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Abstract: The ability to predict protein folding rates constitutes an important step in understanding the overall

folding mechanisms. Although many of the prediction methods are structure based, successful predictions can also

be obtained from the sequence. We developed a novel method called prediction of protein folding rates (PPFR), for

the prediction of protein folding rates from protein sequences. PPFR implements a linear regression model for each

of the mainstream folding dynamics including two-, multi-, and mixed-state proteins. The proposed method provides

predictions characterized by strong correlations with the experimental folding rates, which equal 0.87 for the two-

and multistate proteins and 0.82 for the mixed-state proteins, when evaluated with out-of-sample jackknife test.

Based on in-sample and out-of-sample tests, the PPFR’s predictions are shown to be better than most of other

sequence only and structure-based predictors and complementary to the predictions of the most recent sequence-

based QRSM method. We show that simultaneous incorporation of several characteristics, including the sequence,

physiochemical properties of residues, and predicted secondary structure provides improved quality. This hybridized

prediction model was analyzed to reveal the complementary factors that can be used in tandem to predict folding

rates. We show that bigger proteins require more time for folding, higher helical and coil content and the presence

of Phe, Asn, and Gln may accelerate the folding process, the inclusion of Ile, Val, Thr, and Ser may slow down the

folding process, and for the two-state proteins increased b-strand content may decelerate the folding process. Finally,

PPFR provides strong correlation when predicting sequences with low similarity.
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Introduction

Protein folding is the physical process by which a polypeptide

molecule, which at the basic level consists of a linear chain of

amino acids, folds into its natural, biologically active three-

dimensional conformation. The determination of kinetics of pro-

tein folding and the determination of the protein’s native state

are challenging problems in modern molecular biology. The

ability to understand and predict protein folding rates is an im-

portant and interesting step in understanding the overall folding

mechanisms. Traditionally, experimental techniques used to

determine folding kinetics include spectroscopic methods, mass

spectrometry, NMR, hydrogen exchange, and laser-induced tem-

perature jumps.1–6 Two different folding mechanisms are

defined: two-state and multistate kinetics. Two-state proteins

fold in an ‘‘all-or-none’’ process,7 while multistate proteins fold

with at least one intermediate state. Usually two-state kinetics

are characteristic of small proteins, while larger proteins undergo

a multistate folding in which intermediates accumulate during

the early stages and follow a stepwise assembly procedure.4,7,8

Some proteins switch their folding behavior between two state

and multistate by point mutation(s) brought about by changing

conditions such as the salt concentration or temperature,7,9

which blurs the division line.10

The experimental studies resulted in an accumulation of a

sufficient amount of data11 to build computational models. The

main advantage of computational (in-silico) models is that they

provide high-throughput analysis that can help in coping with

the large amount of unprocessed protein sequences, i.e., while

experimental studies of folding rates have been performed on

several dozens proteins, there are millions of proteins which
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await such analysis. Past years have seen several attempts to-

ward building computational models that revealed several factors

which are correlated with protein folding rates for two- and mul-

tistate proteins, and a mixture of the two categories. Initially,

three-dimensional information was examined and used to predict

the folding rates. Plaxco and colleagues in 1998 demonstrated

that the topological complexity of the native state, defined by a

parameter called relative contact order (CO), correlates well

with protein folding rates.12 Subsequently, based on the concept

of contact order, long-range order (LRO),13 total contact order,14

and absolute contact order (Abs_CO)10 were proposed. Other

topological properties were also used by various researchers.15–17

More recently, several attempts were made to predict folding

rates from partial structural information, such as the knowledge

of structural classes18,19 and the knowledge of secondary structure

assigned with DSSP.20 We note that the structure-based methods

use parameters and properties that can be computed for a rela-

tively small number of proteins (the current version of the Protein

Data Bank, which stores proteins with known structure, includes

about 50,000 structures), when compared with the much larger

number of known proteins (currently about 5.4 million proteins

are stored in the RefSeq database). More recently, a few

approaches have been developed that use only the amino acid

sequences to predict folding rates. Ivankov and Finkelstein

reported in 2004 that the effective chain length (Leff), which is

computed using predicted secondary structure, is characterized by

a significant correlation with the folding rate.21 Huang and Tian22

and Ma et al.23 proposed in 2006 that the combination of several

parameters, such as amino acid rigidity (R), secondary structure

parameter (D), composition vectors (CV), chain length (L), amino

acid weight (W), degeneracy (D), and composition index (CI) pro-

vide a model that allows the prediction of folding rates which are

well correlated with the actual folding rates. Most recently,

Huang and Gromiha developed an accurate sequence-based pre-

dictor that is based on 49 physicochemical, energetic, and confor-

mational properties of constituent amino acids.24

After a thorough analysis of the existing predictors, including

a recent comprehensive review concerning computational analy-

sis and prediction of folding rates,25 we found that no attempts

were made to combine the individual, prior results to build a

more accurate prediction model. To this end, we investigate

whether combining information coming from multiple sources,

such as the protein sequence, physicochemical properties of

amino acids, and predicted secondary structure, could provide

improved quality of the prediction and predictions that are com-

plementary to outputs of the existing, top-performing methods.

We implemented a new predictor, named PPFR (prediction of

protein folding rates), which incorporates prediction models for

three cases: two-, multi-, and mixed-state proteins (proteins for

which the folding dynamics are unknown and may include two

state and multistate). PPFR is based on a careful design that

includes three main steps: (1) collection and optimization of

both existing and innovative parameters (features) that correlate

with the folding rates; (2) selection of the most promising subset

of features from Step 1; and (3) design of a prediction method

that takes as an input the set of features from Step 2. The first

step is motivated by the fact that several of the recently pro-

posed methods explore different types of features that are corre-

lated with the folding rates and that can be derived from the

sequences,21–24 while no attempts were made to combine these

potentially complementary parameters. We also investigate new

features that are shown to provide promising results. The second

step aims at the selection of a small subset of features that ex-

hibit low correlation with each other (that are complementary to

each other) and which together can be used to build an accurate

model for prediction of folding rates. In the last step, we train a

prediction model using the selected features and a dataset of

proteins for which the folding rates were measured experimen-

tally. We also discuss and analyze our prediction model to

reveal which complementary factors govern the folding rates.

