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Abstract 
Current sequence-based predictors of protein-binding residues (PBRs) belong to two distinct categories: structure-
trained vs. intrinsic disorder-trained. Since disordered PBRs differ from structured PBRs in several ways, 
including ability to bind multiple partners by folding into different conformations and enrichment in different 
amino acids, the structure-trained and disorder-trained predictors were shown to provide inaccurate results for the 
other annotation type. A simple consensus-based solution that combines structure- and disorder-trained methods 
provides limited levels of predictive performance and generates relatively many cross-predictions, where residues 
that interact with other ligand types are predicted as PBRs. We address this unsolved problem by designing a 
novel and fast deep-learner, DeepPRObind, that relies on carefully designed modular convolutional architecture 
and uses innovative aggregate input features. Comparative empirical tests on a low-similarity test dataset reveal 
that DeepPRObind generates accurate predictions of structured and disordered PBRs and low amounts of cross-
predictions, outperforming a comprehensive collection of 12 predictors of PBRs. Given the relatively low runtime 
of DeepPRObind (40 seconds per protein), we further validate its results based on an analysis of putative PBRs in 
the yeast proteome, confirming that interactions in disordered regions are enriched among hub proteins. We 
release DeepPRObind as a convenient web server at https://www.csuligroup.com/DeepPRObind/. 
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1 Introduction  

Protein-protein interactions (PPIs) are crucial for many cellular functions including regulation of cell cycle, 
signaling, and metabolism [1]. Knowledge of PPIs facilitates understanding of cellular processes, development of 
protein docking programs, construction of PPI networks, drug design efforts and exploration of molecular 
mechanisms that underpin certain diseases [2-6]. Information on PPIs is available in multiple databases including 
Protein Data Bank (PDB) [7] that provides atomic level details, DisProt [8] and BioLiP [9] that focus on the 
amino acid-level annotations, and STRING [10], mentha [11] and BioGRID [12] that annotate these interactions 
at the protein level. While billions of interactions were annotated at the protein level [10], more detailed 
annotations of interacting residues are available for a small fraction of them. 

This large knowledge gap motivates development of computational predictors of protein-binding residues (PBRs) 
in protein sequences. Recent works categorize these tools into two classes: those developed using training datasets 
of structured protein-protein complexes (structure-trained predictors) vs. methods developed using annotations of 
intrinsically disordered PBRs (disorder-trained predictors) [13, 14]. The training and testing of the structure-
trained methods rely on the data collected from PDB and BioLip while the disorder-trained predictors utilize data 
from DisProt. Recent surveys identify close to 20 structure-trained predictors [15-19]. In chronological order, they 
include SPPIDER [20], PSIVER [21], LORIS [22], SPRINGS [23], predictors by [24, 25], CRF-PPI [26], PPIS 
[27], SPRINT [28], iPPBS-Opt [29], SSWRF [30], methods by [31, 32], EL-SMURF [33], SCRIBER [34], 
DeepPPISP [35], and PROBselect [13], and DELPHI [36]. A similarly large number of the disorder-trained 
predictors was released [14, 37]. They include alpha-MoRFpred [38], ANCHOR [39, 40], retro-MoRFs [41], 
MoRFpred [42], MFSPSSMpred [43], DISOPRED3 [44], DisoRDPbind [45-47], MoRFChiBi [48], 



