, n is the number of fea-
tures, f is a mapping function that transforms X and w to
ŷ ¼ f ðX ;wÞ which approximates y, L is a loss function
that is used to penalize the difference between y and ŷ, R
is a regularizer that smoothes the output values, and α is
a scalar (set to a default value of .01) to adjust trade-off
between the loss and regularizer. The output generated by
the corresponding consensus is ŷ ¼ signðxTw� bÞ, where
the sign corresponds to the two different outcomes (disor-
dered vs. structured residues).

Since the number of input data points (residues) is
relatively large, complex, and nonlinear mapping
functions that are computationally intensive cannot be
utilized. We evaluate two mapping functions: squared
error, which is one of the most commonly used loss
function, and binomial deviance. In contrast to the
squared error, the binomial deviance assumes larger pen-
alty when the difference between y and ŷ is larger. These
two optimization criteria are defined as follows:

Squared error min
w
ðkXw� yk22 þ kawk22Þ
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Binomial deviance

min
w;b

ðk log2ð1þ 2Þ�yðXw�bÞk1 þ kawk22Þ

where L2 norm is applied as the regularizer in order to
solve a convex problem.

The outputs generated by the input predictors are
combined using a weighted average where the weights
are estimated with the least square and minimum bino-
mial deviance loss regressions (BDR).

The overall procedure to find empirically best per-
forming consensus is as follows. First, we try all combi-
nations of consensuses with k input/base predictors
selected out of the 20 considered method that are

combined using each of three models, including SA,
least square regression (LSR), and BDR. For each k and
model type, we select the consensus that generates the
highest value of constrained AUC based on threefold
cross-validation on the TRAINING dataset. The value of
k is initiated with 2 and incremented by 1 as long as the
corresponding best consensus improves value of the
constrained AUC. The constrained AUCs for the three
models and different values of k are shown in Table 2.

Table 2 demonstrates that a SA improves the predic-
tive quality when compared with the best individual
method, ESpritz-Disprot, which confirms the observa-
tions in (Deng et al., 2009; Walsh et al., 2012). How-
ever, the improvements have relatively small magnitude
and they decrease/disappear when combining more

Table 2. Constrained AUC obtained for the three consensus models: SA, LSR, and BDR, for different values of k. The results are
based on threefold cross-validation on the TRAINING dataset and we select consensuses with the largest value of the constrained
AUC. k denotes the number of predictors selected from the considered 20 methods. The first row shows the constrained AUC value
of the best performing individual predictor, ESpritz-Disprot. The best combination for each model is shown in bold font. The best
overall consensus that uses BDR model and k= 8 is compared with two other consensuses of 8 predictors: one with the top 8
performing (based on the cross-validated constrained AUC on the TRAINING dataset) methods and the other with the most recently
published 8 methods.

k # predictors
k selected predictors with the highest value of constrained AUC based on
threefold cross-validation on the TRAINING dataset Constrained AUC

1 ESpritz-Disprot .5454
SA model
2 ESpritz-Disprot, SPINE-D .5729
3 ESpritz-Disprot, SPINE-D, CSpritz-long .5709
4 ESpritz-Disprot, SPINE-D, CSpritz-long, CSpritz-short .5648
5 ESpritz-Disprot, SPINE-D, CSpritz-long, CSpritz-short, IUPRED-short .5554
LSR model
2 ESpritz-Disprot, CSpritz-long .5774
3 ESpritz-Disprot, CSpritz-long, Profbval .5818
4 ESpritz-Disprot, CSpritz-long, MD, SPINE-D .5891
5 ESpritz-Disprot, CSpritz-long, MD, SPINE-D, DISOPRED2 .5957
6 ESpritz-Disprot, CSpritz-long, MD, SPINE-D, DISOPRED2, ESpritz-Xray .5992
7 ESpritz-Disprot, CSpritz-long, MD, SPINE-D, DISOPRED2, ESpritz-Xray,

ESpritz-NMR
.6028

8 ESpritz-Disprot, CSpritz-long, MD, SPINE-D, DISOPRED2, ESpritz-Xray,
ESpritz-NMR, DISOclust

.6053

9 ESpritz-Disprot, CSpritz-long, MD, SPINE-D, DISOPRED2, ESpritz-Xray,
ESpritz-NMR, DISOclust, DRIP-PRED

.5938

BDR model
2 ESpritz-Disprot, CSpritz-long .5780
3 ESpritz-Disprot, CSpritz-long, MD .5825
4 ESpritz-Disprot, CSpritz-long, MD, SPINE-D .5924
5 ESpritz-Disprot, CSpritz-long, MD, SPINE-D, DISOPRED2 .5992
6 ESpritz-Disprot, CSpritz-long, MD, SPINE-D, DISOPRED2, DISOclust .6036
7 ESpritz-Disprot, CSpritz-long, MD, SPINE-D, DISOPRED2, DISOclust, ESpritz-

Xray
.6068

8 ESpritz-Disprot, CSpritz-long, MD, SPINE-D, DISOPRED2, DISOclust,
ESpritz-Xray, ESpritz-NMR

.6099

8 top constrained AUC ESpritz-Disprot, CSpritz-long, MD, SPINE-D, MFDp, CSpritz-short,
DISOPRED2, VSL2B