Materials and Methods

Primary sequences for a set of proteins with known experimental

folding rates are used as the dataset to design and test the pro-

posed prediction method. The sequences are first converted into a

set of features, which are used to generate the prediction models

after the feature selection process. Three linear regression models

for the two-, multi-, and mixed-state proteins were developed.

Datasets

A benchmark dataset that includes 62 proteins, called D62, with
known experimental folding rates that was introduced by Ivan-

kov and Finkelstein21 is used in this study. The dataset includes

37 two-state proteins and 25 multistate proteins. Two short artifi-

cial peptides are removed from the original dataset, as in the

recent study by Ma et al.23 Experimental folding rates are repre-

sented as the decimal logarithms of protein folding rates in

water in the absence of denaturant (log(kf)), which are negatively

correlated with the actual folding time. D62 dataset allows for a

direct comparison with six structure-based methods10,12–14,20,26

and two sequence-based methods21,23 that were tested with the

same dataset. This dataset includes several sequences with rela-

tively high similarity, i.e., 2, 10, and 21 sequences share identity

above 80, 50, and 35%, respectively.

In contrast to other contributions that usually test the devel-

oped predictor with one dataset, we developed a second dataset

that serves as an independent benchmark. This set was created

using a complete list of 77 proteins with known folding rates

that was published in.25 To create the second dataset, we

removed all chains that share at least 35% pairwise sequence

identity with the sequences in the D62 dataset. This allows us to

verify whether the proposed method can produce accurate results

when nonredundant proteins are used. We also removed one

sequence for which the K-fold method,26 which is included in

the above-mentioned study, generated an error and thus could

not produce predictions. As a result, the second nonredundant

dataset includes eight chains and is referred to as D8.

Experimental Setup

We applied three test types to evaluate the quality of the pro-

posed method and to compare it with competing methods: (1)

resubstitution (in-sample test) on D62 dataset, (2) jackknife (out-

of-sample test) on the D62 dataset, and (3) independent test
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(out-of-sample test) in which the prediction method is trained on

the D62 dataset and tested using the D8 dataset. The resubstitu-

tion test checks the quality of the generated model on the

(training) data used to establish the model. This test verifies

whether the model accurately describes the training dataset. At

the same time, it does not show how well the prediction model

can perform on data which are not included in the training set.

Although this test may overestimate the quality, it was exten-

sively used to evaluate prior prediction methods10,12–14,20,21,23,25

and thus is also included in this contribution. The jackknife test,

also called the leave-one-out test, is an n-fold crossvalidation,

where n is the total number of instances in the dataset. The test

is repeated n times, each time using one sequence to test the

prediction model, and the remaining n-1 sequences to establish

the model. This test assures that the results are not biased to-

ward the training datasets and that the estimated prediction per-

formance reflects future application of the prediction model. The

jackknife test was used to evaluate only some of the recent

methods.23,24 Although no prior attempts were made to evaluate

folding rate prediction methods using a set of nonredundant

sequences, we include the third test type due to some overlap

with respect to the sequence similarity within the D62 dataset.

Secondary Structure Prediction

Secondary structures predicted from the protein primary sequen-

ces are used to derive some of the features that are utilized by

the proposed method. Prior folding rate prediction methods used

the predicted secondary structure to derive the number of resi-

dues in a-helical conformation and the number of a-helices in

the sequence.21 In contrast to this approach, we use the predicted

structure to derive information about the three major secondary

structures that include a-helices, b-strands, and coils. We applied

two secondary structure predictors: (1) PROTEUS, which was

recently shown to provide superior prediction accuracies when

compared with nine other prediction methods27 and (2)

PSIPRED,28,29 which was extensively used in numerous protein

structure prediction methods.30–32

Features

The features used to encode protein sequences are divided into

four categories: composition-based features, property-based fea-

tures, predicted secondary structure-based features, and sequence

length-based features.

Composition-Based Features

We consider CVs composed of 20 features defined as:

CV X ¼ NX

L

where NX, X 5 1, 2, . . . , 20, is the count of the occurrences of

amino acid X in a given sequence (see Table 1 for one-letter

encoding), and L is the total number of residues in a sequence.

Three composite composition-based features and three cus-

tom-designed features proposed in23 are defined as follows:

C NQIVT ¼ ðNN þ NQ � NI � NV � NTÞ=L
C AG ¼ ðNA þ NGÞ=L

C NQTVC ¼ ðNN þ NQ � NT � NT � NV � NCÞ=L
CI NQIVT ¼ C NQIVTþ 0:23 W=ðL�DÞ

CI AG ¼ C AGþ 7:42 W=ðL�DÞ
CI NQTVC ¼ C NQTVCþ 0:46 W=ðL�DÞ

where W is the weight value and D is the degeneracy value;

both are described below. We note that the original formula for

C_NQTVC23 shows NI, while the erratum corrects it to NT.

Property-Based Features

Mean molecular weight and degeneracy (which is related to

translation speed in the ribosome) of a given protein as proposed

by Ma et al.23 are defined as follows:

D ¼
PL

i¼1

di

L
W ¼

PL

j¼1

wi

L

where wi is the weight and di is the degeneracy value of the ith
residue, see Table 1.

Flexibility (which is related to temperature factors, i.e., B-

factors, of the Ca atoms) and three normalized frequencies of

occurrence of the residues in a-helix, b-sheet, and reverse turn

Table 1. Weight (w), Degeneracy (d), Flexibility (f), pa, pb, and pturn Values.

