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Abstract: Knowledge of structural classes is useful in understanding of folding patterns in proteins. Although

existing structural class prediction methods applied virtually all state-of-the-art classifiers, many of them use a rela-

tively simple protein sequence representation that often includes amino acid (AA) composition. To this end, we pro-

pose a novel sequence representation that incorporates evolutionary information encoded using PSI-BLAST profile-

based collocation of AA pairs. We used six benchmark datasets and five representative classifiers to quantify and

compare the quality of the structural class prediction with the proposed representation. The best, classifier support

vector machine achieved 61–96% accuracy on the six datasets. These predictions were comprehensively compared

with a wide range of recently proposed methods for prediction of structural classes. Our comprehensive comparison

shows superiority of the proposed representation, which results in error rate reductions that range between 14% and

26% when compared with predictions of the best-performing, previously published classifiers on the considered data-

sets. The study also shows that, for the benchmark dataset that includes sequences characterized by low identity

(i.e., 25%, 30%, and 40%), the prediction accuracies are 20–35% lower than for the other three datasets that include

sequences with a higher degree of similarity. In conclusion, the proposed representation is shown to substantially

improve the accuracy of the structural class prediction. A web server that implements the presented prediction

method is freely available at http://biomine.ece.ualberta.ca/Structural_Class/SCEC.html.
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Introduction

Knowledge of protein structure plays a crucial role in protein

function analysis, simulation of interaction between proteins and

their ligands, rational drug discovery, and in many other applica-

tions. Numerous supplementary aspects of the protein structure,

which include secondary structure, solvent accessibility, contact

maps, fold, and structural class, are actively pursued in collabo-

ration between bioinformaticians, structural biologists, and com-

puter scientists. In this paper, we concentrate on the computa-

tional prediction of the structural classes.

The concept of protein structural class was proposed by Lev-

itt and Chothia in 1976.1 They inspected and classified 31 globu-

lar proteins into four structural classes: all-a, all-b, a/b, and

a 1 b. Nowadays, the most frequently used classifications of

protein structural classes can be found in the structural classifi-

cation of protein (SCOP) database.2 This database is organized

as a hierarchy of known protein and protein domain structures,

in which the first level is based on the structural class. Accord-

ing to SCOP, the all-a and all-b classes correspond to structures

that mainly consist of a-helices and b-strands, respectively. The
proteins in the a/b and a 1 b classes contain both a-helices and
b-strands; in the a/b class they are mainly interspersed, while in

the a 1 b class they are segregated; see Figure 1.
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Knowledge of structural classes provides useful input for

numerous applications that include prediction of protein unfold-

ing rates,3 prediction of DNA-binding sites,4 discrimination of

outer membrane proteins,5,6 prediction of folding rates,7 protein

fold prediction,8 secondary structure content prediction,9,10

reduction of the conformation search space,11 and for implemen-

tation of a heuristic approach to find tertiary structure.12 At the

same time, the structural class is known for relatively small

number of proteins. The recent release 1.71 of SCOP database

includes 75,930 protein domains, while release 22 of the NCBI’s

RefSeq database includes 3,438,099 known protein sequences.

The main reason for such a wide gap is unavailability of protein

structure, which is used to assign the corresponding structural

class, for the significant majority of known protein sequences.

Therefore, an accurate, automated method for classification of

sequences into the corresponding structural classes would pro-

vide needed help in the laborious task of populating the SCOP

database.

The last 20 years observed significant efforts in computa-

tional (automated) prediction of protein structural classes. Sev-

eral early attempts were made in mid-1980s.13,14 Composition

vectors, autocorrelation function based on nonbonded residue

energy, polypeptide composition, pseudo amino acid (AA) com-

position, and complexity measure factor were applied to repre-

sent protein sequence in later works.15–20 Different classification

algorithms, including the maximum component coefficient,21

least correlation angle,22 fuzzy clustering,23 neural network,24

Bayesian classification,25 rough sets,26 and component-coupled15

and support vector machine (SVM),27 have been already used to

implement the structural class prediction methods. Recent works

also explored application of complex classification models, such

as ensembles,28 bagging,29 and boosting.18,30 More details can

be found in a recent review by Chou.31

While many recent works concentrate on applications of vari-

ous, state-of-the-art classification algorithms, we concentrate on

development of a novel representation of protein sequences.

