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Abstract: A computational model, IMP-TYPE, is proposed for the classification of five types of integral mem-

brane proteins from protein sequence. The proposed model aims not only at providing accurate predictions but most

importantly it incorporates interesting and transparent biological patterns. When contrasted with the best-performing

existing models, IMP-TYPE reduces the error rates of these methods by 19 and 34% for two out-of-sample tests per-

formed on benchmark datasets. Our empirical evaluations also show that the proposed method provides even bigger

improvements, i.e., 29 and 45% error rate reductions, when predictions are performed for sequences that share low

(40%) identity with sequences from the training dataset. We also show that IMP-TYPE can be used in a standalone

mode, i.e., it duplicates significant majority of correct predictions provided by other leading methods, while provid-

ing additional correct predictions which are incorrectly classified by the other methods. Our method computes pre-

dictions using a Support Vector Machine classifier that takes feature-based encoded sequence as its input. The input

feature set includes hydrophobic AA pairs, which were selected by utilizing a consensus of three feature selection

algorithms. The hydrophobic residues that build up the AA pairs used by our method are shown to be associated

with the formation of transmembrane helices in a few recent studies concerning integral membrane proteins. Our

study also indicates that Met and Phe display a certain degree of hydrophobicity, which may be more crucial than

their polarity or aromaticity when they occur in the transmembrane segments. This conclusion is supported by a

recent study on potential of mean force for membrane protein folding and a study of scales for membrane propensity

of amino acids.
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Introduction

Integral membrane protein (IMP) refers to a protein that is per-

manently attached to a biological membrane. Although IMPs

play a crucial role in numerous cellular functions by acting as

receptors and transporters, significant amount of information

concerning their function is still unknown due to the lack of

high-resolution structures. Despite the estimates show that 20–

30% of the human genome encodes membrane proteins, only 60

IMP structures were solved in the last 6 years.1,2 The limited

number of available structures is a result of substantial difficul-

ties with overexpression and crystallization of membrane pro-

teins.3 As a result, in the last decade, the structures of new IMPs

are often determined using NMR.4–6 IMPs are generally catego-

rized into five types. The first two types concern single-pass

transmembrane (TM) proteins; type I IMP has an extracellular

N-terminus and cytoplasmic C-terminus, whereas type II IMP

has an extracellular C-terminus and cytoplasmic N-terminus.

Type III IMP concerns multipass TM proteins that cross the

membrane at least twice. The last two types concern proteins

anchored to membrane and include lipid chain-anchored mem-

brane protein and GPI-anchored membrane protein. The lipid

chain-anchored membrane is associated with the bilayer only,

whereas GPI-anchored membrane protein is bound to the mem-

brane by a glycophosphatidylinositol (GPI) anchor. A recent

study proposed a more detailed classification of IMPs, which

includes eight types.7 The new categories subdivide type I and

type II IMPs into two types based on their orientation in the

bilayer and based on the topogenic sequences that direct their

insertion into the endoplasmic reticulum (ER) membrane, and a

new category named peripheral membrane was added. At the

same time, in this study, we concentrate on categorizing the five

types of IMPs.
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Prediction of the type of IMP is usually performed in two

steps. First, sequences of different length are represented by a

fixed length feature vector and next the feature values are fed

into a classification algorithm. Early attempts in computational

prediction of IMP types were observed in 1990s. One of the first

studies was based on component-coupled algorithm and the pro-

tein sequence was represented by a conventional composition

vector.8 Recent studies applied more complex features, including

pseudo amino acid composition, which considers position of

amino acids (AAs) in the sequence,9–11 functional domain com-

position,12 amphiphilic effect features,13 and GO-PseAA fea-

tures.14 Different classification algorithms, including support

vector machine (SVM),15,16 weighted SVM,10 optimized evi-

dence-theoretic K-nearest neighbor,17 Fuzzy K-nearest neigh-

bor,18 and ensemble models,19,20 were used in recent studies.

The earlier methods classify a membrane protein into one of the

five types assuming that another method is used to predict

whether a given sequence is a membrane protein. The latter can

be accomplished using a number of high-quality predictions

methods, which include MemType-2L,21 SOSUI,22 DAS,23 and

SVMtm,24 and that can find membrane proteins with accuracy

of over 90%. Therefore, our study focuses on prediction of the

five types of membrane proteins while assuming that the user

would apply one of the aforementioned servers to predict

whether a given sequence is a membrane protein. Most impor-

tantly, motivation for the development of the proposed method

stems from the fact that although the prediction accuracy of

state-of-the-art membrane protein type prediction algorithms is

improving in the last few years, the corresponding prediction

models are not interpretable and could not be used to disclose

the underlying biological patterns.

