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Abstract

Molecular recognition features (MoRFs) are a commonly occurring type of intrinsically disordered regions
(IDRs) that undergo disorder-to-order transition upon binding to partner molecules. We focus on recently
characterized and functionally important membrane-binding MoRFs (MemMOoRFs). Motivated by the lack of
computational tools that predict MemMoRFs, we use a dataset of experimentally annotated MemMoRFs to
conceptualize, design, evaluate and release an accurate sequence-based predictor. We rely on state-of-the-art
tools that predict residues that possess key characteristics of MemMoRFs, such as intrinsic disorder, disorder-to-
order transition and lipid-binding. We identify and combine results from three tools that include flDPnn for the
disorder prediction, DisoLipPred for the prediction of disordered lipid-binding regions, and MoRFCHiBiy igh for
the prediction of disorder-to-order transitioning protein binding regions. Our empirical analysis demonstrates
that combining results produced by these three methods generates accurate predictions of MemMoRFs. We also
show that use of a smoothing operator produces predictions that closely mimic the number and sizes of the
native MemMOoRF regions. The resulting CoMemMoRFPred method is available as an easy-to-use webserver at
http://biomine.cs.vcu.edu/servers/CoMemMoRFPred/. This tool will aid future studies of MemMoRFs in the
context of exploring their abundance, cellular functions, and roles in pathologic phenomena.

Introduction

Intrinsically disordered proteins (IDPs) contain one or more intrinsically disordered regions (IDRs), which are
sequence segments that lack stable structure under physiological conditions [1-5]. IDPs complement functional
repertoire of rigid protein structures, expanding functional diversity and cellular complexity of proteomes [6-9].
IDPs contribute to a broad range of cellular processes, such as signaling, regulation and molecular recognition,
to name just a few [10-14]. One of the key functional features of IDRs is facilitation of interactions with a variety
of partner molecules that include proteins, peptides, nucleic acids and lipids [15-23]. In that context, IDRs offer a
number of advantages over structured regions. They are capable of adopting different conformations upon
binding to specific partners, allowing for interactions with multiple partners and enabling promiscuous and
selective binding that depends on a cellular context [22-26]. IDRs can serve as "fuzzy" binding interfaces which
lack a well-defined structure but can dynamically adjust and conform to an interacting partner [27]. Some IDRs
possess short linear motifs that engage in specific protein-protein and protein-nucleic acid interactions [13,15,28-
31]. These motifs include Molecular Recognition Features (MoRFs), which are short regions embedded in
longer IDRs and undergo disorder-to-order transition upon binding to proteins and peptides [15,32,33].

Recent studies suggest that IDRs are found in membrane-associated and transmembrane proteins, where a
number of them transition from the disordered to the ordered state upon binding to lipids, sharing some
characteristics of MoRFs [20,34-36]. These lipid-binding disorder-to-order transitioning IDRs are named
MemMoRFs [37]. They are involved in regulation of apoptosis, phagocytosis, trafficking and shaping the cell
membrane, and are associated with pathologies including neurodegeneration, viral infection, and toxicity [37]. A



gold standard collection of experimentally annotated MemMoRFs was recently released in an online database
[37]. While this database is currently limited to 107 proteins, many more MemMoRFs are expected to be found
across proteomes, motivating the development of computational methods that would accurately predict
MemMoRFs in protein sequences. These predictors could be used to support efforts to reduce the current
MemMoRF annotation gap.

Practicality of developing computational sequence-based predictors is supported by the fact that disorder is
encoded in the underlying sequences, i.e., disorder is intrinsic to the sequence [5]. In other words, IDRs have
different sequence biases when compared to ordered/structured sequence regions [3,38-40], making them
predictable directly from their sequences. Consequently, well over 100 predictors of IDRs were developed [41-
49]. Similarly, binding IDRs were also shown to have specific sequence biases [38], suggesting that they can be
also accurately identified in protein sequences. Correspondingly, close to 40 methods that predict particular
functional subtypes of IDRs, such as MoRFs, RNA-binding, DNA-binding and lipid-binding IDRs, were
released [50]. However, there are no methods that target prediction of MemMoRFs.