Although virtually all suitable classification algorithms have

been already tried, design of suitable sequence representations

received less attention. At the same time, researchers have

shown that better-designed sequence representations lead to

higher prediction accuracy,31–33 which motivates our work. To

this end, we propose a novel representation that is based on a

PSI-BLAST profile,34 which in turn incorporates evolutionary

information with respect to the predicted sequence. The PSI-

BLAST profile has been successfully applied in window-based

protein prediction tasks, which include secondary structure, sol-

vent accessibility, and transmembrane protein topology predic-

tions,35-37 while it was never applied to predict the structural

class. This paper proposes a novel method that transforms the

original profile, i.e., N 3 20 matrix, where N is the sequence

length into a fixed length feature-vector based on a recently pro-

posed collocation of AA pairs38,39 that is calculated directly

from the sequence. This proposed, novel representation is shown

to substantially improve the accuracy of the structural class

prediction.

Materials and Methods

Datasets

In contrast to majority of published methods that use one or two

test datasets, we selected five widely used benchmark datasets to

provide a comprehensive and unbiased comparison with previous

studies. Two datasets were originally generated by Zhou15 and

were used in several past studies.15,24,26,27,30 They include 277

and 498 protein domains, respectively. Another dataset, which

consists of 204 domains, was generated by Chou40 and further

studied in a few publications.18,20,23,40–45 The largest dataset,

which was generated and studied in refs. 25, 28, and 32,

includes 1189 domains. This dataset was generated from

PDB40D_1.37 database in SCOP, and the sequence identity

between any two sequences in this dataset is below 40%. The

fifth dataset, which was created by Wang and Yuan,25 consists

of 675 domains, where each of these domains belongs to a dif-

ferent SCOP family. The sequence identity between any pair of

sequences in this dataset is below 30%. Using current version of

SCOP, 654 domains were found and annotated among the origi-

nal 675 domains, and these domains constitute the fifth test set.

Additionally, we selected a subset of these 654 domains that is

Figure 1. Ribbon drawings of representative protein structures that belong to the four structural

classes: (a) all-a, (b) all-b, (c) a/b, (d) a 1 b. In (c) and (d), strands are colored in black.

1597Prediction of Protein Structural Class

Journal of Computational Chemistry DOI 10.1002/jcc



characterized by a lower maximal sequence identity that is set at

25% to create the sixth test set. We applied Smith–Waterman

algorithm46 to compute pairwise alignment for each pair of

sequences in the dataset, and removed sequences that share

more than 25% sequence identity. As a result, the final dataset in-

cludes 640 domains that share sequence identity below 25%. The

dataset is available at http://biomine.ece.ualberta.ca/Structural_

Class/SCEC.html. This set allows testing the quality of the pro-

posed sequence representation for sequences characterized by

very low similarity. All six datasets are balanced, i.e., each class

includes similar number of sequences, and the corresponding

class labels were extracted from SCOP.

Proposed Sequence Representation

The new representation, which combines PSI-BLAST profile

and the concept of frequency of collocation of AA pairs in the

sequence,38,39 was developed for the proposed prediction

method.

The original motivation to introduce the collocation of AA

pairs comes from an insufficient sequence representation that is

offered by the commonly used AA composition vector, which

merely counts the frequencies of individual AAs in the

sequence. At the same time, frequencies of AA pairs (dipep-

tides) provide more information, since they may reflect local

(with respect to the sequence) interaction between AA pairs.