.6009

8 latest predictors ESpritz-Disprot, ESpritz-Xray, ESpritz-NMR, SPINE-D, CSpritz-long,
CSpritz-short, MFDp, PONDR-FIT

.5941

9 ESpritz-Disprot, CSpritz-long, MD, SPINE-D, DISOPRED2, DISOclust,
ESpritz-Xray, ESpritz-NMR, VSL2B

.5983
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predictors. As expected, use of the regression leads to
larger improvements. Our empirical results indicate that
BDR provides better results when compared with the
LSR, although the differences are relatively small. Both
best-performing, over all values of k, regression-based
consensuses include the same eight base predictors. We
note that these eight selected methods are not the top
eight best-performing individual predictors. Table 2 com-
pares the BDR-based consensus of the selected eight
methods with the BDR-based consensuses of two other
heuristically selected sets of eight methods: one with the
top eight performing (based on the cross-validated con-
strained AUC on the TRAINING dataset) methods and
the other with the most recently published eight methods.
Although these two consensuses also offer improve-
ments, their magnitude is smaller than the magnitude of
the improvements provided by our, empirically selected
set of the eight predictors. This demonstrates the advan-
tage of the empirical design.

2.5. Feature generation and selection

Motivated by the fact that disordered residues are usually
grouped into segments and the successful use of seg-
ment-based features generated from predicted disorder in
the MFDp method (Mizianty et al., 2010), we further
improve our consensus by considering aggregation of the
outputs generated by the selected eight input predictors.
The aggregated input predictions, using both binary and
real-valued predictions, constitute a set of features that
are inputted into the BDR model. Moreover, based on
the success of methods that separate predictions of short-
and long-disordered segments (Hirose et al., 2007;
Mizianty et al., 2010; Peng et al., 2005; Zhang et al.,
2012), we derive ternary predictions from the binary pre-
dictions, where the predicted ordered residues are
denoted by 0, predicted disordered residues in short seg-
ments (below 30 consecutive amino acids) as .5, and
predicted disordered residues in long segments (30 or
more consecutive amino acids) as 1. As a result, we
aggregate three outputs for each of the eight selected
input predictors: binary predictions, ternary predictions,
and real-valued probabilities. The final set of considered
features includes binary, ternary, and real-valued predic-
tions for a given predicted residue, the means and medi-

ans of the real-valued predictions using windows of
different sizes that are centered on the predicted residue,
and the disorder content (fraction of disordered residues)
and average value of the ternary predictions using the
same windows. The corresponding 123 features are sum-
marized in Table 3.

Given the large number of considered features (8 pre-
dictors� 123 features = 984 features) and the fact that
they are redundant/correlated (e.g. features generated
from the same type of the output and different window
sizes), we perform a simple empirical, two-step feature
selection to find a well-performing subset of the features.
In the first step, the features are sorted by their con-
strained AUCs, which are calculated using the TRAIN-
ING dataset. Next, the sorted features are divided into
groups, where each groups corresponds to a given
predictor and a given type of features, including proba-
bility-derived features, binary and ternary predictions,
and features aggregated from the binary and ternary pre-
dictions. In the second step, the sorted features are
scanned (from best to worst) once and the BDR models
are built based on the threefold cross-validation on the
TRAINING dataset. We start with the model that uses
the top performing feature and we add another feature to
the current feature set if it improves the constrained
AUC by at least .005 and if another feature from the
same type/predictor is not already in the current feature
set. We use the cross-validation, limit the selection to
one scan and assume that improvements must be larger
than .005 to assure that the resulting feature set is rela-
tively small and that it does not overfit the training data-
set. As a result, 11 of 984 features are selected and these
features utilize seven of the eight predictors: ESpritz-Dis-
prot, CSpritz-long, MD, SPINE-D, DISOPRED2,
DISOclust, and ESpritz-Xray. This corresponding con-
sensus obtains the averaged cross-validated constrained
AUC of .6411 over the three folds in the TRAINING
dataset, compared with the constrained AUC of .6099
(see Table 2) obtained by the consensus that uses all
eight methods and the raw (without aggregation) predic-
tions. Supplementary Figure S2 shows the values of the
constrained AUC along the second step of the feature
selection. The use of 6 features results in a consensus
that matches the constrained AUC of the best consensus

Table 3. Description of features generated from the three types of outputs of each input predictor.

Type of the output Description Number of features for each predictor

Real-valued probability Probability for predicted residue 1
Mean probability in windows with sizes 3, 5, …, 61 30
Median probability in windows with sizes 3, 5, …, 61 30

Binary prediction Binary prediction for predicted residue 1
Disordered content in windows with sizes 3, 5, …, 61 30

Ternary prediction Ternary prediction for predicted residue 1
Mean values in windows with sizes 3, 5, …, 61 30

Consensus-based Prediction of Disorder in Proteins 7



that utilizes the raw values, and the 5 additional features
improve the constrained AUC by .03.

2.6. disCoP predictor

The outline of the final design of our disCoP predictor is
shown in Figure 1. The input sequence is first predicted
by the selected seven methods (ESpritz-Disprot, ESpritz-
Xray, CSpritz-long, SPINE-D, DISOPRED2, MD, and
DISOclust), two of which (CSpritz-long and MD) are
also consensuses. Some of these predictors (CSpritz-
long, SPINE-D, and DISOPRED2) internally use addi-
tional predictions such as secondary structure, solvent
accessibility, and torsion angles. The outputs of these
predictors are aggregated using the 11 selected features
that are inputted into the BDR model; these features are
discussed in detail in the Results section. The model out-
puts the real-valued probabilities that can be binarized
using threshold of .5.