AA w d f pa pb pturn AA w d f pa pb pturn

A (Ala) 89.0935 4 0.95 1.25 0.89 0.78 M (Met) 149.2124 1 0.86 1.43 0.99 0.39

C (Cys) 121.1590 2 0.88 1.12 0.85 0.80 N (Asn) 132.1184 2 1.01 0.87 0.86 1.28

D (Asp) 133.1032 2 1.09 1.03 0.74 1.41 P (Pro) 115.1310 4 1.08 0.60 0.71 1.91

E (Glu) 147.1299 2 1.04 1.45 0.65 1.00 Q (Gln) 146.1451 2 1.03 1.24 0.82 0.97

F (Phe) 165.1900 2 0.91 1.08 1.22 0.58 R (Arg) 174.2017 6 1.03 0.99 1.02 0.88

G (Gly) 75.0669 4 1.04 0.57 0.93 1.64 S (Ser) 105.0930 6 1.05 0.82 0.96 1.33

H (His) 155.1552 2 0.95 1.25 1.04 0.69 T (Thr) 119.1197 4 1.05 0.81 1.13 1.03

I (Ile) 131.1736 3 0.89 0.94 1.41 0.51 V (Val) 117.1469 4 0.93 0.88 1.48 0.47

K (Lys) 146.1882 2 1.08 1.24 0.81 0.96 W (Trp) 204.2262 1 0.92 1.03 1.15 0.75

L (Leu) 131.1736 6 0.96 1.32 1.03 0.59 Y (Tyr) 181.1894 2 0.93 0.75 1.25 1.05
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(which are suggested to act as a nucleation center during protein

folding) secondary structure conformations from22 are defined

as:

F ¼
PL

i¼1

fi

L
Pa ¼

PL

i¼1

pai

L
Pb ¼

PL

i¼1

pbi

L
Pturn ¼

PL

i¼1

pturni

L

where fi, pai, pbi, pturni are the property values of the ith residue,

see Table 1.

A set of 49 normalized amino acid properties proposed by

Gromiha et al.18,19 were also used in this study. The average

amino acid property for each protein, Pg was computed as

Pg ¼
PL

i¼1

pig

L

where pig is the property value of the ith residue and g 5 1,

2, . . . , 49 is the index of a given property.

Predicted Secondary Structure-Based Features

The three-state secondary structure predictions computed using

PSIPRED and PROTEUS prediction servers were used to gener-

ate a set of features for each sequence. The motivation to

compute these features comes from the work of Ivankov and

Finkelstein,21 who have shown that size (length) and number of

secondary structure segments (in their case a-helix segments

only) provides useful information that helps in the prediction of

folding rates. On the basis of this observation, we designed a

wide range of features that are based on all three secondary

structures:

1. Composition vector, CV_y for y 5 {h, e, c} and where h
denotes a-helix, e denotes b-strand, and c denotes coil. CV_h
and CV_e are equivalent to the secondary structure content.

2. Composition moment vector

CMVk y ¼
PL

i¼1

nkyi

Qk

d¼1

ðL� dÞ

where y 5 {h,e,c}, nyj represents the jth position of the yth
secondary structure, and k 5 1, 2, . . . , 5 is the order of the

CMV. For k 5 0 CMVk_y reduces to CV_y.
3. Normalized count of segments that include at least k residues

NCountLk y ¼

P20

j¼k

countiy

P
totalw

w¼fh;e;cg if y¼c
w¼fh;eg if y¼fh;eg

where y 5 {h,e,c}, k 5 2, 3, . . . , 20 for b-strand and coil

segments and k 5 2, 3, . . . , 20 for a-helix segments, countjy

denotes the number of a-helix, b-strand, and coil segments of

length j, respectively, and totalw denotes total number of all

segments belonging to the wth secondary structures. The

smallest a-helix segment is assumed to include at least three

residues. The count of coil segments is normalized by the

total number of all segments, while the counts of b-strand
and a-helix segments are normalized by the total number of

b-strand and a-helix segments. Different normalizations

accommodate for the all-a and all-b structural classes that

may not include any b-strand and a-helix segments, respec-

tively.

4. Length of the longest segment MaxSeg_y for y 5 {h,e,c}

5. Normalized length of the longest segment

NLongestSegment y ¼ MaxSegment y=L for y ¼ fh; e; cg

6. Average length of the segment AvgSegment_y for y 5
{h,e,c}

7. Normalized average length of the segment

NAvgSegment y ¼ AvgSegment y=L for y ¼ fh; e; cg

Length-Based Features

Length (L) is defined as the number of residues in a protein

sequence chain.

The effective length and derived features from Ivankov and

Finkelstein21 are calculated as follows:

Leff pm ¼ L� LH þ l1 3 NH

Leff pm P ¼ ðLeffÞP

where pm 5 {proteus, psipred} defines the prediction method
(pm) used to derive the secondary structure, LH is the predicted

number of residues in helical conformation, NH is the predicted

number of helical segments, l1 is a constant, and p is an optimal

exponent value. As suggested in ref. 21, l1 5 3 and p 5 0.1

were used.

Since Ivankov and Finkelstein have optimized the exponent

value assuming only integer values, we experimented with float-

ing point exponents and different predicted secondary structures.

We applied a two-step procedure to find a suitable exponent and

secondary structure prediction method:

1. The value of Leff_pm_P was computed for all considered

p values and both the PROTEUS and PSIPRED predicted

secondary structures, the resulting features were merged, and

a feature selection was performed.

2. The selected features were used, one at the time, to develop

linear regression models to predict the folding rate, and the

feature (and its corresponding p value and secondary struc-

ture prediction methods) that gave the highest correlation

between the experimental (actual) and the predicted folding

rate was retained.
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To avoid overfitting, both steps were performed using jack-

knife tests on the D62 dataset. The feature selection in step 1

was performed using the correlation-based feature subset selec-

tion (CFSS) method described in the Feature Selection section.

The regression model from step 2 is explained in the Prediction

Model section. We assumed p values ranging between 0.0001

and 0.2 (values below 0.0001 and above 0.2 were rejected by

the feature selection in step 1) and assumed that step 2 received

only those features that were selected by CFSS in at least 10

cross validation folds. Table 2 lists the Leff_pm_P features that

were selected by CFSS. It shows the p value and prediction

method for the selected features, together with the number of

cross validation folds in which the feature was selected and the

corresponding correlation coefficient when this feature was used

to predict the folding rate.