Based on this argument, we should count all dipeptides in the

sequence. Since there are 400 possible AA pairs (AA, AC,

AD, . . . , YY), a feature vector of that size is used to represent

occurrence of these pairs in the sequence. At the same time,

prior results show that short-range interactions between AAs,

rather than interactions only between immediately adjacent AAs,

have an impact of folding.47 As a result, the proposed represen-

tation also considers collocated pairs of AAs, i.e. pairs that are

separated by p other AAs. These pairs can be understood as the

dipeptides with gaps. Collocated pairs for p 5 0, 1, . . . , 4 are

considered, where for p 5 0 the pairs reduce to the dipeptides.

There are 400 feature values for each value of p.
On the other hand, numerous successful applications of PSI-

BLAST profile illustrate that the evolutionary information is

more informative than the sequence itself.35–37 PSI-BLAST

aligns a given query sequence to a database of sequences, and

searches for these that are similar to the query sequence. Using

multiple alignment, PSI-BLAST generates the frequency of each

AA at each position in the query sequence. The PSI-BLAST

profile generates 20-dimensional vector of AA frequencies for

each position in the query sequence, which can be used to iden-

tify the key positions of conserved AAs and the residues that

undergo mutations.

Our approach combines the frequency of collocation of AA

pairs and the PSI-BLAST profile into so-called PSI-BLAST pro-

file-based collocation of AA pairs. The PSI-BLAST profile is

the N 3 20 matrix, which is denoted as [ai,j], where i 5 1,

2, . . . , N denotes the position in the query sequence and j 5 1,

2, . . . , 20 denotes a given AA. After applying the substitution

matrix and log function, aij values range between 29 and 11.

The proposed representation is related to calculation of the fre-

quency of AA pairs based on binary coding. The binary coding

uses a 20-dimensional vector to encode each AA. The 20 AAs

can be represented as AA1, AA2, . . . , AA19, and AA20. In bi-

nary coding, AAi is encoded as (0, 0, . . . , 0, 1, 0, . . . , 0, 0),
where only the ith value is greater than 0. The binary coding

matrix is denoted as [bi,j]. The binary encoding and PSI-BLAST

profile matrices have the same dimensionality (N 3 20).

The frequency of AA pairs can be computed from the binary

coding matrix. For a given protein sequence A1A2 . . . AN.
AiAi11 is a AAmAAn dipeptide

() Ai 5 AAm and Ai11 5 AAn

() bi,m 5 1, bi11,n 5 1, bi,p 5 0, bi11,q 5 0, where p =
m and q = n

Given that cs,t 5 min(bi,s, bi11,t), then

cs;t ¼ 1 ðifs ¼ m; t ¼ nÞ
0 ðelseÞ

�

which means that AAmAAn was counted once while other dipep-

tides were counted 0 times. Matrix [cs,t ] stores the frequencies

of all dipeptides. The count of the AA pairs along the entire

sequence can be computed as

cs;t ¼
XN�1

i¼1

minðbi;s; biþ1;tÞ

The PSI-BLAST profile-based collocation of AA pairs is cal-

culated in a similar way. The only difference is that the binary

coding matrix [bi,j] is replaced by the PSI-BLAST profile [ai,j].
The frequency of dipeptide AAsAAt is computed as

cs;t ¼
PN�1

i¼1 minðai;s; aiþ1;tÞ and matrix [cs,t] stores the frequen-

cies of all dipeptides.

Since the PSI-BLAST profile values can be negative while

the frequencies of AA pairs should not be negative, the use of

min(ai,s, ai11,t) function to represent the frequency of AA pairs

is unsound. Instead, we use

cs;t ¼
XN�1

i¼1

max 0;minðai;s; aiþ1;tÞ
� �

in which the negative value of min(ai,s, ai11,t) is replaced by 0.