MoRFCHiBiWeb [48], fMoRFPred [49], MoRDPred-plus [50], OPAL [51], ANCHOR2 [40], and OPAL+ [52]. 
Majority of these methods predict molecular recognition features (MoRFs), which are short sequence segments 
that undergo folding upon binding and that are typically embedded inside longer disordered regions [49]. 
ANCHOR, ANCHOR2 and DisoRDPbind predict a broader class of intrinsically disordered PBRs that are include 
longer regions. Intrinsically disordered PBRs are different from structured PBRs in several ways including the 
fact that the former may bind to several different proteins or peptides by folding into different conformations [53-
55], have larger surface area and are enriched in the disorder-promoting amino acids [56], and are overrepresented 
among hub proteins [57, 58]. Given these differences, recent study demonstrates that the structure- and disorder-
trained predictors provide inaccurate results for the other type of interaction, i.e., structured-trained methods 
perform poorly for the disordered PBRs and vice versa [13]. That study proposed a meta predictor-based solution 
by combining results of a well-performing disorder-trained predictor (DisoRDPbind) and a well-performing 
structure-trained method (SCRIBER) based on averaging their outputs [13]. While the resulting HybridPBRpred 
method offers relatively accurate results for structured and disordered PBRs, its predictive model is simple, 
leaving room to develop a more sophisticated design that would likely provide more accurate predictions. 
Moreover, HybridPBRpred and the disorder- and structure-trained methods were recently shown to cross-predict 
binding residues, i.e., they predict many residues that interact with other partner types (e.g., nucleic acids and 
small ligands) as PBRs and vice versa [13, 19]. 

We address these issues by developing a new tool, DeepPRObind, that aims to accurately predict structured and 
intrinsically disordered PBRs and to significantly reduce cross-predictions when compared to the current 
methods. DeepPRObind relies on a deep convolutional neural network that processes an information-rich profile 
derived from an input sequence using two empirically parametrized modules for the prediction of the disordered 
and the structured PBRs. The key innovations behind our model are the use of aggregate features that quantify 
relevant information at the sequence window and full sequence levels, an empirically crafted approach to combine 
results from the two modules, and relatively low runtime. We use a recently introduced test dataset [13], which 
shares <25% similarity to the training and validation proteins, to compare predictive performance and the cross-
predictions generated by DeepPRObind, HybridPBRpred and a representative selection of the disorder-trained 
and structure-trained methods. Given the relatively low computational cost of DeepPRObind, we further validate 
its results using protein-level annotations of PPIs in the yeast proteome. 

2 Materials and methods 

2.1 Selection of representative predictors 

We analyze relevant literature [14-19, 37] and perform PubMed search to identify disorder-trained and structure-
trained predictors of PBRs for inclusion in the comparative study. We select predictors that are available as web 
servers and/or standalone code, produce results reasonably quickly to efficiently process the test dataset (<5 min 
per protein), and generate putative real-valued propensities of PBRs. The latter is necessary to generate metrics 
that can be adequately compared across methods, which we discuss in Section 2.3. Consequently, we identify a 
comprehensive collection of 12 predictors: SPPIDER [20], PSIVER [21], LORIS [22], SPRINGS [23], CRF-PPI 
[26], SSWRF [30], SPRINT [28], SCRIBER [34], DisoRDPbind [45], fMoRFpred [49], ANCHOR2 [40], and 
HybridPBRpred [13]. They include 8 structure-trained methods, 3 disorder-trained tools (ANCHOR2, 
DisoRDPbind and fMoRFpred), and HybridPBRpred – the only method that combines these two types of 
predictions. This collection of methods improves over the scope of a recent comparative study that focuses on 
empirical evaluation of 7 structure-trained methods [19]. Moreover, two of the disorder-trained methods that we 
include, ANCHOR2 and DisoRDPbind, secured the top two spots in the recent CAID community assessment of 
the prediction of disordered binding regions [59]. The 12 selected methods cover older and popular/highly cited 
tools, such as SPPIDER and PSIVER, and recently published methods, such as HybridPBRpred and ANCHOR2. 
These methods utilize a broad spectrum of predictive models, ranging from relatively simple Naïve Bayes 
(PSIVER) and regressors (LORIS, SCRIBER, DisoRDPbind, and ANCHOR2), through more complex models, 
such as random forest (CRF-PPI), to sophisticated solutions that involve support vector machines (SSWRF, 



SPRINT, fMoRFpred), neural networks (SPPIDER and SPRINGS), and ensembles (SSWRF and 
HybridPBRpred). 