Although many recent works concentrate on improving the

prediction accuracy of the membrane type prediction by apply-

ing various, modern classification algorithms, we concentrate on

development of a novel sequence representation which provides

better accuracy and which can be analyzed and explained based

on associated biological patterns. To this end, we propose a

novel representation called PSI-BLAST profile-based collocation

of AA pairs. This representation is based on a combination of

PSI-BLAST profile25 and a concept of collocation of AAs in a

given sequence.26 Three feature selection methods were applied

to reduce the dimensionality of the original feature space based

on the PSI-BLAST profile-based collocation of AA pairs. After

feature selection, the selected profile-based pairs mainly include

hydrophobic residues, which are regarded as the driving force

for the formation of TM helices. We also note that amino acid

Met (M) and Phe (F), which are commonly classified as polar

and aromatic residue, occur frequently in the selected AA pairs.

We discuss these findings and show that they are consistent with

other published results that concern membrane proteins.

Materials and Methods

Datasets

Training set 1 and test set 1 were originally generated by Chou

based on release 35.0 of SWISS-PROT.8 The training and test

set contain 2059 and 2625 membrane protein sequences, respec-

tively. In the training set, 434 proteins belong to type-I IMP,

152 proteins belong to type-II IMP, 1311 proteins belong to

type-III IMP, 51 proteins belong to type IV IMP, and 111 pro-

teins belong to type-V IMP. In the test set, 477 proteins belong

to type-I IMP, 180 proteins belong to type-II IMP, 1867 proteins

belong to type-III IMP, 14 proteins belong to type IV IMP, and

87 proteins belong to type-V IMP.

Additionally, we selected subsets of training set 1 and test

set 1 that are characterized by a sequence identity at 40%, i.e.,

any pair of the sequences in these subsets share no more than

40% similarity. The training set 2 was prepared by running CD-

hit with 40% identity threshold27 on the training set 1. As a

result, training set 2 includes 1384 sequences. Test set 2 was

generated in two steps. In the first step, we run CD-hit on test

set 1 with 40% threshold to generate a subset of sequences that

share sequence identity below 40%. In the second step, sequen-

ces from this subset that share a sequence identity of above 40%

with sequences in training set 2 were removed. As a result, test

set 2 contains 458 sequences. This dataset is used to analyze

and contrast the prediction accuracy of the proposed method for

sequence with hold identity.

Test set 3 contains membrane protein sequences that were

deposited into SWISS-PROT database in 2007. Sequences anno-

tated with ambiguous or uncertain classifications, i.e.,

‘‘potential,’’ ‘‘by similarity,’’ ‘‘probable,’’ were excluded. Addi-

tionally, proteins that share sequence identity of above 40%

were removed to assure that the remaining set is nonredundant.

As a result, test set 3 includes 165 IMP sequences, which allow

for an independent evaluation of the proposed method on a non-

redundant set of recently published proteins. The training set 2

and test sets 2 and 3 are freely available from the authors upon

request.

Feature Representation

The proposed feature representation includes two feature sets:

(1) the PSI-BLAST profile based collocation of AA pairs and

(2) the autocorrelation function based on hydrophobicity indices.

PSI-BLAST Profile-Based Collocation of AA Pairs

The proposed representation combines PSI-BLAST profile and

the concept of frequency of collocation of AA pairs26,28 in the

sequence. The original motivation to introduce the collocation of

AA pairs comes from an insufficient sequence representation

that is offered by the commonly used AA composition vector,

which merely counts the frequencies of individual AAs in the

sequence. On the other hand, the frequencies of AA pairs

(dipeptides) provide more information since they may reflect

local interaction and spatial arrangement between AA pairs.

Based on this argument, we would count all dipeptides in the

sequence. Since there are 400 possible AA pairs (AA, AC, AD,
. . ., YY), a feature vector of that size is used to represent occur-

rence of these pairs in the sequence. At the same time, short-

range interactions happen not only between immediately adja-

cent AAs, but also between residues a few positions away. For

instance, the hydrogen bond in a-helix is established between

the ith AA and the (i14)th AA. As a result, the proposed repre-
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sentation should consider collocated pairs of AAs, i.e., pairs that

are separated by p other AAs. These pairs could be understood

as the dipeptides with gaps. Collocated pairs for p 5 0, 1, . . ., 4
are considered, where for p 5 0 they reduce to dipeptides. There

are 400 feature values for each value of p.
Meanwhile, numerous successful applications of PSI-BLAST

profile imply that the evolutionary information is more informa-

tive than the sequence itself.29–32 PSI-BLAST aligns a given

query sequence to a database of sequences and searches for

these sequences that are similar to the query sequence. The

alignment performed by PSI-BLAST produces so called PSI-

BLAST profile, which is an N 3 20 matrix of frequencies of

each AA at each position in the query sequence. The PSI-

BLAST profile can be used to identify key conserved positions

and positions in which residues undergo mutations.

The proposed approach combines the frequency of colloca-

tion of AA pairs and the PSI-BLAST profile into so called PSI-

BLAST profile-based collocation of AA pairs. The PSI-BLAST

profile, the N 3 20 matrix, can be denoted as [ai,j], where i 5
1, 2, . . ., N denotes position in the query sequence and j 5 1, 2,

. . ., 20 denotes 20 types of AAs. After applying the substitution

matrix and log function, aij values range between 29 and 11.