The two configurations that have correlations above 0.75 cor-

respond to p 5 0.0011, for both the PROTEUS and PSIPRED

predicted secondary structures. Thus, these two corresponding

features were selected.

We also used the effective length formula by considering b-
strand segments:

Leff pm E ¼ L� LH þ l1 3 NH � LE þ l2 3 NE

for pm ¼ fproteus; psipredg

where LH, l1, NH are as described earlier, LE is the number of

residues in b-strand conformation, NH is the number of b-
strands, and l2 is a constant. The value of l2 5 15 was selected

following the same procedure as for the selection of p.

Prediction Model

The folding rate prediction was performed using a linear regres-

sion predictor

folding rates ¼
Xks

j¼1

wsjxsj þ ws0

where s 5 {two state, multistate, mixed-state} corresponds to

the folding dynamics type, xsj corresponds to the jth feature for

the sth folding dynamics type, Ks is the number of features

for the sth folding dynamics type, and wsj is the jth feature’s

regression coefficient for the sth folding dynamics type.

The values of the regression coefficients were estimated from

the data using Weka, which is a comprehensive open-source

library of machine learning methods.33 Linear regression was

also used to develop two other recent folding rate prediction

methods.22,23

Feature Selection

As this study combines features developed in several existing

prediction methods with a set of newly proposed features (in

total 270 features), a feature selection was performed to reduce

the dimensionality. The feature selection process was divided

into two steps.

1. Removal of weak features.

2. Removal of correlated features among the features selected in

step 1.

In step 1 we applied the CFSS method,34 which was also

successfully applied to develop a recent logistic linear regression

based method for structural class prediction.35 CFSS evaluates a

given subset of features (determined using a best-first search

based on hill-climbing with backtracking) by considering the

individual predictive ability of each feature along with the

degree of redundancy between them. The feature selection was

performed using jackknife tests and only the features that are

selected in at least one cross validation fold are passed to step 2,

while the remaining features are removed. The cross validation

performed to select features should assure that the selected fea-

tures do not overfit the dataset.

Step 2 is performed by removing individual features among

the feature subset that was produced in step 1. Initially, the full

set of features selected in step 1 was used to develop a linear

regression model using jackknife tests and the corresponding

correlation between the predicted and the actual folding rates

was computed. Next, a given feature was removed only if the

removal did not decrease the correlation coefficient of the jack-

knife-based prediction using the reduced set of features. After

the feature was removed, the process was repeated again until

no feature could be removed. This allows obtaining a small

set of complementary features that in tandem provide accurate

predictions.

The above feature selection was performed separately for

each of the three datasets, i.e., two-, multi-, and the mixed

states. As a result, the initial set of 270 features was reduced in

Step 1 to 39, 144, and 22 features, respectively, for the

two-, multi-, and the mixed-state datasets. After step 2, the cor-

responding number of retained features was 10, 10, and 8,

respectively.

The selected features, which are divided into four categories

for each dataset, are shown in Table 3. The majority of the

selected features were from among those proposed in this paper.

The features proposed in the past works are denoted in Table 3,

and account for 30, 20, and 37% of the features used for the

two-, multi- and the mixed-state proteins, respectively. We

observe that the selected number of features is comparable with

the number features included in several competing sequence-

based methods. More specifically, the most recent method

Table 2. Results of Finding Floating Point p Value and Secondary-

Structure Prediction Method for Leff_pm_P Feature.

Leff_pm_P feature Number of cross

validation folds

in which the feature

was selected by CFSS

Correlation

coefficientp

Secondary-structure

prediction method

0.0001 PROTEUS 53 0.668

0.0002 PSIPRED 57 0.725

0.0011 PROTEUS 58 0.750

0.0011 PSIPRED 61 0.752

0.0010 PSIPRED 62 0.747

0.0020 PROTEUS 14 0.741
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QRSM method includes 49 features to predict mixed-mode pro-

teins,24 while the regression-based method by Ma et al. uses

eight features for the two-state model, five features for the mul-

tistate model, and eight features in the case of the mixed-state

model.23 The largest portion of the selected features was com-

puted based on statistics drawn from the predicted secondary

structure. The features derived from sequence length augmented

with information from the predicted secondary structure were

also found useful for predictions of all three folding types. The

sequence composition features are selected only for the two- or

mixed-state type proteins, while only one physicochemical prop-

erty-based feature is used for the two-state proteins. Our results

with respect to using effective length formulae that consider b-
strand segments are consistent with Ivankov and Finkelstein

et al.21 The corresponding features were not selected for predic-

tion of mixed-state proteins, which shows that they would not

help in improving these predictions. Similarly as in ref. 21, we

hypothesize that the reason could be that b-strand and a-helix
contents are strongly negatively correlated.

Table 3 also includes the correlation coefficients between the

selected features and the folding rates in the D62 dataset. This

allows establishing relative importance of features, although we

note that features with lower correlation should not be consid-

ered less useful since they are complementary to features with

higher correlation. We observe that length and effective lengths

features are characterized by strong correlation of above 0.7.

These are followed by features based on the predicted secondary

structure and sequence composition for which correlation values

above 0.5 are obtained.

Results and Discussion

The proposed PPFR method is based on three linear regression

models where each model corresponds to different folding

kinetics. In case the user is uncertain about which model should

be used, i.e., the predicted sequence could be either two state or

multistate, (s)he should use the model for mixed-state proteins.

Prediction Results

Using the jackknife test on the D62 dataset, Table 4 compares

predictions obtained with linear regression models computed for

Table 3. Selected Features for the Three Types of Folding Kinetics Including Their Correlation

with the Folding Rates.