2.2 Datasets  

We use a high-quality test dataset from a recent study of the disorder- and structure-trained predictors [13] to 
evaluate and compare predictive performance of DeepPRObind and the other 12 predictors. These test proteins 
and their annotations of binding were collected from PDB [7], BioLiP [9] and DisProt [8] databases. These data 
were clustered with the training datasets of the 12 predictors and only proteins that share <25% similarity to these 
training proteins are included in the test dataset [13]. The resulting test dataset is a balanced collection of 92 
structured and 92 disordered proteins that features 9,442 PBRs and 3,477 residues that interact with other ligands. 
We use the latter residues to assess the cross predictions. We provide a more detailed breakdown of the number of 
binding residues across the structure-annotated and disorder-annotated proteins in Suppl. Table S1. We note that 
the size of this test dataset, which is 184 proteins, is in line with the test datasets used in related studies, including 
LORIS [22] and CRF-PPI [26] that used two test datasets with 72 and 164 proteins, and SSWRF [30], 
DisoRDPbind [45], SPPIDER [20], PSIVER [21], SPRINT [28], and HybridPBRpred [13] that were assessed on 
164, 115, 149, 72, 80, and 184 test proteins, respectively. 

We collect data that we use to empirically design DeepPRObind by combining training datasets of the 12 
predictors and disordered proteins from DisProt [8]. We uniformly sample this large pool of proteins and remove 
those that share similarity with the test proteins. We combine these proteins with the 184 test proteins, cluster the 
resulting protein set with BLASTCLUST [60] at 25% similarity, remove the clusters that include test proteins, 
and retain one protein for each remaining cluster. The resulting protein set includes 1,190 structure-annotated and 
680 disorder-annotated proteins. We select at random a balanced set of 210 structure-annotated and 210 disorder-
annotated proteins that compose the validation dataset. The remaining 980 structure-annotated and 470 disorder-
annotated proteins constitute the training dataset. We use the training and validation datasets to empirically design 
and optimize the DeepPRObind model, and subsequently compare the results produced by this optimized model 
with the other methods using the test dataset. Given the above clustering, proteins in the training and validation 
datasets share low (<25%) similarity with the test proteins. 

We give detailed statistics concerning the number of PBRs, residues that interact with other ligands and the 
remaining (non-binding) residues for the training, validation and test datasets in Suppl. Table S1. The datasets, 
including annotations of interacting residues, are available at https://www.csuligroup.com/DeepPRObind/.  

2.3 Evaluation criteria 

The outputs of PBR predictors include putative real-valued propensities that quantify likelihood that a given 
residue binds proteins and binary values that classify residues as either PBRs or non-protein interacting. The 
binary predictions are typically derived from the propensities with a threshold, such that residues with 
propensities > threshold are categorized as PBRs, and otherwise they are assumed to be non-protein interacting. 
We assess binary predictions with a comprehensive set of metrics including F1, MCC, precision, specificity and 
recall. We standardize the binary predictions between considered predictors to ensure that they can be directly 
compared, i.e., they produce the same rates of predictions of PBRs. More specifically, we set the threshold such 
that specificity = 0.9. We evaluate the predicted propensities using two popular metrics [13, 61]: area under the 
ROC curve (AUC) and the area under the precision-recall curve (AUPRC). Moreover, we quantify the cross-
predictions with area under cross-prediction curve (AUCPC), cross-prediction rate, area under the over-prediction 
curve (AUOPC) and over-prediction rate [13, 61]. Higher values of AUC and AUPRC indicate better predictive 
performance while lower values of AUCPC and AUOPC correspond to fewer cross-predictions and over-
predictions. We define these metrics in the Supplement. 

2.4 DeepPRObind predictor 

DeepPRObind is a modular deep learner that generates propensity for protein binding for each residue in the input 
protein sequence. We summarize this predictive framework in Figure 1A. First, we produce two types of inputs 
from the protein sequences: the commonly used sequence profile and the new aggregate features (green block in 