The proposed representation is just a generalized form of count-

ing frequency of AA pairs based on binary coding. The binary

coding uses a 20-dimensional vector to encode each AA. If the

20 AAs are represented as AA1, AA2, . . ., AA19, and AA20, AAi is

hence encoded as (0, 0, . . . , 0, 1, 0, . . . , 0, 0), where only the

ith value is 1. The binary coding matrix is denoted as [bi,j] and it

has the same dimensionality (N 3 20) as the PSI-BLAST pro-

file. The frequency of AA pairs can be computed from the

binary coding matrix. For a given protein sequence A1A2, . . . , AN

AiAi11 is the AAmAAn dipeptide

, Ai 5 AAm and Ai11 5 AAn

, bi,m 5 1, bi11,n 5 1, bi,p 5 0, bi11,q 5 0, where p = m
and q = n
Given that cs,t 5 min(bi,s, bi11,t), then

cs;t ¼ 1 ðiff s ¼ m; t ¼ nÞ
0 ðelseÞ

�

which means that AAmAAn was counted once while all other

dipeptides were counted 0 times. Matrix [cs,t ] stores the fre-

quencies of all dipeptides. The count of the AA pairs along the

entire sequence can be computed as

cs;t ¼
XN�1

i¼1

minðbi;s; biþ1;tÞ

The PSI-BLAST profile-based collocation of AA pairs is cal-

culated in similar way. The only difference is that the binary

coding matrix [bi,j] is replaced by the PSI-BLAST profile [ai,j].
The frequency of AAsAAt dipeptide is computed as

cs;t ¼
PN�1

i¼1

minðai;s; aiþ1;tÞ and matrix [cs,t] stores the frequencies

of all dipeptides.

Since the PSI-BLAST profile values can be negative, whereas

using negative values to represent the frequencies of AA pairs

could lead to misleading results, we compute of cs,t as follows

cs;t ¼
XN�1

i¼1

maxð0;minðai;s; aiþ1;tÞÞ

in which the negative value of min(ai,s, ai11,t) is replaced by 0.

On the other hand, longer protein sequence will result larger fre-

quencies of AA pairs. As a result, we also normalize cs,t as fol-

lows:

cs;t ¼ 1

N � 1

XN�1

i¼1

maxð0;minðai;s; aiþ1;tÞÞ

Finally, the frequencies of p-collocated AA pairs are defined

as

ds;t;p ¼ 1

N � p� 1

XN�p�1

i¼1

maxð0;minðai;s; aiþpþ1;tÞÞ

The AXXXC and CXXXA pairs are symmetrical, i.e., they

concern AAs A and C, which are separated by three AAs.

Therefore, the corresponding symmetrical pairs could be com-

bined together for the purpose of classifying the five types of

IMP. By calculating the information gain (defined in the

‘‘Feature Selection’’ section) that quantifies the strength of rela-

tion between a given feature and the class label for each pair,

we found that given AA pair and its symmetrical form usually

provide similar information gain values, i.e., the information

gain of pair IXXXF and FXXXI pairs are equal 0.552 and

0.514, respectively; the information gain of MXXXF equals

0.492, whereas for FXXXM it equals 0.489. This may imply

that the symmetrical pairs have comparable ability to classify

the five types of IMP. To reduce the dimensionality of the fea-

ture space, each pair and its symmetrical form are merged into

one feature as follows:

c0s;t ¼
cs;t þ ct;s ðif s < tÞ
cs;t ðif s ¼ tÞ
0 ðif s > tÞ

8<
: d0s;t;p ¼

ds;t;p þ dt;s;p ðif s < tÞ
ds;t;p ðif s ¼ tÞ
0 ðif s > tÞ

8<
:

As a result, the matrixes [c0s,t] and [d0s,t,p], are upper triangular

and the values below the main diagonal are set to 0. The dimen-

sionality of [c0s,t] and [d0s,t,p] is 210. We generate PSI-BLAST

profile-based collocation of AA pairs for p 5 0, 1, 2, 3, and 4,

which results in 1050 features per each sequence.

Autocorrelation Based on Hydrophobicity Indices

Prior research shows that hydrophobicity-based autocorrelation is

related to protein structural class and the secondary structure con-

tent.33,34 This study evaluates the effectiveness of autocorrelation,

which is based on hydrophobicity index, in classification of the

IMP types. Three sets of hydrophobicity indices, which include
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the Fauchere-Pliska’s,35 the Eisenberg’s,36 and the hydropathy

index37 were tested. The autocorrelation function is defined as

rn ¼ 1

N � n

XN�n

j¼1

indexðAAiÞindexðAAiþnÞ

where N is the length of the sequence, n is a parameter that

defines the autocorrelation step, index(AAi) is the hydrophobicity

index value for the ith AA in the sequence. In this article, rn was
generated for n 5 1, 2, . . ., 20 for the three aforementioned indi-

ces, which resulted in 20 3 3 5 60 features.