2.7. Evaluation of disCoP model on the TRAINING
dataset

The disCoP model is designed using 3-fold cross-valida-
tion where the corresponding folds are selected such that
they have similar size (i.e. similar number of amino
acids) and similar fraction of disordered residues. To
demonstrate that disCoP preserves the improved predic-
tive quality over less uniformly distributed datasets, we
evaluate our method using ten repetitions of the 3-fold
cross-validations (where folds are likely uneven in the
disorder amount) and jackknife test (also called leave-
one-out test) on the TRAINING dataset. These results
are compared against the results obtained by the 20 dis-
order predictors listed in Section 2.3, see Table 4. The

disCoP predictions obtained with the repeated cross–vali-
dations, and jackknife tests have similar predictive qual-
ity. The standard deviations that quantify differences
between repetitions of the cross-validation test are rela-
tively small, which means that disCoP generates similar
results, irrespective of the selection of the training data-
sets. The quality of the disCoP predictions measured
with the constrained AUC, AUC, and MCC is better
than the predictive quality of each of the other 20 predic-
tors. These improvements are statistically significant at
p-value < .01 (based on a statistical test that considers 10
repetitions of randomly chosen 50% of the proteins from
the TRAINING dataset). For instance, based on the jack-
knife test disCoP improves over the best other method
ESpritz-Disprot by .0365 in the constrained AUC (which
corresponds to a relative improvement by 100%�
(.5822�.5457)/.5457 = 6.7%), by .0184 in AUC (relative
improvement by 2.2%), and by .0384 in MCC (relative
improvement by 8.8%). The new consensus predictor
also provides the smallest value of DDC (Difference
between the predicted and native Disorder Content),
which means that it does not over- or under-predict the
amount of disorder. The design of the disCoP, which
maximizes the constrained AUC, leads to relatively high
values of TPR (true positive rate) for a given value of
FPR (false positive rate), especially for a low range of
FPR values; see the ROC curves in the Supplementary
Figure S1.

We also developed a web server that implements dis-
CoP, called disCoP_WS. Since the authors of ESpritz do
not allow using their methods in a publicly available
consensus (private communication) and CSpritz does not
offer a standalone implementation that can be run locally,

Figure 1. Overall architecture of the disCoP predictor.
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disCoP_WS excludes ESpritz-Disprot, ESpritz-Xray, and
CSpritz and uses the remaining four predictors. We
repeated the feature selection using the four methods and
the abovementioned protocol. As a result, disCoP_WS
utilizes nine features generated from the outputs of the
four methods, which are inputted into the BDR model;
these features are discussed in the Results section.
disCoP_WS is freely available at http://biomine.ece.
ualberta.ca/disCoP/.

3. Results

3.1. Comparison with other predictors on the TEST
datasets

The disCoP and disCoP_WS methods are comprehen-
sively compared with the other considered predictors using
the independent (with chains that share < 25% sequence
similarity with the chains in the TRAINING dataset)
TEST dataset. We collected results from IUPred-long and
IUPred-short (Dosztanyi et al., 2005), DRIP-PRED

(MacCallum, 2004), DISOPRED2 (Ward, McGuffin,
et al., 2004), RONN (Yang et al., 2005), VSL2B (Peng
et al., 2006), ProfBval (Schlessinger et al., 2006), Ucon
(Schlessinger, Punta, et al., 2007), NORSnet (Schlessinger,
Liu, et al., 2007), PrDos (Ishida & Kinoshita, 2007),
DISOclust (McGuffin, 2008), MD (Schlessinger et al.,
2009), MFDp (Mizianty et al., 2010), PONDR-FIT (Xue
et al., 2010), CSpritz-long and CSpritz-short (Walsh et al.,
2011), ESpritz-Disprot, ESpritz-Xray, and ESpritz-NMR
(Walsh et al., 2012), and SPINE-D (Zhang et al., 2012);
see Table 5. These methods include publicly available ver-
sions of the top predictors from CASP9 (Monastyrskyy
et al., 2011), such as PrDos, DISOPRED, SPINE-D, and
MFDp.

Table 5 shows that disCoP outperforms each of the
other 20 predictors based on AUC, constrained AUC,
and MCC. The improvements are statistically significant,
although in some cases the corresponding magnitude is
modest, relative to the overall range of values of AUC
and MCC. For instance, disCoP improves over the

Table 4. Comparison of predictive quality on the TRAINING dataset. The disCoP predictor is evaluated based on 10 repetitions of
the 3-fold cross-validation (CV) test and jackknife (JK) test (also called leave-one-out test). For the CV test, we provide the average
results over the 10 repetitions ± the corresponding standard deviations. Methods that are used as inputs to disCoP are shown in bold
font. The highest value for each measure is given in bold font and predictors are sorted in the descending order by their constrained
AUC values. The last column provides the DDC (Difference between the predicted and native Disorder Content) values where a
positive/negative value means that a given predictor over-/under-predicts the overall amount of disorder in a chain. “Sig” columns
show statistical significance of differences measured based on 10 repetitions on randomly chosen 50% of the proteins from
TRAINING dataset; we select one subset of randomly chosen 50% of proteins for each of the 10 repetitions of the CV test; +/=/�
indicate that disCoP is significantly better/not significantly different/significantly worse than another method at p-value < .01. Two
“Sig” columns compare the 20 disorder predictors listed in Section 2.3 against the results of disCoP based on the 10 repetitions of
CV and based on the JK test, respectively.