Figure 1A). The profile relies on fast and accurate tools that use the input sequence to derive key amino acid-level 
characteristic that are relevant to protein-protein interactions including conservation, propensity for binding, and 
putative solvent accessibility, secondary structure and intrinsic disorder [15]. The new aggregate features 
summarize characteristics relevant to protein binding at a local sequence window/segment and at the whole 
sequence levels, complementing the residue-level information from the sequence profile. Second, motivated by 
the distinct characteristics of the underlying binding sites for the structured vs. disordered protein binding sites 
[56], we use two deep convolutional network modules that we train from the structure-annotated and disorder-
annotated data (yellow and orange blocks in Figure 1A). This allows us to optimize each network independently 
by evaluating whether they benefit from the inclusion of the new aggregate features and by optimizing the 
network size. Finally, we empirically design “combination layer” (blue block in Figure 1A) that outputs universal 
(i.e., annotation type agnostic) propensities for protein binding based on predictions of the two modules and the 
putative disorder content that we obtain with the popular IUPred2A method [40]. 

 

Figure 1. Architecture of DeepPRObind. Panel A is the overall topology. Panel B details the ResNet blocks from the deep 
convolutional neural network (CNN) modules. K is the kernel size in the CNN modules. Lf and Lw are the number of aggregate 
features and the window size, respectively. Ns and Nd are the numbers of neurons in the fully connected feed-forward layers of 
structure-trained and the disorder-trained networks, respectively, which we optimize empirically. 

2.4.1 Sequence profile, amino acids-based features and aggregate features 
The sequence profile is a collection of residue-level characteristics that are relevant to protein binding [15], and 
which are presented to the deep network using a sliding window. This type of input is commonly used by related 
deep network methods [62, 63]. We ensure that these characteristics are produced by fast and accurate methods, 
so that the overall runtime does not exceed 1 minute. The profile includes relative solvent accessibility (RSA) 
predicted with ASAquick [64]; secondary structure predicted by the single sequence-based version 3.2 of PSI-
PRED [65]; putative intrinsic disorder and disordered binding regions produced by IUPred2A and ANCHOR 
[40], respectively; evolutionary conservation (ECO) calculated with HHblits [66] based on the 
uniprot20_2015_06 database; and relative amino acid propensity (RAAP) for binding to proteins, DNA, and RNA 
protein computed using the approach described in ref. [15]. We provide a detailed description of the sequence 
profile in Suppl. Table S2. Some of the related deep network-based solutions also directly use the amino acid 
sequence (AAS) as the input [67]. We encode the amino acids via the 1-hot scheme, which is a 21-dimensional 



binary vector where 20 positions denote the 20 amino acid types and the last position encodes for undetermined 
types, such as X. We study empirically whether inclusion of the AAS input would benefit our model. 

Recent works in related areas show that application of the protein-level and window-level features benefits 
prediction of disordered linkers when using support vector machines [68, 69]. The protein-level features average 
the relevant residue-level characteristics that are included in the sequence profile over the whole protein chain. 
These features include the average putative RSA, average conservation, average putative disorder and disordered 
binding propensities, average propensities for putative helix, coil and strand conformations, average RAAP values 
and amino acid composition of the sequence. The window-level features contrast average characteristics of the 
neighboring residues in the sequence (middle half of the sliding window) against the flanking regions (the two 
adjacent regions that cover quarter of the window at each of its termini), which is motivated by the use of such 
approach in a couple of related studies [42, 69]. These features intend to identify regions in the input sequence 
that are different from the flanking regions, e.g., regions that have high putative solvent accessibility and 
conservation surrounded by putative buried residues that have relatively lower conservation, which may suggest a 
higher likelihood for binding. The window-level features consider the differences in conservation, putative RSA, 
putative disorder and disordered binding propensities, propensities for putative helix, coil and strand 
conformations, RAAP values and amino acid composition. We enumerate and describe the aggregate protein-
level and window-level features in Suppl. Table S2. We empirically investigate whether these aggregate features 
would benefit predictions made by the deep network modules. 

As Figure 1A shows, we feed the input protein sequences into the IUpred2A, HHblits, ANCHOR, ASAquick and 
PSI-PRED methods. Next, we combine their outputs to generate sequence profile, separately compute AAS from 
the input sequence, and calculate the aggregate features, which we subsequently input into the neural network 
modules. 