To study the properties of different parts of IMP sequences,

i.e., the N-terminus, the internal segment, and the C-terminus,

the membrane protein sequences were divided into three equal-

size subsequences, and the autocorrelation was calculated for

each of these segments separately. This resulted in 180 features,

i.e., 60 features for each terminus and another 60 for the internal

segment.

Feature Selection

Since the proposed representation includes relatively large num-

ber of features, three feature selection methods, Information

Gain based method (IG),28,38 Chi-Squared method (CHI),39 and

the Relief algorithm (REL)40 were used to reduce the dimen-

sionality and potentially improve the prediction. We used three

different methods to reduce bias introduced by each of the meth-

ods. In all three algorithms, each feature was ranked based on

its merit (information gain in IG, the value of the v2 statistic in

CHI, and the weights in REL), and next they were sorted by

their average rank across the three algorithms. The measurement

of the merit for the three algorithms is defined later.

IG: Information Gain

Information gain measures the decrease in entropy when a given

feature is used to group values of another (class) feature. The

entropy of a feature X is defined as

HðXÞ ¼ �
X
i

PðxiÞ log2ðPðxiÞÞ

where {xi} is a set of values of X and P(xi) is the prior probabil-

ity of xi. The conditional entropy of X, given another feature Y
(in our case the IMP type) is defined as

HðXjYÞ ¼ �
X
j

PðyjÞ
X
i

PðxijyjÞ log2ðPðxijyjÞÞ

where P(xi|yj) is the posterior probability of X given the value yi
of Y. The amount by which the entropy of X decreases reflects

additional information about X provided by Y and is called infor-

mation gain

IGðXjYÞ ¼ HðXÞ � HðXjYÞ

According to this measure, Y has stronger correlation with X
than with Z if IG(X|Y)[ IG(Z|Y).

CHI: Chi-Squared Statistic

CHI: Chi-Squared statistic is the common statistical test that

measures divergence from the expected distribution assuming

that the occurrence of a given feature is independent of the class

value. Let X be a discrete random variable (which corresponds

to a feature in this article) with m possible outcomes x1, x2, . . .,
xm (which correspond to five IMP types) with probability of

each outcome P(X 5 xi) 5 pi. Pearson-v
2 statistic is defined as

v2 ¼
Xm
i¼1

ðni � npiÞ2
npi

where ni is the number of instances, which will result the out-

come xi. A feature that gives higher value of v receives lower

rank.

REL: Relief Algorithm

REL: Relief algorithm is based on the feature weighting

approach, which estimates the attributes according to their per-

formance in distinguishing similar instances. REL searches the

two nearest neighbors for each instance: one from the same class

(nearest hit) and another from any other class (nearest miss).

The algorithm to calculate the weights is as follows:

1. Initialization: given D 5 {(xn, yn)} (n 5 1, 2, . . ., N) where
xn is the feature space, yn is class label, and N is the number

of instances, set wi 5 0, 1 � i � I, where I is the number of

features and T is the number of iterations.

2. For t 5 1:T
Randomly select an instance x from D;

Find the nearest hit NH(x) and miss NM(x) of x;
For i 5 1:I
Calculate: wi ¼ wi þ jxðiÞ � NMðiÞðxÞj � jxðiÞ � NHðiÞðxÞj

End

End

The feature selection was performed using 10-fold cross vali-

dation on training set 1 for all three algorithms. The features

were sorted by their average rank obtained with the three algo-

rithms. Next, we successively added one feature at the time and

performed prediction of IMP type using 10-fold cross validation

test on the training dataset using classifier described in ‘‘Classifi-

cation Algorithm’’ section. Figure 1 shows that the prediction

accuracy increases when adding up to 120 features, and later it

saturates. Therefore, the top 120 features which have the lowest

average ranks were selected; see Table 1. Among the selected

features, 109 which are based on the PSI-BLAST profile-based

collocation of AA pairs are shown in Table 2. We observe that

the selected pairs are consistent for different number of gaps

expressed by the p value, as well as across individual p values,

i.e., the same Ala Ile (AI) pair is selected for p 5 0, 1, . . ., 4
and Ala (Ile) is also included in 3 (6) other selected pairs for p
5 0. A detailed discussion of the selected features is provided

in the ‘‘Results and Discussion’’ section. Among the remaining

11 features, 10 are hydrophobicity-based autocorrelations for

entire sequence and only one feature corresponds to the hydro-
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phobicity-based autocorrelation for internal segment. The latter

result suggests that the hydrophobicity of termini and internal

segments of IMP proteins could not be used to discriminate the

five types of IMP. One of the main reasons for this finding is

that the transmembrane segments of IMP are embedded in vari-

ous locations in the sequence,41,42 and thus they could not be

captured using the division of the sequence into segments which

was applied in our article. We plan to develop an improved

scheme to divide the sequence into the transmembrane segments,

which could be used to compute hydrophobic autocorrelations,

as our future work.