Similarly, the frequencies of p-collocated AA pairs are defined

as

ds;t;p ¼
XN�p�1

i¼1

max 0;minðai;s; aiþpþ1;tÞ
� �

The matrixes [cs,t] and [ds,t,p], which correspond to the fre-

quency of the PSI-BLAST profile-based dipeptides and p-collo-
cated AA pairs, respectively, constitute the proposed protein

sequence representation. We generate PSI-BLAST profile-based

collocation of AA pairs for p 5 0, 1, 2, 3, and 4, which results

in 2000 features for each sequence.
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Feature Selection

Since the proposed representation includes relatively large num-

ber of features, a feature selection method was used to reduce

the dimensionality and potentially improve the prediction accu-

racy. Similar to ref. 39, the entropy-based feature selection

method was used. This method evaluates each feature by meas-

uring the information gain (IG) with respect to the class. The en-

tropy of a feature X is defined as

HðXÞ ¼ �
X
i

PðxiÞ log2ðPðxiÞÞ

where {xi} is a set of values of X and P(xi) is the prior probabil-

ity of xi. The conditional entropy of X, given another feature Y
(in our case the structural class) is defined as

HðXjYÞ ¼ �
X
j

PðyjÞ
X
i

PðxijyjÞ log2 PðxijyjÞ
� �

where P(xi|yj) is the posterior probability of X given the value yi
of Y. The amount by which the entropy of X decreases reflects

additional information about X provided by Y and is called IG.

IGðXjYÞ ¼ HðXÞ � HðXjYÞ

According to this measure, Y has a stronger correlation with

X than with Z if IG(X|Y) [ IG(Z|Y). The feature selection was

performed using 10-fold cross validation to avoid overfitting. In

each fold, features were ranked based on their IG values (large

IG value corresponds to a lower rank), and the final rank is

computed as the average over the 10 folds. The best 50 features

with the lowest average ranks were selected.

Since datasets with 204, 277, and 498 domains are character-

ized by high sequence identity and even share some duplicate

sequences, the top 50 features for these three datasets are differ-

ent when compared with the top features found for the remain-

ing datasets. The three remaining datasets are characterized by

lower, controlled level of sequences identity (i.e., 40%, 30%,

and 25%), and as a result, the same group of features was

applied in their classification. These 50 features were selected

using the dataset with 1189 domains and are listed in Table 1.

Results and Discussion

Experimental Setup

The classification algorithms used to compare the proposed repre-

sentation were implemented in Weka.48 The representation, which

includes 50 features, was tested with several representative state-

of-the-art classifiers such as SVM,49 multiple logistic regression,50

nearest neighbor-based algorithm (IB1),51 naı̈ve Bayes,52 and C4.5

decision tree.53 These classification results, which were obtained

for six benchmark datasets, were also compared with previous stud-

ies that used the same datasets and different sequence representa-

tions and classification algorithms. All experiments were performed

using jackknife test and report the overall classification accuracy,

as well as the accuracy for each of the four structural classes.

Experimental Results

Table 2 shows the classification accuracies when using the pro-

posed sequence representation and the five selected classification

algorithms. Among the five classifiers, SVM ranks the best for

five datasets (204, 277, 1189, 675, and 640 domains) and IB1

ranks the best for two datasets (277 and 498 domains). The av-

erage overall accuracies of SVM for the six datasets are 78.0%,

which is 4–10% higher than the average accuracies of the other

four classifiers. The accuracies for the datasets with 204, 277,

and 498 domains are much better than the results for the other

three datasets. The reason for this difference is that the sequen-

ces in the datasets with 1189, 675, and 640 domains have lower

sequence identity, i.e., below 40%, 30%, and 25%, respectively,

while the other datasets include similar/duplicate sequences. The

nearest neighbour classifier (IB1) performs well only for datasets

with higher identity, since it relies on similarity between test

and training sequences. In contrast, SVM is shown to perform

well, irrespective of the underlying sequence similarity.