2.4.2 Design of the deep convolutional networks 
Motivated by the diversity of the key characteristics of the structured vs. disordered binding sites (e.g., disordered 
sites have larger surface area and are enriched in the disorder-promoting amino acids) [56], we design and 
individually optimize disorder-trained and the structure-trained deep networks. We also formulate and empirically 
optimize a combination layer that merges the two predictions to obtain an annotation type-agnostic prediction of 
PBRs.  

We design the deep networks by relying on two convolutional neural network (CNN) modules: the multi-scale 
CNN module that uses the sequence profile and AAS as its input, and the aggregate CNN module that processes 
the two types of the aggregate features (Figure 1A). The multi-scale CNN module uses several different kernel 
sizes (1, 3 and 5) followed by PReLU activation units to capture relations between neighboring residues in the 
input sequence using different sizes of these neighborhoods. Similar approach was shown to be successful in 
related predictions from protein and nucleic acid sequences [67, 70]. Next, we pass the outputs of PReLU units 
into ResNet blocks (Figure 1B), which produce information-rich latent spaces by utilizing shortcut connections 
and multi-head attention units. The multi-head attention units, which we use in both the multi-scale and the 
aggregate CNN modules, aim to identify latent features that are useful for prediction of PBRs. The attention is 
calculated by using the following formulas: 
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to calculate attention weight by formula (2), where 𝑑௞ represents the number of columns of the 𝑄௜ and 𝐾௜. Scaling 
by ඥ𝑑௞ aims to ensure stability of the softmax function gradient. The attention weights are used to identify input 
features that are more valuable for the prediction of PBRs. Next, the output of ℎ𝑒𝑎𝑑௜ is computed by the dot 
product between the attention weights and 𝑉௜; see formula (3). Finally, the results from the n heads are 
concatenated and multiplied by the trained matrix 𝑊ை to obtain outputs; see formula (4). Next, we reduce the size 
of the resulting latent feature space using a convolutional layer with the kernel size equal to the feature space size 
(Lw), which is followed by the PReLU activation units. This approach performs pooling using the entire latent 
space, improving over a typically used 1D max-pooling that instead relies on the max values.  

In contrast to the multi-scale CNN module, the aggregate CNN module does not utilize kernels sizes > 2 since the 
aggregate features are not sequential (i.e., they represent averaging of different characteristics over the whole 
sequence and sliding windows). Thus, we use a convolutional layer with kernels of size =1 and multi-head attention 
layer to extract latent features. First, we obtain Lf by 32 embedding matrix by processing the Lf = 68 aggregate 
features with a CNN layer that includes 32 kernels of size 1. This step could be seen as equivalent to using a fully 
connected layer with 32 neurons. Next, we feed the embedding matrix into the attention layer with 8 heads (default 
number of heads) that aims to select elements that are more useful for the prediction of PBRs. Each head processes 
outputs from the 32 kernels and generates inputs to the subsequently used CNN layer with one kernel of size Lf = 
68. This layer generates a 32-dimensional output vector, where each value is based on one of the columns from the 
attention matrix. This design reduces the number of connections compared to a fully connected feed-forward design 
and the use of the attention layer facilitates identification of parts of the corresponding feature space that are relevant 
to prediction of PBRs. 

We pass the pooled outputs generated by the multi-scale and aggregate CNNs into two fully connected feed-
forward layers, one for the structure-trained and one for the disorder-trained model. We empirically optimize sizes 
of these two layers that consist of Ns and Ns/2 neurons for the structure-trained network and Nd and Nd/2 neurons 
for the disorder-trained network. We consider three network sizes: small with N=32, medium with N=64 and 
large with N=128. In addition, we consider eight different topologies that we summarize in Suppl. Table S3. They 
cover all combinations of corresponding inputs and matching network designs, where multi-scale CNN modules 
process the sequence profile and/or AAS features and aggregate CNN modules process the protein-level aggregate 
features, the window-level aggregate features or both types of the aggregate features together. 