Previous works show that GXXXG motif is frequently asso-

ciated with b-branched residues at neighboring positions in TM

proteins,43,44 whereas this pair was not included among the

selected features. We investigate the effect of GXXXG motif in

distinguishing the five types of IMPs by comparing this pair

with the top five selected features, which include LXXF,

IXXXF, LXXXF, MXXXF, and FXXXV. The average feature

values and the corresponding standard deviations of these five

top pairs and the GXXXG motif for each IMP type are given in

Table 3. The average feature values of LXXF pair varies

Figure 1. Prediction accuracy (y-axis) when selecting top features

(x-axis) according to the ranked feature list generated by feature

selection methods.
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Table 1. Summary of the Feature-Based Sequence Representation and

Results of the Feature Selection.

Feature set

Total number

of features

Selected

features

PSI-BLAST profile based collocation

of AA pairs 1050 109

Hydrophobicity autocorrelations for

entire sequence 60 10

Hydrophobicity autocorrelations for

termini and internal segments 180 1

Total 1290 120
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between 1.83 and 8.50 for the five types of IMPs and similar

spread is observed for the other four selected pairs. At the same

time, the average feature values of GXXXG motif varies

between 0.95 and 1.92, which shows that this motif occurs at

similar rates for all IMP types and thus it does not allow differ-

entiating between the different types. Based on a study by

Engelman and coworkers,44 we observe that Gly occurs less fre-

quently than Leu, Ile, and Val in TM proteins and the GXXXG

motif is less frequent than some other pairs, e.g., LXL pair

occurs 7509 times and GXXXG occurs 1641 times. Addition-

ally, we note that another study by Eisenberg and coworkers

shows that GXXXG motif also frequently occurs in the a-helix
of soluble proteins and it stabilizes helix–helix interactions.45

This suggests that this pair may not be specific for TM proteins,

but it rather constitutes a strong helical pattern.

Classification Algorithm

We use SVM classifier46 that was previously applied to predict

IMP types.15,16 Given a training set of data point pairs (xi, ci), i
5 1, 2, . . . n, where xi denotes the feature vector, ci 5 {21, 1}

denotes binary class label, n is the number of training data

points, finding the optimal SVM is achieved by solving:

min wk k2 þ C
X
i

ni

such that

ciðwzi � bÞ � 1� ni and 1 � i � n

where w is a vector perpendicular to wx 2 b 5 0 hyperplane

that separates the two classes, C is a user-defined complexity

constant, ni are slack variables that measure the degree of mis-

classification of xi for a given hyperplane, b is an offset that

defines the size of a margin that separates the two classes, and z
5 /(x), where k(x,x0) 5 /(x) � /(x0) is a user-defined kernel

function.

The SVM classifier was trained using Platt’s sequential mini-

mal optimization algorithm,47 which was further optimized by

Keerthi et al.48 The IMP type prediction that includes multiple

classes is solved using pairwise binary classification, namely, a

separate classifier is build for each pair of classes. Two popular

families of kernel functions including polynomials and radial ba-

sis functions (RBF) were used. The kernel function selection

and parameterization as well as selection of the complexity con-

stant value were performed based on 10-fold cross validation on

the training dataset using 120 features. The final classifier uses

C 5 6 and the RBF kernel

k xi; x
0
i

� � ¼ e�c x�x0k k2 where c ¼ 2:0

The classification algorithm and feature selection algorithms

used to develop and compare the proposed method were imple-

mented in Weka.49

Results and Discussion

Prediction Results

The proposed method was evaluated using three test types, i.e.,

by applying resubstitution and jackknife tests on the training

dataset and by testing on an independent test dataset. The choice

of the out-of-sample test was motivated by recent results that

suggest that the jackknife test is more rigorous and objective

than subsampling tests such as 5- or 10-fold cross-valida-

tion.50,51 The evaluation setup closely follows previous stud-

ies8,9,20 to allow for a consistent and objective comparison. Sum-

mary of classification results, which includes the corresponding

classification accuracy values of IMP-TYPE and the competing

methods, is shown in Table 4.

For training set 1 and test set 1, IMP-TYPE obtained 99.5%

accuracy for the resubstitution test (on training set 1), 90.6% ac-

curacy for the jackknife test (on training set 1), and 97.4% for

the test on the independent test set 1. For the two out-of-sample

tests (the jackknife test and the test on the independent set),

IMP-TYPE provides substantial improvement over the best com-

peting method, i.e., 4.8 and 0.6% higher accuracy, which corre-

sponds to 4.8/14.2 5 33.8% and 0.6/3.2 5 18.8% reduction of

the corresponding error rates.

Using the training set 2 and test set 2, which concern sequen-

ces with low, 40%, identity, we compared the proposed method

with two representative, competing methods, see Table 4. They

include best-performing ensemble model20 and another SVM-

based prediction method that uses composition vector to repre-

sent the sequences.15 The comparison is limited to the above

Table 3. The Average Feature Values and the Standard Deviations of the Top 5 Selected Features and the

GXXXG Motif for 5 Types of IMPs.