Folding kinetics Feature name Category Correlation

Two state Leff_proteus_0011 Length 20.74

C_NQIVTa Composition 0.68

proteus_CMV4_e Predicted secondary structure 20.63

proteus_CountL10_e Predicted secondary structure 20.53

proteus_NLongestSegment_c Predicted secondary structure 0.47

psipred_CountL10_e Predicted secondary structure 20.46

Pf_sa Property 0.32

proteus_CountL3_c Predicted secondary structure 0.30

psipred_CountL19_c Predicted secondary structure 20.2

CV_Sa Composition 20.06

Multistate La Length 20.80

Leff_proteusa Length 20.75

psipred_NAvgSegment_c Predicted secondary structure 0.58

psipred_LongestSegment_h Predicted secondary structure 20.30

proteus_NLongestSegment_e Predicted secondary structure 0.30

psipred_CountL6_c Predicted secondary structure 0.25

proteus_AvgSegment_e Predicted secondary structure 20.22

psipred_CountL20_c Predicted secondary structure 20.17

proteus_CountL20_c Predicted secondary structure 0.13

psipred_CountL3_c Predicted secondary structure 20.10

Mixed state Leff_proteus_0011 Length 20.77

Leff_psipred_0011 Length 20.77

CV_Qa Composition 0.37

proteus_CountL10_c Predicted secondary structure 0.33

proteus_CountL4_c Predicted secondary structure 0.27

CV_Na Composition 0.25

psipred_CountL11_e Predicted secondary structure 20.16

CV_Fa Composition 0.13

For each folding kinetics type, the features are ordered by decreasing absolute value of the corre-

lation with the folding rate on D62 dataset.
a Denotes features used in existing prediction methods.
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the original set of 270 features, for the features selected in Step

1 of the feature selection procedure, and for the final set of fea-

tures. The table shows correlation coefficients between the pre-

dicted and the actual (experimental) folding rates. We observe

that the feature selection helps to better tune the prediction mod-

els, i.e., the final feature sets are not only substantially smaller

than the original set, but most importantly they result in a better

quality of folding rate predictions. PPFR predictions for all three

types of folding kinetics are strongly correlated with the actual

folding rates. In the cases of the two- and multi-state types, the

correlation coefficient equals 0.87, while for the mixed-state pro-

teins it equals 0.82. We note that although the increase in num-

ber of features in some prediction methods leads to improved

accuracy/correlation, in our case additional features may result

in lowering the quality. We believe that this behavior is specific

to regression models that behave poorly when the input features

are characterized by strong correlation with each other. The

smaller feature sets behave in a more complementary fashion to

yield more accurate predictions.

Table 5 lists the predictions obtained with the mixed-state

model of the PPFR method for all three types of tests including

resubstitution and jackknife tests on the D62 dataset and the test

on the D8 dataset. The mean average error (MAE) for the resub-

stitution test on D62 equals 0.88 and for the jackknife it equals

0.93, while for the test on the independent dataset, the MAE is

1.18. The corresponding correlation coefficients equal 0.85, 0.82,

and 0.76 for the resubstitution, jackknife and independent tests,

respectively. The strong correlations obtained for all the three

tests indicate that PPFR obtains comparable results with out-of-

sample and in-sample tests, which in turns supports a claim that

our design does not result in overfitting the D62 dataset.

Factors Governing the Folding Rates

The linear regression models for the two-, multi-, and mixed-

state proteins, which were computed using the D62 dataset, are

shown in Table 6. The individual models show regression coeffi-

cients for each of the input features. The sign of the coefficient

indicates whether a given feature is positively or negatively cor-

related with the experimental folding rate. We observe that our

model not only indicates which features (factors) are related to

the folding rate, but most importantly it indicates which of these

factors are complementary with each other, i.e., which could be

used in tandem to improve predictions. We concentrate our dis-

cussion upon those features that have a correlation coefficient with

the folding rates of at least 0.5 in absolute value (see Table 3).

Considering that the experimental folding rates are negatively

correlated with the folding time we observe that sequence length

(L feature) and effective sequence length (Leff_proteus_0011,

Leff_psipred_0011, and Leff_proteus features), which considers

predicted a-helix segments, are positively correlated with the

folding time. This agrees with results shown in ref. 21 and

shows that bigger proteins require more time for folding and

that high helical content may accelerate the folding process. The

main reasons for the latter relation is that some preformed

helices may already exist in the unfolded state of the chain

and/or because the helices are rapidly formed in the course of

folding.21

Feature C_NQIVT in the two-state model (see the definition

in the Features section) shows that increased amounts of Asn

(N) and Gln (Q) are negatively correlated with the folding time

and it also shows that a positive correlation between the folding

time and the content is observed for Ile (I), Val (V), and Thr

(T). These relations are consistent with the results of Ma et al.23

This is also supported by inclusion of the sequence composition-

based features of Phe (F), Asn (N), and Gln (Q) amino acids in

the mixed-state model that are characterized by a negative corre-

lation with the folding time (positive regression weights and

positive correlation shown in Table 3) and for Ser (S) in the

two-state model that is positively correlated with the folding

time. The amide amino acids Asn and Gln could be implicated

in accelerating the folding process in two-state proteins because

of more probable hydrogen exchanges with the solvent that sta-

bilizes the transition state structure and lowers the energy barrier

in the folding path.36–38 At the same time, Ile, Thr, and Val are

characterized by branched side chains, which may result in

slowing down the folding process by enlarging the number of

potential conformations.17,39,40 Similarly as in ref. 23 we note

that hydrophobicity, which is one of the potential factors that

affects folding time due to stabilizing effects of hydrophobic

regions,41,42 was not confirmed by our results. For instance,

hydrophobic amino acids Ile, Val, and Ser are positively corre-

lated, while Phe which is another hydrophobic amino acid is

negatively correlated with the folding time. Also, among the

three hydrophilic amino acids, Asn and Gln are negatively corre-

lated while Thr is positively correlated.

The features based on the predicted secondary structure show

that for the two-state proteins the increased count of b-strand
segments (proteus_CountL10_e) and positional composition

(proteus_CMV4_e) are positively correlated with the folding

time (negatively correlated with the folding rate), which could

mean that formation of b-sheets slows down the folding process.