In addition to the MoRF-specific characteristics (i.e., intrinsic disorder and disorder-to-order transition upon
binding), MemMoRF sequences interact with membranes. The latter characteristic is manifested via distinct
sequence bias where MemMOoRFs are enriched in positively charged Lys residues when compared to the other
MoRFs. This enrichment can be explained by the fact that the intracellular leaflet of a membrane bilayer
contains many lipids with negatively charged head groups [51,52]. While there are no predictors of MemMoRFs,
there are methods that provide accurate predictions of residues that share some of the key characteristics that
define MemMOoRFs. Correspondingly, we investigate whether the current methods that predict the intrinsic
disorder, MoRFs and disordered lipid-binding regions can be used to accurately predict MemMoRFs. We also
combine results produced by these different types of methods to examine whether such approach would result in
a more accurate prediction of MemMoRFs. Our overarching objective is to formulate a simple-to-implement
sequence-based MemMoRF predictor that provides relatively high residue-level accuracy (i.e., can accurately
identify amino acids that make up MemMoRFs) and that reproduces distribution of MemMOoRF lengths (i.e., to
ensure that the amino acids predicted as MemMoRFs form regions in the sequence that share similar distribution
of their length when compared to the distribution of the length of native MemMoRF regions).

Materials and methods

Selection of relevant predictors

We identify suitable current disorder and disorder function predictors that cover the three defining aspects of
MemMoRFs: intrinsic disorder, similarity to MoRFs, and binding to lipids. We rely on results from the recently
completed community-organized Critical Assessment of Intrinsic disorder (CAID) [53,54]. More specifically,
CAID was organized and run by independent assessors (i.e., they did not submit methods for assessment) and
comparatively evaluated a broad selection of predictors of IDRs and binding IDRs by comparing their
predictions to native annotations using large blind datasets of IDPs (i.e., these proteins and annotations were not
available to the participants before the assessment). This makes results produced by CAID arguably more
reliable and less biased compared to the results of other studies that are produced by the authors of predictors
and which utilize previously known ground truth annotations [49,55-59]. We use the main performance metric,
the Area under the ROC curve (AUC_ROC) to quantify and compare predictive performance between different
methods, with the underlying goal to select the most accurate tools.

Among the 32 participating disorder predictors and using the main DisProt dataset, CAID assessors identified
fIDPnn [60] as the most accurate tool [53]. This method secures AUC ROC of 0.814, compared to the closest
other predictors including RawMSA [61] (AUC_ROC of 0.780), ESpritz [62] (0.774), DisoMine [63] (0.765),
and SPOT-Disorder2 [64] (0.760). Moreover, fIDPnn is also relatively fast, allowing to efficiently predict large
collections of proteins. The average fIDPnn’s runtime is about 20 seconds per protein, compared to 250 seconds
for RawMSA, 5 seconds for ESpritz, 3 seconds for DisoMine, and 2,000 seconds for SPOT-Disorder2[53].
These advantages of fIDPnn were also highlighted in a commentary article for the CAID assessment [54], further
supporting our selection of this tool as a representative method for the accurate prediction of IDRs.



CAID also evaluated a broad collection of 11 predictors of binding IDRs [53]. The top five predictors in this
category include ANCHOR?2 [65] (AUC_ROC of 0.742), DisoRDPbind [66,67] (0.729), MORFCHiBiLig: [68]
(0.720), MoRFCHiBiwe, [69] (0.702), and ANCHOR [70] (0.694). These methods are computationally efficient
and complete predictions with an average runtime below 5 seconds per protein, except for MoRFCHiBiwe, that
takes about 100 seconds [53]. We select the most accurate ANCHOR?2, which predicts IDRs that interact with
proteins, and the top-ranked predictor of MoRFs, which is MoORFCHiBigig.

At present, there are only two methods that predict lipid-binding IDRs: DisoLipPred [71] and MemDis [72].
Both methods were released recently and after CAID was completed. They target different types of regions
where the former predicts lipid-binding IDRs that exclude transmembrane regions (i.e., MemMoRFs are not
localized in the transmembrane regions) and the later exclusively targets prediction of IDRs in the
transmembrane proteins. While DisoLipPred is capable of making predictions for all protein sequences,
MemDis is limited to the transmembrane proteins. Thus, MemDis cannot be used to make predictions for the
membrane-associated proteins that also include MemMoRFs. Consequently, DisoLipPred is the only predictor
of lipid-binding IDRs that is suitable for our study.

In summary, we selected four representative methods that produce predictions that are relevant to the
identification of MemMoRFs: fIDPnn, MoRFCHiBirigh, ANCHOR?2 and DisoLipPred. These methods take
protein sequence as the sole input and generate a numeric score for each amino acid in the input sequence that
quantifies its propensity to be disordered (flDPnn), to be part of a MoRF region (MoRFCHiBiLign), to be
disordered and bind proteins (ANCHOR?2), and to be disordered and bind lipids (DisoLipPred).