Methods
Constrained

AUC

Sig

AUC

Sig

MCC

Sig

Sensitivity Specificity DDCCV JK CV JK CV JK

disCoP (CV) .5823
± .0212

= .8384
± .0067

= .4747
± .0126

= .6455
± .0490

.8498
± .0306

.03
± .03

disCoP (JK) .5822 = .8401 = .4757 = .603 .876 .00
ESpritz-Disprot .5457 + + .8217 + + .4373 + + .721 .772 .11
CSpritz-long .5401 + + .8155 + + .4182 + + .744 .736 .14
SPINE-D .5041 + + .7917 + + .4173 + + .783 .704 .18
CSpritz-short .4993 + + .7842 + + .3991 + + .761 .704 .17
MFDp .4896 + + .7984 + + .4215 + + .744 .740 .14
MD .4756 + + .7948 + + .4006 + + .665 .780 .09
IUPred-short .4650 + + .7715 + + .3666 + + .526 .846 .01
ESpritz-NMR .4590 + + .7584 + + .3234 + + .779 .605 .25
IUPred-long .4584 + + .7745 + + .3833 + + .605 .807 .06
ESpritz-Xray .4569 + + .7706 + + .3758 + + .640 .777 .09
DISOclust .4558 + + .7534 + + .3113 + + .770 .600 .26
VSL2B .4530 + + .7724 + + .3800 + + .774 .673 .20
DISOPRED2 .4522 + + .7651 + + .3779 + + .650 .771 .10
PONDR-FIT .4471 + + .7705 + + .3848 + + .628 .792 .07
PrDos .4388 + + .7644 + + .3725 + + .598 .804 .06
RONN .4197 + + .7489 + + .3394 + + .661 .727 .13
Norsnet .3881 + + .7332 + + .3208 + + .533 .806 .04
DRIP-PRED .3773 + + .7147 + + .2963 + + .701 .648 .20
Ucon .3668 + + .7219 + + .2776 + + .550 .756 .08
ProfBval .3340 + + .6792 + + .1821 + + .829 .374 .44
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second best ESpritz-Disprot by .015 in AUC (which
corresponds to a relative improvement by 100%�
(.8498�.8325)/.8325 = 2.1%), .02 in constrained AUC
(relative improvement by 3.1%), and .02 in MCC (rela-
tive improvement by 4.2%). The improvements over the
third-best CSpritz-long have larger magnitude and equal
.06 in constrained AUC (relative improvement by
10.2%) and .05 in MCC (relative improvement by
11.7%), with a modest improvement by .015 in AUC
(relative improvement by 2.1%). disCoP also provides
one of the smallest values of DDC (Difference between
the predicted and native Disorder Content), which means
that it provides balanced predictions. In contrast, some
methods over-predict the disorder, such as DISOclust
and ESpritz-NMR that predict 22% more disorder than
the native annotations suggest. Importantly, the results
also demonstrate that disCoP can be utilized to provide a
conservative subset of high quality disorder predictions.
Our predictor has high specificity (generates relatively
few false positives) coupled with a high value of con-
strained AUC. This can be observed using the ROC
curves for the top 6 performing methods according to
AUC and constrained AUC (including disCoP) given in
Figure 2; Supplementary Figure S3 shows the ROC
curves for all considered methods. disCoP provides

higher values of TPR (true positive rate) given the same
value of FPR (false positive rate), especially for the low
values of FPR; see inset in Figure 2. This means that
residues predicted by disCoP as disordered with high

Table 5. Comparison of predictive quality on the TEST dataset. Methods that are used as inputs to disCoP are shown in bold font.
The highest value for each measure is given in bold font and predictors are sorted in the descending order by their constrained AUC
values. The last column provides the DDC (Difference between the predicted and native Disorder Content) values where a positive/
negative value means that a given predictor over/under-predicts the overall amount of disorder in a chain. “Sig” columns show
statistical significance of differences measured based on 10 repetitions on randomly chosen 50% of the proteins from TEST dataset;
+/=/� indicate that disCoP is significantly better/not significantly different/significantly worse than another method at p-value < .01.
disCoP_WS is a web server version of disCoP that excludes ESpritz and CSpritz predictors (see “disCoP predictor” section for
details).