IMP type

Avg. (Std.)

LXXF IXXXF LXXXF MXXXF FXXXV GXXXG

Type-I 2.73 (1.35) 2.79 (1.39) 2.66 (1.33) 2.03 (1.10) 2.90 (1.35) 1.14 (0.67)

Type-II 4.46 (2.77) 4.31 (3.03) 4.64 (3.17) 3.63 (2.20) 3.75 (2.36) 0.95 (0.65)

Type-III 8.50 (2.59) 9.27 (2.12) 9.09 (2.61) 7.56 (0.60) 8.17 (2.22) 1.73 (1.28)

Type-IV 1.83 (1.23) 1.86 (1.35) 1.89 (1.32) 1.47 (1.26) 2.00 (1.36) 1.92 (2.13)

Type-V 2.57 (1.20) 2.26 (1.02) 2.53 (1.12) 1.81 (1.08) 2.34 (1.02) 1.54 (1.72)
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two methods since prior predictors were not tested on datasets

with controlled, low identity, and thus we had to implement the

empirical evaluation on these two sets. IMP-TYPE obtained

99.6% accuracy for the resubstitution test (on training set 2),

84.2% accuracy for the jackknife test (on training set 2), and

94.3% for the test on the independent test set 2. For both out-of-

sample tests IMP-TYPE provides substantial improvement over

the best competing ensemble based method, i.e., 6.4 and 4.6%

higher accuracy, which corresponds to 6.4/22.2 5 28.8% and

4.6/10.3 5 44.7% reduction of the corresponding error rates.

The accuracy of membrane protein type prediction for the data-

sets of low sequence identity (training and test sets 2) is lower

than when considering sequences with high similarity (training

and test sets 1). This is expected as the former datasets are more

challenging. At the same time, our method is still capable of

producing highly accuracy predictions for the low identity

sequence, which are consistently better than the corresponding

predictions of the competing methods. Most importantly, after

sequences with high similarity were removed, the improvement

provided by IMP-TYPE over the competing methods became

bigger, i.e., 4.8% (accuracy improved by IMP-TYPE for training

set 1) versus 6.4% (accuracy improved by IMP-TYPE for train-

ing set 2), 0.6% (accuracy improved by IMP-TYPE for test set

1) versus 4.6% (accuracy improved by IMP-TYPE for test set

2). This indicates that IMP-TYPE is characterized by an

improved ability to provide accurate predictions in case when

the query sequence shares low similarity with sequence used to

derive the prediction model.

For test set 3 that includes recently resolved membrane pro-

teins, IMP-TYPE obtains 90.3% accuracy for the independent

test, whereas the ensemble model and the composition vector-

based SVM obtain 84.8 and 84.2%, respectively. Detailed analy-

sis shows that among 165 proteins in this set, the three methods

provided consistent predictions for 148 chains, which include

133 correct predictions and 15 incorrect predictions. The remain-

ing 17 samples include five type-I IMP, two type II IMP, and 10

type III IMP proteins. The proposed IMP-TYPE method made

correct predictions for all five samples of type-I, one sample of

type-II, and all 10 samples of type-III. The best competing en-

semble-based method correctly predicted two samples of type-I,

one of type-II, and four of type-III, whereas the composition

vector-based SVM correctly classified one sample of type-I, two

of type-II, and three of type-III. We note that except the two

samples of type-II IMP, all correct predictions made by the com-

peting ensemble and SVM models were also correctly predicted

by IMP-TYPE, whereas IMP-TYPE provided additional nine

correct predictions. This shows that when applied to new IMPs,

our method duplicates virtually all correct predictions of the

competing methods and adds a number of additional correct pre-

dictions for which the competing methods fail to provide correct

outcomes.

We also provide a detailed comparison of performance,

which includes sensitivity, specificity, and Matthews correlation

coefficient (MCC) for each type of IMP, between IMP-TYPE

and the best-performing ensemble model20; see Table 5. For test

set 1, IMP-TYPE obtained comparable sensitivity and MCC for

all five types of IMP, and consistently higher specificity than the

ensemble model. For test set 2, which includes sequences with

low similarity, except for the sensitivity for type-IV IMP, all

other sensitivity, specificity, and MCC values obtained with

IMP-TYPE are higher than the corresponding values provided

by the competing ensemble model. This again confirms that

IMP-TYPE constitutes and improvement, rather than being a

complementary method, when compared with the best existing

method.

IMP-TYPE obtained relatively high sensitivities and specific-

ities, i.e., between 94 and 100%, for type-I and type-III IMP for

both out-of-sample tests. This indicates that the proposed feature

representation can accurately characterize these two types of

IMPs.

Table 4. Summary of Experimental Comparison Between IMPTYPE and Competing Methods for Prediction

of Membrane Protein Type.