Test dataset

We use the MemMOoRF database [37], which includes 107 proteins, to develop a dataset of experimentally
annotated MemMOoRFs to test predictive performance of selected predictors. We ensure that the test proteins
have low, below 25% sequence similarity to the training proteins that were used to develop the four selected
predictors. This follows procedures used to evaluate related sequence-based predictors [62,64,67,68,71,73,74], and
is motivated by the fact that sequence alignment would not produce accurate predictions at these low levels of
similarity. To this end, we combine the training dataset of the four methods with the proteins that we collect
from the MemMOoRF database and we cluster the resulting set of 17,579 proteins using the CD-Hit program [75]
at 25% sequence similarity. Next, we select proteins from clusters that do not include any of the training
proteins and we exclude sequences that are <30 amino acids in length (i.e., peptides). The resulting test dataset
is composed of 41 proteins that include 684 MemMoRF residues and which share the low similarity with the
training datasets of the four predictors.

Evaluation metrics

The disorder and disorder function predictors produce two outputs for each amino acid in the input protein
sequence: a numeric propensity value and a binary score. The propensities quantify likelihood for a given type
of annotation (disorder, MoRF, MemMOoRF, etc.). The binary scores are typically derived from the propensities
based on a threshold, such that residues with propensities > threshold are labelled as having a given annotation
(i.e., positive residues) while the remaining amino acids are labelled as not having this annotation (i.e., negative
residues). We evaluate the binary predictions using several popular metrics:

. . TP
true positive rate (TPR) = sensitivity = TP T gg
false positive rate (FPR) = 1 — specificity = PN
o1 - 2TP
"~ 2TP+FP+FN

where TP, TN, FN and FP are the numbers of true positives (correctly predicted positives), true negatives
(correctly predicted negatives), false negatives (positives incorrectly predicted as negatives), and false positives
(negatives incorrectly predicted as positives), respectively. We calculate F1 at a threshold where the maximum
value of F1 is obtained (F1max). We also compute sensitivity and F1 using the thresholds that produce low



FPRs at 5% and 10%; these metrics quantify performance for predictions with a low rate of incorrect predictions
of annotations.

We assess predictive quality of the propensity scores with the commonly used AUC ROC metric. The ROC
curve plots TPR versus FPR values when using every unique propensity value as the threshold; this metric
offers a comprehensive evaluation across all possible propensity values and the corresponding binary
predictions [76]. The AUC values range between 0 (perfectly incorrect/inverted predictions) and 1 (all
predictions are correct), where 0.5 denotes random predictions and the expected values span interval between
0.5 and 1. Moreover, since the test dataset is highly imbalanced, where about 3% of the amino acids are
MemMoRFs, we also separately evaluate a part of the ROC curves where the FPR values are relatively low,
below 10%. This part corresponds to the predictions where the number of the putative MemMoRFs does not
substantially exceed the rate of the native MemMoRFs; the remaining parts of the ROC curve are arguably
impractical because they correspond to significant over-predictions of MemMOoRFs. Since the corresponding
AUC values are small numbers that might be hard to interpret, we calculate ratio between the AUC for the
predictions from a given tool and the AUC of a random prediction. Hence, rateAUC of 1 indicate that a given
tool produces predictions that are equivalent to a random predictor and while values > 1 quantify the rate of
improvement over a random predictor. The use of the rateAUC value is motivated by its applications in a
number of related studies that feature similarly imbalanced test scenarios [77-82].

Statistical tests

We performed statistical tests to investigate whether differences in predictive performance between the best-
performing and the other predictors are consistent across diverse datasets. To do that, we sample 100 sets of
randomly selected 50% of the test proteins and compare the differences across the corresponding 100
evaluations. We use the student 7-test when the corresponding data (i.e., measured values of the AUC, rateAUC,
F1, and TPR metrics) are normal, and otherwise we apply the Wilcoxon rank-sum test. We determine normality
using the Anderson-Darling test at p-value < 0.05.



Table 1. Predictive performance on the test dataset. Methods are sorted in the descending order by their AUC values. We use bold font to identify the best individual predictor and the best
combined method based on their AUC values. We report medians of the metrics that we calculated over the 100 sampled test sets (see “Statistical test” section for details). We summarize
results of the statistical significance analysis in the x/y format next to the reported median value, where x is for comparison against the best overall/combined method (CoMemMoRFpred)
and y against the best single method (flDPnn), where ** and * denote statistically significant differences with p-values < 0.01 and < 0.05, respectively, and = denotes differences that are

not statistically significant (p-value > 0.05).