We train the CNNs modules using Pytorch with the Adam optimizer and binary cross-entropy loss function. We 
optimize the learning rate and batch size parameters separately for the structure-trained module using the 
structure-annotated training proteins and for the disorder-trained module using the disorder-annotated training 
proteins. We use a grid search based on the training dataset. Consequently, we set the learning rates of the 
structure-trained and disorder-trained CNNs modules to 0.0003 and 0.0002, respectively. The batch sizes of these 
two modules are both set to 1024. 

We compare results of the corresponding 24 configurations (3 network sizes and 8 topologies) for the structure- 
and disorder-trained networks on the validation dataset in Suppl. Table S4. We note a modest impact of the 
network size on the predictive performance. When using the typically applied sequence profile, the AUCs range 
between 0.684 and 0.688 for the structure-trained network, and between 0.817 and 0.823 for the disorder-trained 
network. This suggests that large networks are not necessary to solve this problem. The impact of the new 
aggregate features is more substantial. Using the middle size network for the structure-trained model (i.e., the best 
size for this model), inclusion of the aggregate features and aggregate CNN module improves AUC from 0.684 
(best design without the aggregate features) to 0.698 (best design with the aggregate features). The structure-
trained network that combines the protein-level and window-level aggregate features secures AUC = 0.698, which 
is slightly better than when using the protein-level aggregate features alone (AUC = 0.694) and window-level 
aggregate features alone (AUC = 0.692). This suggests that both window and protein-level features are helpful for 
the predictions for the structured proteins, although the improvement from combining them is relatively small. We 
believe that the aggregate characteristics help to separate regions and sequence that bind proteins from those that 
do not. Similarly, addition of the AAS features as the input for the small size disorder-trained network (i.e., the 



best network size for this model) produces a considerable increase in AUC from 0.823 to 0.840. To compare, 
adding aggregate features for the disorder-trained network generates a smaller increase, from 0.823 to 0.837. This 
can be explained by the fact that disordered regions are known to possess a strong amino acid bias, being depleted 
in Cysteines and aromatics and enriched in polar and charged residues  [71-73], which is not necessarily reflected 
at the whole sequence level.  

To summarize, the selected structure-trained and disorder-trained models are different in multiple aspects 
including inputs (aggregate features and sequence profile for the structure-based model vs. AAS features and 
sequence profile for the disorder-based model), topology (aggregate and multi-scale CNNs for the structure-based 
model vs. only multi-scale CNN for the disorder-based model) and network size (smaller fully connected layers 
with Nd = 32 for the disorder-based model vs. larger fully connected layers with Ns = 64 for the structure-based 
model). Figure 1A summarizes these differences. 

We re-tested the corresponding best network sizes, i.e., medium size for the structure-trained CNN and small size 
disorder-trained CNN, on the test set (Suppl. Table S5). The corresponding results confirm that the structure-
trained network benefits from the aggregate features and aggregate CNN module (AUC of 0.706 vs. 0.688) and 
the best results for disorder-trained network is when using AAS (AUC of 0.849 vs. 0.836). Moreover, using both 
types of aggregate features for the structure-trained network (AUC of 0.706) is better than using the window-
based features separately (AUC = 0.696) and protein-based features separately (AUC = 0.696), confirming that 
both types of aggregate features are useful. This demonstrates that our observations are robust across multiple 
datasets that are characterized by the low sequence similarity. The bottom line is that inclusion of the new to this 
area inputs and corresponding extension of the network topology produces noticeable and consistent 
improvements in predictive quality. 

2.4.3 Design of the combination layer 
After developing the structure- and disorder-trained CNNs modules, we rationally design and empirically 
compare several implementations of the combination layer (blue block in Figure 1A). This layer uses 3 inputs: 
results from the structure-trained CNN, outputs of the disorder-trained CNN, and putative protein-level disorder 
content. We use the latter to suggests which of the two inputs carries more weight, i.e., a high putative disorder 
content would indicate that the disorder-trained CNN is likely to provide a more suitable input. We use the 
popular and fast IUPred2A [40] to predict the content, which is defined as fraction of disordered residues in a 
protein sequence. IUPred2A was shown to produce accurate content predictions [74, 75] and is available to our 
model since we use it to generate a part of the sequence profile.  