Among the four structural classes, a 1 b is the most difficult

to predict. The average accuracy for the a 1 b class over the

six datasets is 55.7%, which is 18–26% lower than the accura-

cies for the other three structural classes. Following, we demon-

strate that a potential reason for such difference is associated

with the relatively large variability of helix and strand content

for proteins in the a 1 b class when compared with the other

classes. At the same time, the proposed feature representation is

shown to be correlated with the content of the secondary struc-

tures. Our classification results show that domains that belong to

Table 1. List of Features Selected from the Set of PSI-BLAST Profile-Based Collocation of AA Pairs for

p 5 0, 1, 2, 3, and 4.

PSI-BLAST profile-based collocation of AA pairs

p 5 0 AI AL AM IA II IV LA LI LV MA VI VV

p 5 1 AE RL DI DL EI EL EM II IV LE MR VI VL VV

p 5 2 AI AL AM GV IA II IL IM IV LA LL MA VI VV

p 5 3 AA IA LL

p 5 4 AI AL AM IA LA MA VA

The feature selection was performed using the dataset with 1189 domains.
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a 1 b class were misclassified as the a/b class, as well as the

all-a class and all-b classes. In dataset with 1189 domains,

14.8%, 28.8%, and 24.6% of the domains that belong to a 1 b
class were misclassified as all-a, all-b, and a/b classes, respec-

tively. In the dataset with 675 domains, the corresponding mis-

classification rates are similar and equal to 18.6%, 23.2%, and

23.7%, respectively. This shows that the lower quality on classi-

fication for a 1 b class is not only a result of an overlap

between this class and the a/b class. In fact, the distribution of

the secondary structure content, i.e., amount of helices and

strands in the sequence, of all-a class, all-b class, and a/b class

forms compact clusters that are relatively well separated from

each other; see Figure 2a. In contrast, for the a/b class the distri-

bution of the secondary structure content is relatively sparse and

shares a more substantial overlap with the remaining classes; see

Figure 2b. The figures indicate that the actual secondary struc-

ture content is not sufficient to distinguish a 1 b class among

the other three classes and especially from the all-b and a/b
classes. On the other hand, the features proposed in this work

are correlated with the secondary structure content, see Table 3.

We show that among the 50 features, 13 have the correlation co-

efficient value above 0.26 with the helix content, while 11 other

features have the correlation coefficient value greater than 0.09

with strand content. Most importantly, the features that are posi-

tively correlated with the helix content are negatively correlated

with the strand content and vice versa, which suggests that the

computed features are associated with the underlying secondary

structure content values. Finally, the 13 pairs that are positively

correlated with helix content include only six amino acids, i.e., E,

L, M, A, D, and R, and five of them (A, E, L, M, R) are shown to

have the probability of above 0.5 to form helical structures.47 The

11 pairs that are positively correlated with the strand content

mainly include V and I amino acids, i.e., V occurs 12 times and I

occurs 8 times in these pairs while the all other amino acids occur

only twice. At the same time, these two residues are characterized

by the largest probabilities to form strands.47 Since the features

generated in the paper reflect the secondary structure content and

the secondary structure content is not sufficient to accurately dis-

tinguish a 1 b among the other three classes, the proposed fea-

tures result in the lowest classification accuracy for this class.

Table 2. Comparison of Jackknife Accuracies Between Different Classification Algorithms That Use the

Proposed Sequence Representation.

Dataset Algorithm

Jackknife accuracy (%)