Predictors AUC rateAUC F1_max F1_FPR5% F1_FPR10% TPR_FPR5% TPR_FPR10%
CoMemMoRFpred 0.785 **/ 3.8 **/ 0.182 **/ 0.135 **/ 0.160 **/ 0.19 **/ 0.36 **/
fIDPnn+DisoLipPred+MoRFCHiBiLignt 0.778 */= 3.6 ¥*/= 0.178 **/= 0.115 **/** 0.158 **/= 0.16 **/** 0.33 **/**
fIDPnn 0.761 /* 2.7 [** 0.155  /** 0.095 /** 0.114 /** 0.12 /** 0.23 /**
MoRFCHiBiLight 0.689 **/** 3.1 HokjEE 0.135 **/** 0.119 **/** 0.127 =/** 0.16 **/** 0.27 **/**
DisoLipPred 0.650 #*/** 2.7 =/** 0.118 #*/** 0.115 **/** 0.103 =/** 0.14 #%/%* 0.22 =/**
Baseline 0.523 **/** 1.6 H¥/** 0.073 **/** 0.065 **/** 0.660 **/** 0.06 **/** 0.06 **/**
ANCHOR2 0.515 **/** 0.8 Hok/*x 0.086 **/** 0.028 **/** 0.057 **/** 0.03 #*/** 0.12 #*/**




Results

Comparative evaluation of the selected four predictors

We assess predictive performance for the four representative related predictors (flIDPnn, DisoLipPred,
MoRFCHiBipign: and ANCHOR2) when using their results to predict MemMOoRFs in the test dataset. Moreover,
we compare these results against a baseline produced by random predictions that mimic the distribution of the
native MemMOoRF regions. We setup the baseline by producing randomly generated scores between 0 to 1 such
that using the threshold of 0.5 the number of the putative MemMoRFs matches with the number and the size of
the native MemMOoRF regions. Table 1 reports the results.

The baseline predictor obtains AUC = 0.52, rateAUC = 1.6 and Flmax = 0.07, which as expected is near a
random performance level. Interestingly, the four representative methods produce predictions with a broad range
of predictive quality. Three of the four selected methods outperform the baseline while ANCHOR?2 performs
rather poorly with AUC = 0.52, rateAUC = 0.8 and F1m.x = 0.09. The ANCHORZ2’s results can be explained by
the fact that this tool focuses on predicting disordered protein-binding regions that share little in common with
MemMoRFs. fIDPnn produces the best and accurate predictions with AUC = 0.76, rateAUC = 2.7 and Flmax =
0.15. The other two methods offer comparatively modest predictive quality, MoRFCHiBipign: with AUC = 0.69,
rateAUC = 3.1 and Flmax = 0.14, and DisoLipPred with AUC = 0.65, rateAUC = 2.7 and Flmax = 0.12. The ROC
curves provide further details (Figure 1). The curve of fIDPnn is noticeably above the curves of the other three
methods and the baseline for FPR> 0.1. The best option for the lower PFR values is MoRFCHiBiyien Statistical
analysis based on the AUC values reveals that fIDPnn significantly outperforms DisoLipPred, MoRFCHiBiLigns,
ANCHOR?2 and the baseline (p-value < 0.01). Altogether, we find that three of the selected tools, fIDPnn,
DisoLipPred, and MoRFCHiBiign, provide predictions that can be used to relatively accurately identify
MemMoRFs. They target prediction of different key characteristics of MemMOoRFs including intrinsic disorder
(fIDPnn), MoRFs (MoRFCHiBirin) and lipid-binding (DisoLipPred), which can explain their relatively good
performance.



1.0

0.81

True Positive Rate
o
o

o
~

' = = CoMemMoRFPred
Y] —— fIDPnn + DisoLipPred + MoRFcuisj Light
. —-= fIDPnn + MORFCH,'B,‘_L,'gh[
D fIDPnn DisoLipPred
nn

s s | DP
. — = fIDPnn + DisoLipPred + MoRFcisi Light + ANCHOR2
! fIDPnn + DisoLipPred + ANCHOR2
’ fIDPnn + ANCHOR2
° = MORFcHisi Light
DisoLipPred + MoRFcyisi Light
= DisoLipPred
DisoLipPred + MoRFcuis; Light + ANCHOR2
MORFCHIBI_L/ght + ANCHOR2
DisoLipPred + ANCHOR2
I, = - Baseline
, ANCHOR?2
0.0+ T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

0.2

Figure 1. ROC curves computed on the test dataset. We include the baseline, the four selected predictors and ten combinations of these
predictors that rely on the SimpleAverage*Minimum technique. Methods in the legend box are arranged in the descending order of their
AUC values. The individual methods are shown using solid lines while the combination methods are in dashed lines.