Methods Constrained AUC Sig AUC Sig MCC Sig Sensitivity Specifity DDC

disCoP .6249 .8498 .5037 .673 .856 .04
ESpritz-Disprot .6063 + .8325 + .4835 + .709 .819 .07
disCoP_WS .5819 + .8254 + .4759 + .669 .838 .04
CSpritz-long .5667 + .8324 + .4508 + .733 .775 .11
MD .5666 + .8181 + .4501 + .656 .826 .05
SPINE-D .5427 + .8093 + .4229 + .761 .728 .15
MFDp .5370 + .8159 + .4472 + .734 .771 .12
CSpritz-short .5250 + .8062 + .4369 + .767 .737 .15
DISOPRED2 .5077 + .7877 + .4230 + .653 .807 .07
VSL2B .4995 + .7909 + .4068 + .774 .701 .18
DISOclust .4971 + .7784 + .3638 + .783 .647 .22
PrDos .4967 + .7908 + .4280 + .607 .840 .03
ESpritz-Xray .4952 + .7851 + .4047 + .621 .814 .06
IUPred-short .4726 + .7707 + .3691 + .498 .864 �.01
PONDR-FIT .4693 + .7841 + .4089 + .612 .823 .05
IUPred-long .4663 + .7700 + .3864 + .558 .840 .02
ESpritz-NMR .4509 + .7484 + .3183 + .737 .639 .22
Norsnet .4366 + .7363 + .3609 + .551 .825 .03
RONN .4353 + .7599 + .3644 + .659 .752 .11
Ucon .4104 + .7446 + .3294 + .565 .790 .06
DRIP-PRED .4034 + .7224 + .3024 + .693 .662 .19
ProfBval .3516 + .7063 + .2096 + .846 .389 .44
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Figure 2. ROC curves of the disCoP and 5 other top-
performing (based on both AUC and constrained AUC; see
Table 5) predictors on the TEST dataset. The inset in the
bottom-right corner shows the ROC curve constrained to the
false positive rate (FPR) between 0 and .05.

10 X. Fan and L. Kurgan



probabilities are more likely to be in fact disordered, i.e.
fewer of them are structured.

As expected, disCoP_WS (the web server version of
disCoP) provides lower AUC and MCC when compared
to disCoP. This is due to the fact that disCoP_WS does
not include the ESpritz (which is banned from inclusion
into publicly available meta-predictors) and CSpritz
(which has no standalone version) predictors, both of
which provide accurate results on the TEST dataset.
However, we emphasize that disCoP_WS improves over
each of the four methods that are its inputs, including
SPINE-D, DISOPRED2, MD, and DISOclust. Compared
with the best performing of these four methods MD, dis-
CoP_WS improves AUC and MCC by .01 (relative
improvement by 1%) and .025 (relative improvement by
5.7%), respectively. Overall, the web server version pro-

vides strong predictive quality with particularly high
specificity and low DDC.

We also compare with the most recent meta-predic-
tors, MetaDisorder (Kozlowski & Bujnicki, 2012), on
the TEST_SHORT dataset; see Table 6. MetaDisorder
allows predictions for chains of up to 1000 residues and
TEST_SHORT is a subset of the TEST dataset with 234
of these shorter chains. The comparison covers disCoP,
disCoP_WS and 28 other methods. These methods
include the same 20 predictors as in Table 5; four ver-
sions of MetaDisorder: MetaDisorder, MetaDisorderMD,
MetaDisorderMD2, and MetaDisorder3d (Kozlowski &
Bujnicki, 2012); and four other predictors that are inputs
to MetaDisorder: iPDA (Su et al., 2007), Poodle-S
(Shimizu et al., 2007), Poodle-L (Hirose et al., 2007),
and DISpro (Cheng et al., 2005). Predictions of the eight

Table 6. Comparison of predictive quality on the TEST_SHORT dataset. TEST_SHORT dataset includes 234 chains from the TEST
dataset that are shorter that 1000 residues since the MetaDisorder server can be applied only to these shorter proteins. MetaDisorder
and its input predictors, for which predictions were collected using the MetaDisorder server, are denoted using underline. Methods
that are used as inputs to disCoP are shown in bold font. The highest value for each measure is given in bold font and predictors are
sorted in the descending order by their constrained AUC values. The last column provides the DDC (Difference between the
predicted and native Disorder Content) values where a positive/negative value means that a given predictor over/under-predicts the
overall amount of disorder in a chain. “Sig” columns show statistical significance of differences measured based on 10 repetitions on
randomly chosen 50% of the proteins from TEST dataset; +/=/� indicate that disCoP is significantly better/not significantly different/
significantly worse than another method at p-value < .01. disCoP_WS is a web server version of disCoP that excludes ESpritz and
CSpritz predictors (see “disCoP predictor” section for details).

Method Constrained AUC Sig AUC Sig MCC Sig Sensitivity Specifity DDC

disCoP .6822 .8819 .5707 .681 .890 .00
MFDp .6671 + .8759 + .5530 + .751 .838 .07
disCoP_WS .6516 + .8612 + .5522 = .682 .878 .01
MetaDisorder .6406 + .8614 + .5485 + .737 .843 .05
ESpritz-Disprot .6364 + .8548 + .5247 + .725 .832 .06
CSpritz-long .6358 + .8529 + .5200 + .784 .789 .06
MetaDisorderMD .6348 + .8605 + .5409 + .676 .874 .01
MetaDisorderMD2 .6260 + .8582 + .5386 + .711 .852 .04
SPINE-D .6229 + .8486 + .5005 + .774 .779 .11
MD .5952 + .8472 + .5135 + .675 .855 .03
iPDA .5898 + .8411 + .4651 + .504 .916 �.06
DISOCLUST .5840 + .8206 + .4297 + .797 .692 .18
VSL2B .5836 + .8228 + .4615 + .770 .747 .13
DISOPRED2 .5774 + .8281 + .4975 + .655 .855 .02
Poodle-L .5736 + .8110 + .4679 + .644 .840 .03
ESpritz-Xray .5728 + .8165 + .4735 + .650 .841 .03
DISpro .5672 + .8160 + .4145 + .329 .967 �.15
Poodle-S .5602 + .8280 + .4780 + .578 .886 �.02
PONDR-FIT .5585 + .8183 + .4848 + .632 .860 .01
PrDos .5571 + .8325 + .4949 + .623 .872 .00
IUPRED-short .5508 + .8018 + .4533 + .520 .901 �.05
IUPRED-long .5460 + .8045 + .4642 + .555 .889 �.03
Espritz-NMR .5292 + .7785 + .3654 + .732 .683 .17
RONN .5183 + .7909 + .4336 + .670 .796 .07
Norsnet .4944 + .7613 + .4264 + .530 .879 �.03
CSpritz-short .4794 + .7454 + .3739 + .610 .788 .10
DRIP-PRED .4677 + .7454 + .3547 + .680 .717 .13
Ucon .4655 + .7670 + .3716 + .560 .822 .02
MetaDisorder3d .4481 + .7783 + .3065 + .330 .918 �.11
ProfBval .4034 + .7274 + .2452 + .846 .424 .39
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latter methods were collected from the MetaDisorder ser-
ver and they are underlined in Table 6.