Finally, we observe that increased coil content (psipred_NAvg-

Segment_c, proteus_NLongestSegment_c, proteus_CountL10_c,

and proteus_CountL3_c features) is negatively correlated with

folding time (positively correlated with the folding rate) indicat-

ing that formation of coils may accelerate the folding process.

The other selected coil-based features (i.e., psipred_CountL3_c,

proteus_CountL4_c, psipred_CountL6_c, psipred_CountL19_c,

Table 4. Comparison of Correlation Coefficients Between the PPFR

Predicted and the Experimental Folding Rates on D62 Dataset Using the

Jackknife Test for All Features, and Features Selected in Step 1 and

Step 2 of the Feature Selection.

Features used to

represent sequences

Correlation coefficient

Two state Multistate Mixed state

All features 0.72 0.44 0.69

Features after step 1 of

the feature selection

0.81 0.41 0.78

Features after step 2 of

the feature selection

(final feature sets)

0.87 0.87 0.82
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Table 5. Test Results Obtained with the PPFR Method on the D62 Dataset Based on

Resubstitution and Jackknife Tests and Based on the Nonredundant D8 Dataset When

Using D62 for Training.

Dataset PDBid

Folding-kinetics

type

Experimental

folding

rate log10 (kf)

Predicted log10 (kf)

Resubstitution Jackknife

D62 1PIN two state 4.1 2.836 2.753

2PDD two state 4.3 2.756 2.652

2ABD two state 2.9 2.472 2.458

256B two state 5.3 2.969 2.854

1IMQ two state 3.2 2.581 2.557

1LMB two state 3.7 2.498 2.449

1FNF(90) two state 20.4 1.428 1.519

1WIT two state 0.2 1.059 1.091

1TEN two state 0.5 1.257 1.290

1SHG two state 0.6 1.617 1.650

1SRL two state 1.7 1.824 1.826

1PNJ two state 20.5 1.253 1.307

1SHF two state 2 1.671 1.662

1PSF two state 1.4 2.149 2.213

1CSP two state 2.9 2.498 2.478

1C9O two state 3.1 2.564 2.533

1G6P two state 2.7 1.844 1.780

1MJC two state 2.3 2.052 2.043

1LOP two state 2.9 1.259 1.137

1C8C two state 3 2.140 2.089

1HZ6 two state 1.8 1.629 1.499

1PGB(57) two state 2.6 1.968 1.942

1FKB two state 0.7 1.030 1.037

2CI2 two state 1.7 1.807 1.809

1AYE two state 3 2.151 2.119

1URN two state 2.5 1.823 1.798

1APS two state 20.7 1.226 1.337

1RIS two state 2.6 1.710 1.675

1POH two state 1.2 1.849 1.877

1DIV two state 2.6 2.730 2.736

2VIK two state 3 1.477 1.422

1L2Y two state 5.4 4.374 4.407

1VII two state 5 3.660 3.456

1BDD two state 5.1 3.839 3.688

1ENH two state 4.6 3.385 3.317

2ACY two state 0.4 1.505 1.625

1L8W two state 0.7 0.745 0.734

1A6N multistate 0.5 1.924 1.995

1CEI multistate 2.5 2.470 2.471

2CRO multistate 1.6 2.256 2.308

2A5E multistate 1.5 1.251 1.258

1TIT multistate 1.6 1.400 1.396

1HNG multistate 0.8 1.158 1.179

1FNF(94) multistate 2.4 1.304 1.241

1IFC multistate 1.5 0.864 0.817

1EAL multistate 0.6 0.915 0.926

1OPA multistate 0.6 1.426 1.460

1CBI multistate 21.4 0.784 0.865

1QOP(268) multistate 21.1 0.543 0.608

1AON multistate 0.3 0.706 0.722

1BRS multistate 1.5 2.012 2.029

3CHY multistate 0.4 1.269 1.303

2RN2 multistate 0 1.061 1.109

1RA9 multistate 2 0.691 0.644

(Continued)
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psipred_CountL20_c, proteus_CountL20_c, and psipred_

CountL3_c) are characterized by low, i.e. \ 0.3, correlation

coefficient values, see Table 3.

Comparison with Competing Prediction Methods

The prediction quality of the proposed PPFR method, which is

measured based on the correlation coefficient between the pre-

dicted and the experimental (actual) folding rates using the

resubstitution and jackknife tests on the D62 dataset, is com-

pared with six structure-based methods, including CO,12

Abs_CO,10 LRO,13 TCD,14 SSC,20 K-Fold,26 and two sequence-

based methods Leff21 and CI23; see Tables 7 and 8. Table 8 also

includes results of the recently proposed QRSM method24 which

was designed and tested using a larger set of 77 proteins. It

includes all chains from the D62 dataset and 15 other sequences,

which is why resubstitution results on this dataset cannot be

compared against results reported in Table 7.

For all three folding kinetics and both the resubstitution and

the jackknife tests, PPFR shows improvements when compared

with most of the existing methods including structure- and

sequence-based methods. When the resubstitution test is applied

to the two-, multi-, and mixed-state proteins, PPFR achieves cor-

relation coefficients of 0.92, 0.92, and 0.85, respectively, which

are 0.13, 0.15, and 0.12 higher than the correlation coefficients

obtained by any of the competing methods. Using the jackknife

test, our method obtains correlation coefficients of 0.87, 0.87,

and 0.82, which are 0.14, 0.17, and 0.09 higher than the result

of the recently proposed sequence-based CI method for the two-,

multi- and mixed-state proteins, respectively. Similar improve-

ments are observed when comparing our results with a recently

proposed structure-based K-Fold method that predicts folding

rates for mixed-state proteins.