Selection of combination method

The fact that the three selected and well-performing predictors focus on different aspects of MemMoRFs
suggests that combining their results might provide a more holistic and accurate MemMOoRF prediction. We test
this hypothesis by implementing and empirically evaluating all possible permutations of subsets of the four
individual methods, i.e., we also include ANCHOR2 for completeness and to check whether combining it with
the other tools could be helpful. There are total of ten permutations that include six pairs of methods, three
combinations of three methods, and all four methods combined together. We implement the combinations in two
steps. First, we standardize the numeric propensities generated by each tool into the unit range using the min-
max normalization. In the second step we combine the normalized scores of the selected subset of methods and
lastly, we normalize the resulting combined score to the unit range using the min-max approach. We combine
the scores using five techniques: 1) SimpleProduct where we multiply the scores; 2) SimpleAverage where we
average scores when each score is given equal importance; 3) WeightedAverage where score for a given method
is multiplied by this method’s AUC (weight) before calculating the average; 4) SimpleAverage*Minimum
where we multiply the average by the minimal score selected among the considered methods; and 5)
WeightedAverage*Minimum where we multiply the weighted average by the minimal score. The
SimpleProduct implements an approach where the resulting prediction has high scores (i.e., predicts
MemMOoRFs) only when all contributing methods have high scores. The SimpleAverage predicts MemMoRFs
when multiple but not necessarily all of the input scores are high. The WeightedAverage is a similar approach



but it weights the scores by the overall predictive performance of the corresponding methods. The
SimpleAverage*Minimum and WeightedAverage*Minimum techniques compute scores that hybridize
averaging and multiplying, i.e., not all inputs scores must be high for the resulting score to be high (i.e., predict
MemMoRF) but the lowest input score cannot be low.

We compare AUCs generated by each of the ten combinations and using the five techniques (total of 50 options)
in Figure 2. We find that the best AUC = 0.778 is secured by the SimpleAverage*Minimum and
WeightedAverage*Minimum techniques that combine predictions from fIDPnn, MoRFCHiBigign , and
DisoLipPred, closely followed by the SimpleProduct of the same three methods with AUC = 0.776. The highest
AUC:s for the SimpleAverage (AUC = 0.754) and WeightedAverage (AUC = 0.757) that are based on
combining fIDPnn and MoRFCHiBiyig: are similar and substantially lower than the AUCs of the other three
techniques. The finding that SimpleAverage and WeightedAverage produce similar quality of predictions
suggests that weights are not helpful. Moreover, the observation that techniques that use multiplications are
better than those that rely on average suggests that MemMoRFs are more accurately predicted when all
contributing methods are required to produce high scores. This can be explained by the fact that the individual
predictors cover somehow orthogonal characteristics of MemMoRFs (i.e., intrinsic disorder, lipid binding and
MoRF) and only combing them all together reflect the “complete” nature of MemMoRFs. Moreover, our results
reveal that combinations that involve ANCHOR?2 are outperformed by those that exclude ANCHOR?2, which is
in line with the results for the individual predictors in Table 1.

Along with the AUC values in Figure 2, we compare the ROC curves of the ten combination methods obtained
using the overall best-performing SimpleAverage*Minimum technique in Figure 1. The top-three combination
methods including fIDPnn+DisoLipPred+MoRFCHiBipgni, fIDPnn+MoRFCHiBipign: , and fIDPnn+DisoLipPred
secure relatively similar AUCs (0.778, 0.773 and 0.767, respectively). Their ROC curves are better (i.e.,
positioned above) than the ROC curve of the best individual method, fIDPnn, particularly for the low FPR
region (Figure 1). This suggests that combining the disorder prediction with the prediction of MoRFs and/or
lipid-binding regions results in a more accurate identification of putative MemMOoRFs, confirming the validity
of our hypothesis. Among the top three SimpleAverage*Minimum-based combinations,
fIDPnn+DisoLipPred+MoRFCHiBirign is the best since it obtains the highest AUC value (Figure 2) and higher
ROC curve in the low FPR region (Figure 1).
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Figure 2. Comparison of the AUC values on the test dataset for the ten combinations of the four methods that are computed by using
SimpleAverage (red bar with black border), WeightedAverage (green bar with black border), SimpleProduct (blue bar with black border),
SimpleAverage*Minimum (light pink bar), and WeightedAverage*Minimum (light green bar) techniques. Results from the five



techniques are grouped per specific combination, and they are sorted in descending order of their highest AUC value, which are shown at
the top of the bars.
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Figure 3. Distribution of MemMOoRF region sizes for the native MemMoRFs and the putative MemMoRFs predicted by the
fIDPnn+DisoLipPred+MoRFCHiBiLight combination that relies on the SimpleAverage*Minimum approach that applies smoothing with
variable window size (WS) values. The x-axis shows the MemMOoREF size that we quantify with the number of residues. The y-axis is the
cumulative count of MemMOoRF regions with size that is defined by the x-axis value. Window sizes are shown in the figure legend and
they vary between 1 (no window; light yellow) and 15 (gray). Statistical significance of differences between the distribution for the
native MemMOoRF regions and each of the predictions is given in the figure legend, where * and ** denote that the differences is
statistically significant with p-value < 0.01 and < 0.05, respectively, and where = denotes differences that are not statistically significant
(p-value > 0.05).
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While the analysis based on Figures 1 and 2 shows that the fIDPnn+DisoLipPred+MoRFCHiBiyigh: combination
that relies on the SimpleAverage*Minimum approach predicts MemMoRF residues with relatively high
accuracy, we further investigate whether these residues compose sequence regions that mimic the distribution
(i.e., number and sizes/lengths) of the native MemMoRF regions. Figure 3 reveals that the distribution of the
predicted regions (WS 1, light-yellow line) is very different than the distribution for the native MemMoRFs
(Native, dashed green line).