The first design relies on a simple feed-forward network that takes a sliding window of size w of the predictions 
from the structure-trained and the disorder-trained CNNs and the putative content as the inputs, which are 
processed by a single layer of 2*w+1 neurons, i.e., the number of neurons matches the number of inputs. This 
layer is connected to an output neuron that produces the real-valued propensity for protein binding. We train this 
network on the combined set of the structure-annotated and the disorder-annotated training proteins by freezing 
the disorder-trained and the structure-trained CNNs. We use learning rate = 0.0003 and batch size = 256 that we 
determine based on the grid search on the training dataset. We use an early stop condition to minimize overfitting. 
We stop training when the AUC on the validation set does not improve. 

The second design relies on a more complex transformer encoder network with the same inputs and sliding 
window of size w as the first design. This network has 3 encoding layers followed by a feed-forward layer with 32 
neurons which feeds into the output neuron. Each encoding layer includes a multi-head self-attention layer with 3 
heads and a feed-forward layer with 64 neurons. The size of each head in the multi-head self-attention layer is the 
same as the window of size w. Similar to the feed-forward design, we train this transformer network on the 
structure-annotated and the disorder-annotated training proteins by freezing the disorder-trained and the structure-
trained transformers. We apply the learning rate of 0.0003 and batch size of 256 that we determine based on the 
grid search on the training dataset, and we use the early stop condition.  



Finally, we craft rules that rely on the background knowledge to implement the combination layer. These rules do 
not utilize a training process. We formulate these rules to ensure that they merge PBRs predicted by the two CNN 
models which target different structural context (structured vs. disordered regions). To do that, we first binarize 
the predicted propensities using thresholds that maximize F1 value on the validation dataset. We use the binary 
predictions to differentiate how the underlying propensities are combined together, where we aim to produce 
larger combined propensity when either and/or both of the two models predict putative PBRs. Moreover, we use 
IUPred2A’s predictions to rationally select a more suitable model when we do not attempt to combine their 
predictions, e.g., when neither predicts PBRs. We choose the structure-trained model when the putative disorder 
content produced by IUPred2A is relatively low (>0.13, which is the average disorder content in the training 
dataset), and otherwise we select the disorder-trained dataset. We devise four rules that gradually consider more 
information:  
 CombinationRule1 picks higher of two putative propensities when the residue is predicted as PBR by either 

model and lower when neither model predicts PBRs 
 CombinationRule2 chooses the propensity predicted by one of the two models based on the putative disorder 

content from IUPred2A 
 CombinationRule3 selects higher of two putative propensities when the residue is predicted as PBR by both 

models and lower when neither model predicts PBRs. If one model predicts PBR then we select the score based 
on the disorder content prediction from IUPred2A 

 CombinationRule4 uses higher of two putative propensities when the residue is predicted as PBR by either 
model, and otherwise it selects the score based on the disorder content prediction from IUPred2A 

Suppl. Table S6 compares results produced by the feed-forward networks, the transformer networks and the four 
rules on the validation dataset. We consider and empirically compare several window sizes w = {3, 5, 7, 9, 15 and 
25} for the two networks. The results of the transformer networks are more accurate than the feed-forward 
networks, irrespective of the window size. This is expected since transformers consider the sequence order. 
Moreover, we find that the predictions from the transformer networks slightly benefit from larger window sizes, 
with the best results for w = 15 and 25. These designs are often among the top three results shown in bold font in 
Suppl. Table S6. The best rule is the CombinationRule4, which outperforms the other 3 rules of thumb. Our 
analysis also highlights the value of selecting models based on the putative disorder content, given the relatively 
low quality of the predictions produced with the CombinationRule1. Interestingly, the predictive quality of the 
CombinationRule4 is marginally better than the predictions from the transformer network: overall AUC = 0.792 
vs. 0.791; AUC for disorder-annotated proteins = 0.703 vs. 0.696; AUC for the structure-annotated proteins = 
0.822 vs. 0.823. This rule also generates predictions with the lowest amount of cross-predictions (the lowest 
AUCPC = 0.314) and over-predictions (the lowest AUOPC = 0.199). This suggests that carefully crafted rules 
that rely on the background knowledge could rival deep networks that are agnostic to the underlying 
characteristics of the problems. Given the slightly more favorable results produced by the CombinationRule4 and 
the fact that it is much faster to compute compared to processing the data through a transformer network, we 
select this rule to implement DeepPRObind. We re-tested these results on the test set (Suppl. Table S7) and found 
that the above observations are consistent across both datasets, further justifying our design choice. 