We observe that PPFR results fall somewhat short of the

results obtained with the recently proposed QRSM method.24

We note that the jackknife results for QRSM method were com-

puted with a dataset of 77 sequences that contains 10 sequences

Table 5. (Continued)

Dataset PDBid

Folding-kinetics

type

Experimental

folding

rate log10 (kf)

Predicted log10 (kf)

Resubstitution Jackknife

1QOP(396) multistate 23 0.109 0.287

1PHP(175) multistate 1 0.722 0.708

1PHP(219) multistate 21.5 0.536 0.627

1BNI multistate 1.1 1.551 1.562

2LZM multistate 1.8 1.501 1.492

1UBQ multistate 2.6 1.833 1.805

1SCE multistate 1.8 1.544 1.533

1GXT multistate 1.9 1.634 1.593

Predicted log10 (kf)

nonredundant dataset

D8 1HRC two state 3.8 2.085

1YCC two state 4.18 2.089

1NYF two state 1.97 1.985

1PKS two state 20.46 1.415

2AIT two state 1.8 1.336

2HQI two state 0.08 1.732

1PBA two state 3 2.243

1HX5 multistate 0.32 1.210

Table 6. Prediction Models for Two-, Multi-, and Mixed-State Proteins.

Two-state proteins

folding_ratetwo state 5 – 8.2790*CV_S 1 3.7617*C_NQIVT 1 7.0623*Pf_s –572.4288*Leff_proteus_0011 – 5.3806*proteus_CMV4_e 1
2.0119*proteus_CountL3_c –2.1168*proteus_CountL10_e 1 1.9751*proteus_NLongestSegment_c – 11.0500*psipred_CountL19_c –

2.6765*psipred_CountL10_e 1 576.2708

Multistate proteins

folding_ratemultistate 5 – 0.0032 * L – 0.0083*Leff_proteus 1 4.8614*proteus_CountL20_c 1 11.6171*proteus_NLongestSegment_e –

0.1965*proteus_AvgSegment_e – 5.1997*psipred_CountL3_c 1 2.3357*psipred_CountL6_c – 13.2128*psipred_CountL20_c –

0.0217*psipred_LongestSegment_h 1 14.9313*psipred_NAvgSegment_c 1 3.8541

Mixed-state proteins

folding_ratemixed state 5 3.2268*CV_F 1 4.8074*CV_N 1 6.5496*CV_Q – 551.0237*Leff_proteus_0011 1 1.1418*proteus_CountL4_c 1
1.9093*proteus_CountL10_c – 561.0221*Leff_psipred_0011 – 2.0846*psipred_CountL11_e 1 1117.9965
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with 100% pairwise similarity with respect to the other sequen-

ces in the dataset, 19 with above 80% identity, 28 with above

50% identity, and 33 with above 35% identity. In contrast, the

D62 dataset is more difficult as it includes only two sequences

that share identity of above 80%, 10 with above 50% identity,

and 21 with above 35% identity. Most importantly, we observe

that the prediction of PPFR and QRSM are complementary. We

extracted ten chains for which PPFR obtains the biggest MAE

(1QOP(396), 256B, 1CBI, 1PHP(219), 1YCC, 1APS, 1FNF(90),

1PKS, 1PNJ, and 1LOP). The MEA of our method for these

chains equals 2.1 while the MAE of QRSM for these chains

equals 0.7. At the same time, for the ten chains for which the

QRSM method obtains the largest MAE (1L8W, 1PKS, 1PSF,

1PIN, 1HX5, 1VII, 1ENH, 2HQI, 1BRS, and 1DIV), the MAE

of PPFR and QRSM equal 1.0 and 1.8, respectively. The only

chain that appears in both groups of high MAEs is 1PKS, for

which our method obtained a slightly lower 1.9 MAE when

compared with a 2.0 MAE obtained by QRSM. The reason for

this complementarity comes (1) from different inputs used by

each of the methods, i.e., PPFR uses effective sequence length,

predicted secondary structure, and sequence composition while

QRSM is based on indices that describe physicochemical, ener-

getic, and conformational properties of the constituent amino

acids and (2) from the different prediction models used, i.e.,

PPFR applies linear regression while QRSM implements a quad-

ratic response surface model. We also note that QRSM introdu-

ces mixed-state models that are designed for specific structural

classes (all-a, all-b, and mixed), and these models are shown to

be characterized by very high correlation with the folding rates

(although usage of these models requires a priori knowledge of

a structural class for a given input sequence). At the same time,

PPFR includes models for two- and multistate proteins while

QRSM predictions are based only on the mixed-state model.

Table 9 shows the results obtained on the D8 dataset. We

compare the results obtained by PPFR with the results obtained

by K-Fold26 and QRSM.24 We note that the results of PPFR and

K-Fold are consistent, i.e., both methods were training with the

D62 dataset and tested on the D8 dataset, while the results for

QRSM are based on the jackknife predictions for the chains

from the D8 dataset, i.e., QRSM was developed with dataset of

77 chains that already incorporates the chains from D8 dataset.

The table shows that PPFR is capable of producing folding rates

that are strongly correlated with the actual rates for proteins

with low identity. This is in contrast to the K-Fold method that

obtained a correlation of 0.14, which could be explained by the

simplicity of this method that uses only one input feature. We

also note that the results of QRSM also suggest that this method

can provide high quality predictions for nonredundant sequences,

although in this case the results are based on a larger dataset

that includes a large fraction of similar sequences. Because of

the limited size of the D8 dataset (we note that no additional

sequences could be added to this dataset since D8 and D62 to-

gether represent all sequences with known folding rates), we

also analyzed jackknife results on the D62 dataset when limiting

them to those sequences that share a given maximal pairwise

identity with other sequences in this dataset. The corresponding

correlation coefficients equal 0.82, 0.82, 0.74, and 0.75 when

using all sequence and sequences with at most 50, 35, and 30%

identity, respectively. These results are consistent with the

results obtained on the D8 dataset, confirming that the proposed

Table 7. Comparison of Correlation Coefficients Between the Predicted Folding Rates (Using the

Resubstitution Test) and the Actual Folding Rates for Different Prediction Methods for the Two-, Multi- and

Mixed-State Proteins.