All-a All-b a/b a 1 b Overall

204 domains SVM 90.38 100 91.11 93.48 94.12

IB1 84.62 100 91.11 80.43 89.71

C4.5 78.85 96.72 82.22 76.09 84.31

Naı̈ve Bayes 80.77 96.72 88.89 82.61 88.23

Logistic regression 88.46 96.72 84.44 71.74 86.27

277 domains SVM 91.18 91.38 93.42 76.92 87.73

IB1 89.71 88.14 92.21 80.00 87.73

C4.5 73.53 74.58 79.22 73.85 75.46

Naı̈ve Bayes 67.65 77.97 85.71 66.15 74.72

Logistic regression 76.47 79.66 87.01 64.62 77.32

498 domains SVM 97.98 93.33 95.62 93.43 94.93

IB1 94.95 95.83 97.81 94.16 95.74

C4.5 89.90 89.17 94.89 91.24 91.48

Naı̈ve Bayes 80.81 92.50 94.89 82.48 88.03

Logistic regression 95.96 95.83 94.16 90.51 93.91

1189 domains (40% sequence identity) SVM 75.80 75.18 82.57 31.78 67.63

IB1 65.30 67.73 79.93 40.68 64.65

C4.5 55.71 56.38 65.13 30.51 52.93

Naı̈ve Bayes 47.03 71.99 82.12 16.95 57.06

Logistic regression 73.06 76.24 69.74 28.81 62.92

675 domains (30% sequence identity) SVM 74.31 59.62 79.66 34.46 61.47

IB1 54.86 47.44 68.93 35.03 51.53

C4.5 54.86 50.64 57.06 33.33 48.62

Naı̈ve Bayes 55.56 62.18 81.92 21.47 55.05

Logistic regression 69.44 62.18 60.45 33.33 55.50

640 domains (25% sequence identity) SVM 73.91 61.04 81.92 33.92 62.34

IB1 53.62 46.10 68.93 34.50 50.94

C4.5 59.42 49.35 58.19 28.65 48.44

Naı̈ve Bayes 55.07 62.34 80.26 19.88 54.38

Logistic regression 69.57 58.44 61.58 29.82 54.06

The best results are shown in bold.
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The proposed sequence representation and the best-perform-

ing SVM and IB1 classifiers were further compared with other

recently reported prediction methods. The comparison includes

recently reported results, which apply various classification algo-

rithms and sequence representation for the five benchmark data-

sets, see Table 4. For the datasets with 277 and 498 domains,

our results were compared with existing methods based on rough

sets, component-coupling, neural network, SVM, and ensemble

of boosted logistic regression classifiers.15,24,26,27,30 For the data-

set with 204 domains, the comparison group includes augmented

covariant discriminate algorithm, unsupervised fuzzy clustering,

supervised fuzzy clustering, SVM, increment and diversity algo-

rithm, and ensemble of boosted logistic regression classi-

fiers.18,20,23,40–45,52 For the dataset with 1189 domains, our

results are contrasted with Bayesian classifier, logistic regression

and SVM, and ensemble of logistic regression, SVM, instance-

based, and random forest classifiers.25,28,32 Finally, our results

are compared with a Bayesian classifier for the dataset with 675

domains.

For the datasets with 277 and 498 domains, the usage of the

proposed representation results in substantial error rate reduc-

tion, i.e., 3.6/15.9 5 23% and 0.9/5.2 5 17%, respectively,

when compared with the best previously reported results that

were obtained by the LogitBoost classifier that uses AA compo-

Figure 2. The distribution of the secondary structure content for the four structural classes in the data-

set with 640 domains; x- and y-axis show helix and strand content, respectively. (a) The secondary

structure contents of all-a, all-b, and a/b classes; the figure shows compact clusters for each structural

class that are also well separated from each other. (b) The distribution of the secondary structure con-

tent of all-a, all-b, and a 1 b classes; the figure shows a sparse cluster for the a 1 b class, which also

overlaps with the clusters for the all-a and all-b classes.

Table 3. List of Proposed Features That Are Characterized by the Strongest Positive Correlation with Helix

and Strand Content.