Dataset Algorithm

Sequence

representation

Accuracy (%)

Resubstitution

(training set)

Jackknife

(training set)

Independent

set (test set)

Training set 1

and test set 1

Covariant-discriminant8 AA composition 81.1 76.4 79.4

Augmented covariant discriminant9 PseAA composition 90.9 80.9 87.5

Weighted SVM10 PseAA composition 99.9 82.4 90.3

SVM15 AA composition Not reported 80.4 85.4

Supervised locally linear embedding and KNN11 PseAA composition Not reported 82.3 95.7

OET-KNN17 PseAA composition 99.5 84.7 94.2

SVM16 PseAA composition 99.0 78.3 86.6

Stacking19 PseAA composition 98.7 85.4 94.3

Fuzzy KNN18 PseAA composition Not reported 85.6 95.7

Ensemble of 40 NN20 PseAA composition Not reported 85.8 96.8

IMPTYPE (SVM) (this paper) Custom (120 features) 99.5 90.6 97.4

Training set 2

and test set 2

SVM15 AA composition 99.9 77.8 87.6

Ensemble of 40 NN20 PseAA composition 100 76.2 89.7

IMPTYPE (SVM) (this paper) Custom (120 features) 99.6 84.2 94.3
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Analysis of Biological Patterns in the Proposed

Features Representation

The proposed method not only provides accurate predictions for

the five types of IMPs, but is also characterized by a transparent

feature set that can be used to analyze the underlying biological

patterns. The selected AA pairs include mainly hydrophobic res-

idues, which is consistent with a recent study concerning TM

protein that indicates that formation of TM helices is associated

with hydrophobic residues.52

The selected 109 AA pairs are summarized in Figure 2,

which shows that over 90% of the selected AA pairs are based

on only seven AAs. Using the occurrences of AAs pairs in the

proposed representation, the 20 AAs can be divided into two

groups: (1) the first one includes AAs that occur in the pairs at

least 18 times (see Table 6); (2) the second group includes the

remaining residues which occur in the pairs less than 10 times.

The first group includes Phe (F), Ile (I), Leu (L), Met (M), Val

(V), Ala (A), and Trp (W). Among the seven AAs, Ala, Ile,

Leu, and Val are traditionally classified as hydrophobic residues;

Phe and Trp are among aromatic residues; and Met is a polar

residue. However, according to the three commonly used hydro-

phobicity index tables,35–37 Phe and Met are consistently

assigned positive index values which indicate hydrophobic pro-

pensity, whereas Trp is assigned positive values in two of these

hydrophobicity index tables. Overall, the values in the aforemen-

tioned hydrophobicity index tables suggest that all seven resi-

dues that occur frequently in the selected pairs share hydropho-

bic propensity. At the same time, our predictions show that the

same seven hydrophobic residues are crucial for obtaining accu-

rate classification of the five types of IMP.

The specific roles of hydrophobic residues in the formation

of TM segments have been discussed in several studies:

� The distribution of the 20 AAs in the TM segments was sys-

tematically examined in study by Landolt-Marticorena et al.53

Their dataset contained 115 human type-I membrane proteins.

Based on contrasting the AA composition of the TM segments

and the AA composition of the entire sequences, the authors

found that Ile, Leu, Val, Ala, and Phe occur mostly in TM

segments. These five residues are among the seven residues

used in our proposed representation. Another study by

Ulmschneider and Sansom indicates that Leu, Ala, Gly, Val,

Ile, and Phe occur more frequently than other residues in TM

helices, whereas Gly, Thr, Ala, Tyr, Leu, and Val occur more

frequently than other residues in TM strands.52 Both of these

two groups of AAs include some hydrophobic residues, i.e.,

Ala, Val, and Leu. We note that the latter study is limited in

its scope since it was based on only 29 structures.

Table 5. Comparison Between IMP-TYPE and the Ensemble Model20 for Individual IMP Types on

Test Set 1 and Test Set 2.

IMP type

Independent test set 1 Independent test set 2

Ensemble model20 IMPTYPE Ensemble model20 IMPTYPE

Sensitivity Specificity MCC Sensitivity Specificity MCC Sensitivity Specificity MCC Sensitivity Specificity MCC

Type-I 0.96 0.96 0.95 0.98 0.97 0.97 0.90 0.86 0.85 0.96 0.94 0.94

Type-II 0.79 0.94 0.86 0.81 0.97 0.88 0.56 0.82 0.66 0.71 0.91 0.78

Type-III 0.99 0.97 0.93 1.00 0.98 0.95 0.95 0.93 0.83 0.98 0.95 0.90

Type-IV 0.57 0.80 0.68 0.43 0.86 0.61 0.50 0.40 0.44 0.25 1.00 0.50

Type-V 0.91 0.91 0.92 0.89 0.98 0.93 0.75 0.69 0.71 0.92 0.85 0.88

Average 0.84 0.92 0.87 0.82 0.95 0.87 0.73 0.74 0.70 0.76 0.93 0.80

It includes a subset of sequence from test set 1 that is characterized by low sequence identity.