Folding kinetics COa Abs_COa LROa TCDa SSCa Leffa CIb PPFR

Two state 20.57 20.64 20.79 20.79 0.64 20.61 0.73 0.92

Multistate 0.43 20.44 20.34 0.23 20.01 20.77 0.70 0.92

Mixed state 0.12 20.57 20.61 20.19 0.42 20.73 0.72 0.85

All methods were tested on the D62 dataset.
a Denotes results from ref. 23.
b Denotes results from ref. 23 that were corrected based on personal communication with the authors.

Table 8. Comparison of Correlation Coefficients Between the Predicted

Folding Rates (Using the Jackknife Test) and the Actual Folding Rates

for Different Prediction Methods for the Two-, Multi- and Mixed-State

Proteins.

Folding kinetics CIa K-Foldb QRSMc PPFR

Two state 0.73 N/A N/A 0.87

Multistate 0.70 N/A N/A 0.87

Mixed state 0.73 0.74 0.89 0.82

a Denotes results from ref. 23.
b Denotes results from ref. 26 where 5-fold cross validation was per-

formed and only the mixed-state model was developed.
c Denotes results from ref. 24 where a different set of 77 proteins was

used and only the mixed-state model was developed.

Table 9. Comparison of Correlation Coefficients Between the Predicted

Folding Rates and the Actual Folding Rates for Different Prediction

Methods Using a Mixed-State Model and the D62 Dataset to Train the

Model and Nonredundant D8 Dataset for Testing.

Folding kinetics K-Fold QRSMa PPFR

Mixed state 0.14 0.81 0.76

a Denotes jackknife test results from ref. 24 where chains from the D8

dataset were included in the set of 77 proteins used in the jackknife test.

781PPFR from Protein Sequences Using Hybrid Sequence Representation

Journal of Computational Chemistry DOI 10.1002/jcc



method is capable of providing high quality predictions for non-

redundant chains.

The results obtained with PPFR are shown to be consistent

over the three types of tests, i.e., the model is not only capable

of capturing the relation between the input features and the fold-

ing rate (which is shown by the resubstitution test) but most

importantly it can be also used to perform successful predictions

for unseen proteins (which is shown by the jackknife test) and

for unseen proteins that share low similarity with proteins used

to develop the model (which is shown by the test on the D8

dataset). We emphasize that PPFR does not utilize actual (exper-

imentally determined) secondary structural information to per-

form the predictions. Similarly as in case of the QRSM method,

this allows PPFR to be used in wide-spread applications where

only the amino acid sequence is known.

Limitations

Although the proposed method provides high-prediction quality,

it does not take into account two important factors, namely,

mutations and solvents, which also affect the folding rates.

PPFR incorporates features that are computed based on the

sequence and the predicted secondary structure, which do not

take into account the position of the residues. We note that

some mutations would not affect the secondary structure. Since

position specific mutation(s), and especially mutations that do

not change the secondary structure, could not be properly identi-

fied by our features, our model is not capable of accurate predic-

tions for some proteins in which mutations could change the

folding rates by as much as two orders of magnitude.43 Our

method assumes prediction of in-water folding rates, which

means that it does not take into account a solvent-induced

change in protein stability, which can change the folding rate

manifolds.43,44 This results in a precision of 1/2 an order of

magnitude for our method. However, this is a relatively small

error in the context of the 10 orders of magnitude difference in

observed protein folding rates. We also note that the same draw-

backs are characteristic of all other sequence-based prediction

methods.21–24

Conclusions

The proposed PPFR method aims at providing accurate high-

throughput predictions of protein folding rates from protein

sequences. Our method addresses the absence of a methodology

that combines multiple factors that can be extracted from the

sequence and that could influence the folding rate. The main li-

mitation of the existing prediction methods is that they assume

independence of individual factors that can have an impact on

folding kinetics. For instance, the Leff method is based solely

on the effective length of the protein sequence,21 the CI method

is based on composition of the protein chain,23 and the QRSM

method is based on various properties of the constituent amino

acids.24 In contrast, PPFR assumes that folding kinetics depend

on a mutual combination of several factors which include chain

length and composition, secondary structure, and physicochemi-

cal properties of amino acids. Our design shows which of the

above factors are complementary with each other, and how to

combine them to improve the quality of the predictions. Addi-

tionally, this work reveals the importance of the relationships of

the strand content and segment count to the folding rates for

two-state proteins, and of the coil content to the folding rates.

We also optimize the effective length formula originally pro-

posed in21 and apply a new secondary structure prediction

method, i.e., PROTEUS, to derive the features. Finally, we

developed and successfully applied a new set of features, which

are based on counts and sizes of secondary structure segments

predicted with PSIPRED and PROTEUS.

PPFR incorporates three linear regression models, which are

developed for each of the mainstream folding dynamics: two-,

multi-, and mixed states. The models show several interesting

relations which could provide useful insights into the folding

mechanisms. Namely, it suggests that the following factors are

complementary to each other in the context of the prediction of

folding rates: (1) bigger proteins require more time for folding;

(2) high helical content and the presence of Phe, Asn, and Gln

may accelerate the folding process; (3) the presence of Ile, Val,

Thr, and Ser may slow down the folding process; (4) for the

two-state proteins increased b-strand content may slow down the

folding process; and (5) increased coil content may accelerate

the folding process. We note that the above factors in tandem

help to improve the prediction quality, i.e., when used separately

in21–24 they provide lower prediction quality when compared to

results obtained by hybridizing them in the proposed method.

The developed method provides predictions characterized by

strong correlations of over 0.8 with the actual folding rates.

Based on both in-sample and out-of-sample tests, the PPFR’s

predictions are shown to be better then the majority of compet-

ing sequence-only and structure-based predictors. We show that

PPFR is capable of accurate prediction for nonredundant sequen-

ces, i.e., sequences that share low similarity with the sequences

used to develop the prediction model. PPFR is also shown to be

complementary to the most recent sequence-based QRSM

method.24 While both PPFR and QRSM provide jackknife test

predictions with correlation coefficients above 0.8, the worst pre-

dicted chains for one of these methods are predicted with much

higher quality by the other method, and vice versa.
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