The results demonstrate that disCoP outperforms the
MetaDisorder consensus by a statistically significant mar-
gin. The improvements over the best-performing version
called MetaDisorder equal .02 in AUC (relative improve-
ment by 2.4%), .04 in constrained AUC (relative
improvement by 6.5%), and .02 in MCC (relative
improvement by 4.1%). We note that MetaDisorder
includes 13 predictors, compared with seven that are
used in disCoP. The likely reasons for the improved pre-
dictive quality are the empirical selection of the input
predictors and use of aggregated features. We also note
that disCoP predicts chains longer than 1000 residues.

3.2. Evaluation for functional types of disorder

We perform first-of-its kind evaluation of disorder pre-
dictions for different functional types of disorder, which
are annotated based on the DisProt database (Sickmeier
et al., 2007). We collected annotations for six functional
types: disorder-mediated protein–protein binding, pro-
tein-DNA binding, substrate or ligand binding, flexible
linkers or spacers, disordered phosphorylation sites, and

disordered autoregulatory regions; see Table 1. We assess
whether residues of a given type are correctly predicted
as being disordered; see details in the “Datasets and
evaluation protocols” section. The corresponding AUC
values for disCoP, disCoP_WS and each of the 20 con-
sidered predictors and each of the functional types on
the TEST_FUNCTION dataset are shown in Table 7.
The Table ranks all methods based on an average rank
across the six functional types. The corresponding
Table that reports the values of the constrained AUC is
shown in the Supplementary Table S2. Table 7 shows
that disCoP obtains the highest average rank of AUC,
which means that its predictions are on average ranked
the highest across the six functional types of disorder.
The ESpritz-Disprot method provides the most accurate
disorder predictions for residues involved in disorder-
mediated binding, including binding with proteins, DNA,
and other ligands. On the other hand, disCoP provides
accurate results for the prediction of disorder that imple-
ments other considered functions, such as linker and aut-
oregulatory regions. Both of these methods perform well
for disordered post-translational modification sites, in
particular phosphorylation sites.

Table 7. AUC values measured on the TEST_FUNCTION dataset for disCoP, disCoP and 20 other predictors for the six functional
types of disorder. The AUC values are averages over the 10 repetitions with different randomly selected sets of structured residues
(see “Datasets and evaluation protocols” section for details). Methods that are used as inputs to disCoP are shown in bold font. The
highest value for each functional type is given in bold font. The methods are sorted by average rank of AUC, which is the average
over the ranks for individual functional types. disCoP_WS is a web server version of disCoP that excludes ESpritz and CSpritz
predictors (see “disCoP predictor” section for details).

Method

Functional types related to
binding Other functional types

Average
AUC

Average rank
of AUC

Protein-
protein
binding

Substrate
or ligand
binding

Protein-
DNA
binding

Flexible
linkers

or spacers
Phosphory-

lation
Autoregula-

tory

disCoP .869 .755 .793 .794 .898 .879 .831 1.7
ESpritz-Disprot .881 .783 .834 .767 .898 .871 .839 2.2
MD .838 .725 .816 .774 .893 .843 .815 3.7
CSpritz-long .831 .728 .760 .792 .881 .873 .811 4.0
disCoP_WS .835 .712 .787 .773 .888 .848 .807 4.2
MFDp .815 .725 .751 .752 .864 .828 .789 7.5
CSpritz-short .786 .721 .753 .782 .826 .827 .783 8.3
SPINE-D .804 .688 .730 .768 .868 .840 .783 8.5
ESpritz-Xray .789 .722 .743 .746 .838 .796 .772 10.0
VSL2B .788 .714 .741 .716 .840 .807 .768 11.2
PrDos .784 .645 .715 .778 .838 .835 .766 11.8
DISOPRED2 .786 .654 .697 .761 .850 .835 .764 12.2
PONDR-FIT .781 .720 .729 .726 .823 .789 .761 13.2
DISOCLUST .782 .664 .696 .748 .858 .823 .762 13.2
IUPRED-long .782 .703 .703 .711 .806 .774 .747 15.2
Norsnet .751 .626 .746 .710 .839 .773 .741 16.0
IUPRED-short .770 .710 .697 .729 .798 .765 .745 16.2
RONN .760 .676 .686 .719 .809 .783 .739 16.5
Ucon .757 .692 .716 .705 .759 .762 .732 17.7
ProfBval .706 .674 .704 .705 .772 .744 .718 19.3
ESpritz-NMR .746 .665 .674 .670 .807 .765 .721 19.5
DRIP-PRED .708 .643 .638 .707 .805 .755 .709 20.5
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Importantly, our results provide useful clues to
potential users of disorder predictors when they aim to
investigate certain functional aspects. We observe that
disordered sites that are involved in binding to smaller
ligands (excluding proteins and DNA) and linker regions
are more difficult to predict when compared to the other
functional types. Moreover, the users could match their
study with a particular method that allows them to maxi-
mize predictive accuracy.