The predicted regions are much shorter and there are many of them, thus the difference between the two
distributions is statistically significant (p-value < 0.01). This issue can be fixed with window-based smoothing,
i.e., the predicted propensity values are averaged over a sliding sequence window to produce a new propensity
for the residue located in the middle of the window. Smoothing was used in several related studies for the
prediction of disorder and MoRFs [83,84]. We optimize the window size (WS) by comparing results for sizes =
{3,5,7,9, 11, 13, 15}, shown in Figure 3, where WS = 1 corresponds to predictions without smoothing.
Distributions of the predicted MemMOoRF regions with WS = 3, 13, and 15 are significantly different from the
distribution for the native MemMOoRFs (p-value < 0.05). The differences are not statistically significant for WS
=5,7,9,and 11 (p-value > 0.05). Among these four window sizes, MemMoRFs generated using smoothing
with WS = 9 (red colored line in Figure 3) are the closest to the native MemMoRFs (green colored line in Figure
3) in terms of size and number of MemMoRFs, i.e., this result converges to the distribution of the native
MemMoRFs for longer region sizes.

Correspondingly, we formulate a new predictor of MemMoRFs based on combining fIDPnn, DisoLipPred and
MoRFCHiBiLg methods with smoothing using WS of 9. One of these tools (MoRFCHiBiyi.n) was authored by
another research group and we incorporate it into our solution with their permission. Table 1 compares this new
computational tool, CoMemMoRFPred (Combined MemMoRF Predictor), with the other methods.
CoMemMOoRFPred secures the highest AUC = 0.785, rateAUC = 3.8 and Flmax = 0.182. Its sensitivity at



FPR=0.05 is 0.19, which means that CoMemMoRFPred predicts the true positives at 0.19/0.05 = 3.8 higher rate
than the false positives. These results are statistically better than the predictions of the best individual predictor,
fIDPnn (AUC = 0.761, rateAUC = 2.7 and Flnax = 0.155; p-value < 0.01). Moreover, the ROC curve of
CoMemMoRFPred has the steepest slope for low FPR values (Figure 1), which suggests that it outperforms the
other solutions where the amount of the predicted MemMoRFs does not substantially over-estimate the amount
of native MemMOoRFs. This is why CoMemMoRFPred obtains the highest rateAUC value in Table 1.
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Figure 4. Boxplots that compare distributions of the predicted propensity values for the native MemMoRFs residues (in red) and the non-
MemMOoRF residues (in blue) from the test dataset. We compare the results produced by CoMemMoRFPred, the best combined method
that does not apply smoothing (fIDPnn+DisoLipPred+MoRFCHiBiLig that relies on the SimpleAverage*Minimum technique), the best
individual method (fIDPnn) and a random baseline. The whiskers denote 1% and 99" percentiles and the solid lines inside the boxes
correspond to the median. We evaluate the statistical significance of differences between the two corresponding distributions using the
Wilcoxon-rank sum test since all distributions are non-normal, as tested with the Anderson-Darling test at p-value of 0.05. The
corresponding p-values are placed above each pair of box plots.

We further contrast predictions generated by a selected group of representative approaches that include the
baseline, the best individual predictor fIDPnn, the best combined fIDPnn+DisoLipPred+MoRFCHiBiLign
approach, and CoMemMOoRFPred. In Figure 4, we compare distributions of propensity values produced by these
approaches between the native MemMoRFs residues (in red) and the non-MemMOoRF residues (in blue) from
the test dataset. The results produced by the baseline predictor show no significant difference (p-value = 0.33).
The progressively improved solutions, from the single predictor through the combination of methods to the
inclusion of smoothing, register correspondingly smaller and smaller p-values. The overall best
CoMemMOoRFPred obtains p-value = 2.6x10'*. These observations are in line with the results from Table 1 and
demonstrate that CoMemMoRFPred offers accurate predictions of MemMoRFs. We conclude that this new tool
provides high-quality residue-level propensities and also generates putative MemMoRF regions that closely
replicate the number and sizes of the native MemMoRFs in the test dataset. This was accomplished by utilizing
an innovative design that synergistically combines results from three existing tools that address predictions of
different biophysical aspects of MemMoRFs and the application of the smoothing operator.
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( Combined tool for MemMoRF Prediction )
Help | Materials | Acknowledgments | Disclaimer| Biomine

CoMemMOoRFPred is a method that predicts disordered regions of membrane associated proteins which undergo
disorder to order transition upon binding with lipds.