Features with highest correlation with helix content Features with highest correlation with strand content

Pair

Correlation

coefficient with

helix content

Correlation

coefficient with

strand content Pair

Correlation

coefficient with

helix content

Correlation

coefficient with

strand content

E*L 0.358 20.335 V*V 20.221 0.286

L*E 0.351 20.311 V*I 20.205 0.265

L***L 0.331 20.299 G**V 20.245 0.259

E*M 0.324 20.296 I*V 20.187 0.254

L**L 0.295 20.268 I*I 20.163 0.222

AM 0.279 20.259 V*L 20.137 0.221

AL 0.275 20.257 VV 20.153 0.189

D*L 0.273 20.287 IV 20.118 0.151

L**A 0.273 20.265 VI 20.120 0.151

R*L 0.267 20.246 V**V 20.052 0.092

A****M 0.265 20.262 II 20.064 0.090

A****L 0.263 20.255

M**A 0.261 20.258

*Represents a gap between the corresponding pair of AAs.
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sition-based sequence representation. Similarly, for the dataset

with 204 domains, the proposed representation results in 1.0/

6.9 5 14% error rate reduction when compared with the existing

best-performing augmented covariant discriminate algorithm,

which applies sequence representation that combines pseudo AA

composition and dipeptide frequencies (total of 420 features).43

Compared with this representation, our feature set includes only

50 features. For the dataset with 1189 domains that share 40%

sequence identity, the proposed representation gives 8.7/41.1 5
21% error rate reduction when compared with best prior results

reported for the ensemble classifier that uses custom-designed

representation that includes AA composition, autocorrelations,

and physicochemical properties. For dataset with 675 domains

that share up to 30% sequence similarity, the proposed represen-

tation gives 13.5/52 5 26% error rate reduction compared with

the Bayesian classifier. In short, the accuracies obtained by using

the proposed sequence representation are substantially better

than the best, previously reported accuracies for all five reported

datasets. Finally, our method was also evaluated on the new

dataset that includes 640 sequences with low 25% identity. For

this dataset, the overall accuracy is 62.3%, see Table 2, which is

comparable with the results on dataset with higher, 30%

sequence similarity.

In contrast with the relatively high accuracies obtained by

majority of existing methods on datasets with 204, 277, and 498

domains, the accuracies on other three datasets are lower. We

believe that the high accuracies are an artefact resulting from

duplicates and highly similar sequences included in these three

datasets, which corroborates with results reported in ref. 32. For

instance, the datasets with 498 domains include over 10 copies

of the same sequence that appears under different PDB IDs.

Finally, we note that the reported best classifiers that use the

proposed sequence representation are relatively simple, i.e., a

single SVM and a nearest neighbor-based method, when com-

pared with the best reported methods that include complex, en-

semble-based classifiers, i.e., Logit Boost18 and ensemble

reported in ref. 28. Although this simplicity eases the implemen-

tation, an ensemble-based method that applies the proposed rep-

resentation, which will constitute our future work, could provide

further improvements.

Conclusions

Prediction of the protein structural class is an important and dif-

ficult problem. This paper focuses on the design of a high-qual-

ity sequence representation that allows improving the prediction

accuracy when compared with the currently used representations

and classification algorithms. We show that the proposed PSI-

BLAST profile-based collocation of AA pairs is a novel and

promising feature representation. Our comprehensive empirical

tests that include five benchmark datasets show that the accuracy

of the structural class prediction can be substantially improved

by applying this representation, i.e., relatively simple classifiers

that use the proposed features provide better accuracy than exist-

ing, best-performing, more complex classifiers that use other

representations. The corresponding error rate reductions range

between 14% and 26% over five test datasets considered in this

study. The new representation can be extended to other protein

prediction tasks such as fold, solvent accessibility, membrane

protein type, and enzyme family predictions.

Finally, the structural class prediction still faces challenging

issues such as relatively low accuracy for the a 1 b class, espe-

cially for datasets with low sequence identity. Also, as originally

discussed,32 the predictions for sequences with low similarity

are characterized by lower quality. Our results show that for a

dataset with 40% sequence identity, the prediction accuracy

drops to 67%, while for datasets with even lower 30% and 25%

identity, the accuracy further drops to about 62%.
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