3.3. Predictive model

The disCoP uses a set of selected 11 features that aggre-
gate disorder predictions generated by seven methods and
which are combined together to predict disorder using
binomial deviance loss-derived regression; the design of
this model was performed empirically based on threefold
cross-validation on the TRAINING dataset. We analyze
contributions of these features and their relation with the
native disorder annotations. Table 8 lists the selected fea-
tures together with a few measures that evaluate their
individual predictive performance, their contribution to
the consensus based on the results of feature selection,
and their corresponding weights in the regression; the
same information for the disCoP_WS predictor is summa-
rized in the Supplementary Table S3. The feature names
define the input predictor (the part of the name before
underscore) and type of output and aggregation (the part
after underscore) where median i and mean i correspond
to median and mean probability in window of size 2� i

+ 1, respectively, and content i and Lcontent i correspond
to content of binary and ternary predictions in window of
size 2� i+ 1, respectively (see “Feature generation and
selection” for details).

We observe that all selected features are calculated
based on aggregate values; none of the raw predictions
are used. This demonstrates that our design of features
that implements aggregation is beneficial to the predic-
tion. Five features are based on predicted real-valued
probabilities (mean and median-based features) and six
utilize the binary and ternary predictions (content and
Lcontent features). Probability-based aggregation uses
smaller window sizes compared with the aggregated bin-
ary/ternary predictions; this justifies our feature selection
that chooses the preferred window sizes separately for
each feature type.

The individual performance is assessed with con-
strained AUC when each feature is used individually to
predict disorder on the TRAINING dataset and their
biserial correlation with the native annotation of disorder.
As expected, these two measures are strongly correlated
with each other, with the Pearson’s correlation coefficient
(PCC) of .87, and with the AUC of the corresponding
predictors on the TRAINING dataset, with PCC of .80
for the biserial correlation and .54 for the constrained
AUC. This suggests that predictive performance of
aggregated predictions is correlated with the overall per-
formance of the corresponding predictor, which is
expected. The performance of the selected features when

Table 8. Summary of 11 features used in the disCoP consensus. The features are sorted by their constrained AUC when used
individually to predict the disorder based on threefold cross-validation on the TRAINING dataset. The biserial correlation was
computed against the native disorder annotation in the TRAINING dataset. The “Constrained AUC then added to consensus” gives
the value of the constrained AUC when a given feature was added into the consensus during the feature selection. The last column
lists weights in the regression including a bias (free weight), which is listed in the last row. The features with negative weights are
given in bold font. The first part of the feature name (before underscore) identifies the input predictor; the second part shows the
particular type of output and aggregation where mediani and meani correspond to median and mean probability in window of size
2� i+1, respectively, and content i and Lcontent i correspond to content of binary and ternary predictions in window of size 2� i+1,
respectively (see “Feature generation and selection” for details).

Features

Predictive performance of individual features

Constrained
AUC when added

to consensus
Regression
weights

Constrained AUC
of individual

features

Biserial correlation
with native
disorder

ESpritz-Disprot_median6 .546 .487 .546 .252
CSpritz-Long_median7 .542 .475 .579 .317
MD_mean8 .490 .456 .584 .005
ESpritz-Disprot_Lcontent28 .481 .450 .589 �.026
SPINE-D_content24 .483 .453 .602 .106
DISOPRED_mean15 .471 .416 .612 .042
DISOclust_median17 .471 .393 .619 .009
ESpritz-Xray_mean26 .462 .420 .624 �.079
MD_content29 .459 .427 .630 �.030
CSpritz-Long_content30 .444 .423 .635 �.082
DISOPRED_Lcontent30 .431 .385 .641 �.051
Bias .268
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used together in the consensus is measured using
constrained AUC values that were obtained when adding
these features during the feature selection (see also Sup-
plementary Figure S2) and their weights in the regression
model. Most of the initial gain in performance when
adding the features comes from the use of probability-
based aggregates that utilize predictions of the well-per-
forming ESpritz, CSpritz and MD predictors. However,
later on, we add features that utilize predictors with
lower overall predictive performance (such as DISOclust
and ESpritz-Xray). Also, the features added at the end of
the feature selection (that are listed at the bottom of
Table 8) apply larger window sizes. This means that the
larger sequence context that they utilize can be effec-
tively used to adjust contributions from the more locally
computed (using smaller windows) features. Interest-
ingly, features with negative weights in the regression
(shown in bold font in Table 8), which reduce the proba-
bility of the disorder prediction by the consensus, are
also associated with aggregations based on larger win-
dow sizes. These features do not utilize the DISOclust
and SPINE-D predictors, which are characterized by rela-
tively large values of DDC (e.g. see Table 5), that is
which over-predict the disorder content. This means that
predictions from more conservative methods are used to
balance the over-predictions from these two methods.