Please follow the three steps below to make predictions:

1. Copy and paste protein sequence into text area

The server accepts only one FASTA formatted protein sequence with minimum length of 21 residues. Please enter
the protein sequence in the following text field.

>POA734
MALLDFFLSRKKNTANIAKERLQIIVAERRRSDAEPHYLPQLRKDILEVICKYVQIDPEMVTVQLEQKDGDISILELNVTLPEAEELK

[ Example ] [ Reset sequence

2. Provide your email address (optional)

Please enter your email address in the following text area or leave it blank. A link to prediction results will be sent to
your email address once they are ready.

lkurgan@vcu.edu

3. Predict

Click Run button to launch prediction.

Run

Figure 5. Input interface for the CoMemMoRFPred webserver at http://biomine.cs.vcu.edu/servers/CoMemMoRFPred.

CoMemMoRFPred web server

We provide CoMemMOoRFPred as a freely available and easy to use web server at
http://biomine.cs.vcu.edu/servers/CoMemMoRFPred. We implemented the front-end using HTML and
JavaScript, while the back-end is based on PHP, Java, Python and the MySQL database. Users do not need to
install any software beside a web browser.

Our web server features an easy to navigate input interface (Figure 5), where users need to provide a FASTA-
formatted protein sequence as the input. While it is not mandatory, we encourage users to provide an email
address where link to the results is emailed after the prediction is completed. Otherwise, the browser window
must stay open during the prediction in order to access the web page with the results. Prediction is launched by
clicking on the ‘Run’ button, which redirects to the processing page, followed by the results’ page. The entire
prediction process, which takes about 4 minutes for an average size protein sequence (about 300 residues long),
runs automatically on the server side. The processing page provides updates on the process, including the
current status (acceptance of the job, position in the queue of job, processing the prediction) and completion.

The server provides results in two complementary formats including a text file, in which the data are in an easy-
to-parse comma-separated format, and an interactive graphical output. The text file contains the raw scores and
normalized (using the min-max approach) scores produced by CoMemMoRFPred, fIDPnn, MoRFCHiBiy e and
DisoLipPred, and the binary predictions from CoMemMoRFPred. The threshold we use to binarize the
predictions corresponds to a low FPR = 0.05 (i.e., specificity = 0.95). The text file contains a header explaining
the data format. The server generates the graphical output directly in the web browser window. This graphical
panel visualizes the predicted MemMOoRF regions based on the binary predictions from CoMemMoRFPred
together with the corresponding normalized putative propensity values, which are shown along the input protein
sequence. We also plot the propensity values generated by fIDPnn, DisoLipPred and MoRFCHiBipign. The



graphical panel is interactive with zoom-in and zoom-out features, panning along the horizontal axis (protein
sequence), and ability to reset to the default view. Users can obtain details, such as numeric values of
propensities and location of the putative MemMoRF regions, on the mouse hover. Moreover, we include an
option to generate and download an image of the graphical panel.

Case study

We explain CoMemMoRFPred’s predictions using an example test protein, the cell division topological
specificity factor MinE (UniProt accession number: POA734). The Min protein system is crucial for cell division
in E. coli and consists of the MinC, MinD and MinE proteins [85]. Briefly, dynamic oscillations of these
proteins from one pole of the bacterial cell to the other pole determines placement of the central division septum
during the E. coli’s cell division process [86]. As part of this process, a MemMOoRF region at the N-terminus of
the MinE sequence (positions 2 to 9) binds to the cell membrane inducing changes in the membrane topology
and facilitating detachment of MinD from membranes during disassembly stage of the oscillation cycle [87].
Upon binding the membrane, this MemMoRF undergoes a conformational change by folding into an
amphipathic helix which drives the deformation of the membrane [88].