Figure 2. A summary of the selected features that correspond to

AA pairs. Each cell in the figure corresponds to a given AA pairs

defined by AAs in the corresponding row and column. The value

shown for each shaded cell corresponds to the number of times a

given pair occurs in the proposed feature representation (across all

value of p). For example, pair AI occurs five times (for p 5 0, 1, 2,

3, 4) in Table 2. Since a given pair and its symmetrical form were

combined into one feature, the Figure is also symmetrical. Darker

shading corresponds to larger value for the corresponding cell.
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� A study by Ulmschneider et al.54 calculated the potentials of

mean force for membrane protein based on 46 all-a-helical
membrane protein with structures resolved with resolutions

greater than 4A. They reported that hydrophobic residues

(Ala, Ile, Val, and Leu) display a potential energy near the

center of the membrane region and extending into the interfa-

cial regions. They classified Met into polar residue group and

Phe into aromatic residue group, although we note that the

graphs that show the potentials of mean force of these two

residues are characterized by a different shape when compared

with the graphs of other polar and aromatic residues, and that

this shape is similar to the graphs of hydrophobic residues

(see Fig. 6 in ref. 54). This supports our claim of hydrophobic

tendency of Met and Phe in IMP. We again emphasize that

the hydrophobic propensity of Met and Phe is also confirmed

by all three of the aforementioned hydrophobicity index tables

and the fact that they constitute the sequence representation in

the proposed method that is characterized by high prediction

accuracy for TM proteins. We hypothesize that Met and Phe

display a certain degree of hydrophobicity, which may be

more crucial than their polarity or aromaticity in TM seg-

ments.

� In another study, Punta and Maritan55 generated two scales

for AA membrane propensity. The scales were based on dif-

ferent datasets, one dataset included three-dimensional struc-

tures determined by X-ray diffraction or NMR method, and

the other contained helix-bundle membrane proteins in which

TM helices have been identified by experimental techniques

other than X-ray and NMR. Coincidently, the seven residues

identified in this work based on the proposed sequence repre-

sentation (Phe, Ile, Leu, Met, Val, Ala, and Trp) correspond

to the seven highest values of membrane propensity in both of

the above scales, i.e., less than 20.17 in scale MPS(1D_r)

and less than 20.15 in scale MPS(3D), in which negative

value indicates a high membrane propensity (see Table 2 in

ref. 55).

This discussion shows that the proposed sequence representa-

tion is tightly correlated with structural patterns that occur in

TM helices, which provides further validation for the high qual-

ity of the obtained classifications. Finally, an example that illus-

trates how one of the selected AA pairs can be used to find

transmembrane segments is given in Figure 3. The LXXXL pair

occurs nine times in the chain A of 2AGV, which is a multipass

TM protein. Seven out the nine LXXXL pairs are buried in the

membrane and the other two pairs are located in the helical

regions near the membrane.

Conclusions

An accurate computational model, IMP-TYPE, is proposed for

the classification of the five types of IMP from protein sequen-

ces. When contrasted with the best-performing competing

method, IMP-TYPE obtains 4.8 and 0.6% higher accuracy,

which translates into 34 and 19% error reduction rate for the

out-of-sample tests on the training set 1 and test set 1, respec-

tively. Our empirical tests conducted with a large sets of mem-

brane proteins that is characterized by low sequence similarity

Table 6. Occurrences of the 20 AAs in the Selected AA Pairs.

Amino acid A C D E F G H I K L M N P Q R S T V W Y

Occurrence in the pairs 18 2 0 0 42 0 0 40 0 37 27 0 0 0 0 0 0 25 19 8

Figure 3. Ribbon structure of chain A of 2AGV. The transmem-

brane segments (shown in gray) were identified using TMDET.56

The LXXXL pairs (shown in black) is displayed using ball-and-stick

representation. Among the total of nine LXXXL pairs, seven are

located in the transmembrane segments and the other two pairs are

located in the helical regions close to the transmembrane region.
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(training set 2 and test set 2) shows that IMP-TYPE is character-

ized by even sore substantial improvements in accuracy when

the predicted sequences share low identity with the sequences

used for prediction, i.e., IMP-TYPE obtains 6.4 and 4.6% higher

accuracy, which translates into 29 and 45% error reduction rate,

when compared with the best performing competing method.

Our evaluation performed with a large set of recently resolved

IMP proteins also shows that the proposed method duplicates

correct predictions of competing methods while providing addi-

tional correct predictions, i.e., IMP-TYPE can be used stand-

alone, i.e., without the need to use results of other membrane

protein type prediction methods.

The proposed method not only provides accurate classifica-

tion, but most importantly is characterized by a transparent

model that shows interesting biological patterns. The AA pairs

selected to develop sequence representation used by IMP-TYPE

are consistent with the results of several studies concerning

membrane proteins,52–55 which in turn were based on a variety

of different datasets. Our results show that hydrophobic AA

pairs, which are used by IMP-TYPE, can be successfully used

as makers of IMP and that they, at the same time, can be

applied to distinguish between different types of IMP. We also

hypothesize that hydrophobic propensity of Met and Phe may be

more crucial than their polarity or aromaticity in IMP.
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