We also provide additional, empirical motivation for
combining multiple features together. Figure 3 shows a
scatter plot of values of two features, DISOc-
lust_median17 and CSpritz-Long_median7, together with
the annotation of the disorder/order for a randomly
selected subset of 10% of residues in the TRAINING

dataset. These features are based on two predictors with
substantially different predictive profiles, as measured
with their overall performance, DDC, and balance
between sensitivity and specificity; see Table 5. The scat-
ter plot demonstrates that combining these two features
leads to a better discriminatory power compared to using
them separately. The feature based on the DISOclust pre-
dictions (y-axis) shows that majority of residues with
values above .5 are disordered. However, with the help
of the second feature based on the CSpritz predictions
(x-axis), these residues can be more accurately classified
as disordered if the second feature has values at above
.5. In other words, some of the residues incorrectly pre-
dicted as disordered by DISOclust-based feature can be
corrected with the CSpritz-based feature and vice versa.

3.4. Case studies

We visualize predictions from our disCoP and its base/
input predictors using two case studies that concern pro-
teins from the TEST set with different disorder character-
istics. We plot the native annotations of disorder and
predicted probabilities and binary annotations of disor-
ders, which for the considered predictors are based on a
cut-off of .5; see Figure 4. While these cases should not
be considered as typical, they attempt to visualize the
results at the protein level and highlight differences
between predictions generated by the disCoP and its
input methods.

The first case is the potassium voltage-gated channel
protein Shaker (DisProt ID DP00267) (Hoshi, Zagotta, &
Aldrich, 1990), which is a relatively long chain with one
native relatively short disordered region (in the vicinity
of the N-terminus) that is annotated as a flexible linker;
see Figure 4(a). The Figure reveals that all base/input
predictors correctly find disorder at the N-terminus.
However, they also predict a long disordered segment at
the C-terminus, and a few disordered residues or short
segments in the middle of the chain. Our consensus
effectively reduces the over-prediction of the disorder
while preserving the prediction of the disordered region
at the N-terminus.

The second case is the DNA repair protein (DisProt
ID DP00091) (Iakoucheva et al., 2001), which is a
short chain with two fairly long native disordered
regions that implement protein–protein binding; see Fig-
ure 4(b). The native disorder is located at both termini.
The predictions of different base predictors vary in their
probability profiles. The ESpritz-Xray and DISOPRED2
methods under-predict the disorder, while the ESpritz-
Disprot, DISOclust and MD over-predict the amount of
disorder. SPINE-D predicts fairly accurate amount of
disorder per chain, but misaligns the predicted disor-
dered segments with respect to the position of the
native segments. The CSpritz-Long method provides the
highest quality predictions among the seven input meth-
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Figure 3. Scatter plot of values of two features,
DISOclust_median17 (y-axis) and CSpritz_Long_median7 (x-axis),
for randomly selected subset of 10% of residues from the
TRAINING dataset. Colors denote outcomes, with red for
disordered residues and blue for ordered/structured residues.
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ods. Our disCoP improves slightly over the CSpritz-
Long by removing a short disordered segment in the
middle of the chain.

Overall, disCoP offers predictions with a relatively
low false-positive rate (rate of incorrectly predicted dis-
ordered residues) by removing some of the “less reli-
able” disorder predictions generated by its input
predictors. We also observe that our method provides a
smoother profile of predicted probabilities, which results
from the averaging done by the regression.

4. Conclusions

Our study builds upon the diversity of the existing disor-
der prediction to propose a consensus that provides
improved predictive quality. We address the shortage of
meta-methods which go beyond the current designs that
are performed in an ad hoc manner. Our approach,
named disCoP, takes advantage of three novel aspects:
empirical selection of a well performing/complementary

set of predictors (using a comprehensive list of state-of-
the-art methods); use of a more sophisticated averaging
via binomial deviance-based regression to implement the
consensus; and utilization of a custom designed features
that aggregate input binary and real-valued predictions.
Our consensus uses 11 features that are calculated based
on outputs of seven disorder predictors. Empirical evalu-
ation on an independent test dataset demonstrates that
our consensus provides improved predictive quality,
when compared with its input predictors and a wide-
range of other predictors, including a state-of-the-art con-
sensus that applies twice as many input predictors. More-
over, our evaluation that considers different functional
types of disorder shows that disCoP provides strong dis-
order predictions on several types of disorder, including
disordered phosphorylation sites and autoregulatory and
flexible linker regions. The latter evaluation provides
useful clues for users who can now tailor selection of a
particular predictor for a given disorder-mediated func-
tion that they investigate.
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Figure 4. Prediction of disordered residues for (panel a) potassium voltage-gated channel protein Shaker (DisProt ID DP00267) and
(panel b) DNA repair protein (DisProt ID DP00091), which were taken from TEST dataset, by disCoP and its seven input predictors.
The x-axis shows positions in the protein sequence. Probability values are shown by thin lines at the top of the figure. The cut-off of
.5 to convert probabilities into binary predictions is shown using a dashed horizontal line. The native MoRF regions are annotated
using black horizontal line. The binary predictions are denoted using thick horizontal lines below 0 on the y-axis.
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