We use the MinE sequence to generate prediction of MemMoRF with CoMemMoRFPred (Figure 6), which
predicts a MemMOoRF region at the N-terminus (positions 4 and 15). This prediction closely matches the native
MemMoRF (positions 2 to 9) [88]. While the region predicted by CoMemMoRFPred extends beyond the native
MemMOoRF region, three basic amino acids that are part of this extension (R10, K11 and K12) were reported to
undergo folding upon binding to the membrane [87]. This observation suggests that our prediction might be in
fact correct. The MemMOoRF predictions by CoMemMoRFPred are facilitated by the scores of the three methods
that it combines: fIDPnn, DisoLipPred and MoRFCHiBivin. The putative propensities produced by each of the
three methods (gray lines in Figure 6) are relatively high for the putative MemMoRF region (green horizontal
bar in Figure 6). This observation reveals that the prediction of this regions is supported by high putative
propensities for disorder (flIDPnn), for MoRF (MoRFCHiBiyign) and for lipid binding (DisoLipPred). Having
high values for only two or one of these putative propensities is insufficient to predict MemMoRFs. These
observations illustrate why the SimpleAverage*Minimum technique that we use to combine predictors provides
strong results. Comparison of the red and green line plots in Figure 6 explains the smoothing performed by
CoMemMoRFPred. The output of the CoMemMoRFPred (green line) is based on averaging and produces a
smoother curve when compared to the red line produced by the fIDPnn+DisoLipPred+MoRFCHiBirign
combination. Moreover, smoothing also potentially eliminates spurious predictions of very short MemMoRFs
that might be generated by the fIDPnn+DisoLipPred+MoRFCHiBiLign: combination. We note that this
combination generates such spurious prediction near the C-terminus (residues 83 and 84) where the propensities
exceed the value of the threshold. Smoothing lowers the values of propensities in that region. More generally,
predictions from CoMemMOoRFPred for residues that have either high or low putative propensities (i.e.,
propensities that are substantially higher or lower than the threshold used by CoMemMoRFPred; green dotted
line in Figure 6), should be considered as more accurate than the predictions associated with propensities near
the threshold value. Our example demonstrates how to understand and interpret results produced by
CoMemMoRFPred, and how these predictions are generated from the results output by fIDPnn, DisoLipPred,
and MORFCHiBiLight.
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Figure 6. MemMOoRF predictions for the MinE protein from E. coli (UniProt: POA734). We show the native MemMOoRF region (MemMoRF database ID: 9247) and the putative
MemMOoRF generated by CoMemMoRFPred as the black and green horizontal bars, respectively. The line plots show putative propensities from CoMemMoRFPred (solid green line),
fIDPnn+DisoLipPred+MoRFCHiBiLignt combination that relies on the SimpleAverage*Minimum technique (solid red line), fIDPnn (solid gray line), MoRFCHiBILight (dotted dark gray
line) and DisoLipPred (dotted light gray line). We visualize the thresholds that we use to generate the binary predictions for CoMemMoRFpred and fIDPnn+DisoLipPred+MoRFCHiBiLignt
combinations as dotted horizontal lines in green and red color, respectively. Both thresholds correspond to the correct prediction rate computed on the test dataset (i.e., the number of
putative MemMoRFs is set to be the same as the number of native MemMoRFs).



Summary

IDRs interact with a variety of partner molecules, such as peptides, proteins, nucleic acids and lipids, by
adopting partner-specific conformations upon binding. We focus on recently introduced MemMoRF regions,
which are lipid-binding MoRFs that were found in the membrane-associated and transmembrane proteins.
Motivated by functional importance and a relatively small number of the experimentally annotated MemMoRFs
and the lack of computational tools for prediction of these regions, we apply an empirical approach to develop
an accurate sequence-based predictor of these regions. We use an experimentally validated collection of low
similarity proteins with MemMOoRFs to select and combine results produced by a representative group of
relevant state-of-the-art predictors of the intrinsic disorder (fIDPnn), MoRFs (MoRFCHiBiren), and disordered
lipid-binding regions (DisoLipPred). The resulting CoMemMoRFPred method generates accurate predictions of
MemMOoRF residues, with AUC ROC =0.785, F1_max =0.182 and TPR = 0.36 at FPR of 10%. Moreover, we
show that the inclusion of the smoothing operator in CoMemMoRFPred results in the prediction of MemMoRF
regions that closely resemble the distribution of the length of the native MemMoRF regions. We release
CoMemMoRFPred as a convenient and freely available web server at
http://biomine.cs.vcu.edu/servers/CoMemMoRFPred. This resource automates and performs the entire
prediction process on the server side, and can be used without the need to install any software. It provides
predictions in two complementary formats, text files that can be easily parsed to acquire the underlying raw
predictions and an interactive graphical interface that visualizes the predictions directly in the web browser
window. We also introduce a case study that demonstrates how to interpret and use the CoMemMoRFPred’s
predictions. Similar to the existing predictors that target other types of disordered binding regions [50], our tool
can be used to support efforts to identify MemMoRFs in a time and resource-efficient manner. We note that the
currently characterized MemMoRF regions were found in the a-helical transmembrane proteins [37]. As part of
our future work we plan to collect data on MemMoRFs in the f-barrel membrane proteins, expand our
MemMoRF database [37], and evaluate CoMemMoRFPred on these proteins. Ultimately, we believe that this
work will aid exploration of the functional roles of MemMoRFs in cellular processes and pathologic phenomena
related to membrane bilayer interactions.
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