3 Results 

3.1 Comparative assessment 

We compare DeepPRObind against the 12 disorder- and structure-trained predictors on the test dataset. We collect 
predictions from the 12 methods using web servers or implementations provided by their authors. We also 
consider combining results of the best predictors to evaluate whether they could outperform DeepPRObind. We 
utilize the four combination rules to ensemble the best structure-trained method, SCRIBER, with the best 
disorder-trained method, DisoRDPbind. These are the methods that secure the highest AUC scores for the 
structure-annotated and disorder-annotated proteins on the test dataset, respectively (Suppl. Table S8).  We note 
that our comparison includes HybridPBRpred, which is another combination/meta-predictor. Since we have ~14% 



of PBRs in our dataset, we set the binary predictions across all methods to specificity = 0.9. This allows us to 
directly compare the binary metrics (F1, precision, recall, and MCC) across methods. We evaluate significance of 
the differences in predictive performance between DeepPRObind and the other predictors, which quantifies 
robustness of the improvements offered by our method by sampling different protein sets drawn from the test 
dataset. We adopt procedure applied in recent related studies [13, 19, 34], where we compare results over ten 
protein sets which represent 50% of the test proteins that we draw at random. We use the Kolmogorov-Smirnov 
test at 0.05 significance level to check if a given set of measurements is normal. We use the t-test to quantify 
significance of differences for normal measurements, otherwise we use the Wilcoxon rank sum test. 

Table 1, which gives results on the test dataset, reveals that DeepPRObind provides the best predictions across all 
metrics, with the differences that are statistically significant (p-value < 0.05). The DeepPRObind’s AUC, AUPRC 
and F1 are 0.808, 0.457 and 0.454, respectively, compared with 0.772, 0.337 and 0.359 for the second-best 
HybridPBRpred, the only other method that was designed to cover prediction for the structured and disordered 
proteins. This corresponds to the improvement by (0.808-0.772)/0.772 = 5%, (0.457-0.337)/0.337 = 36%, and 
(0.454-0.359)/0.359 = 26%, respectively. The best combination result that relies on the CombinationRule1 to 
predict PBRs is only modestly lower that HybridPBRpred (AUC = 0.758), while at the same time substantially 
improving over the results of its input predictors, DisoRDPbind (AUC = 0.699) and SCRIBER (AUC = 0.692). 
The relatively large and statistically significant difference between the results of this combination approach and 
the better results of DeepPRObind (AUC = 0.758 vs. 0.808; p-value < 0.05) can be attributed to the use of a well-
designed deep network model and new feature types. Suppl. Figure S1, which gives the ROC and precision-recall 
curves, confirms that DeepPRObind performs substantially better than the selected best-performing current 
methods including HybridPBRpred, SCRIBER and DisoRDPbind. The improvements are particularly large when 
FPR values are small, < 0.1, which is arguably the most useful part of the predictions where methods do not 
overpredict the amount of PBRs. Some predictors provide results that are close to random levels, with AUC<0.55 
and MCC<0.05. This can be explained by the fact that they were designed a long time ago using limited amount 
of training data (PSIVER and SPPIDER) and because they address a related but different prediction target, with 
SPRINT predicting interactions with peptides and fMoRFpred predicting binding for short MoRFs [49]. 

Table 1. Comparative assessment on the test set. The binary predictions use thresholds that equalize specificity to 0.9 across 
methods to allow for side-by-side comparisons. + means that DeepPRObind is statistically significantly better than another 
method at p-value<0.05. The best results for each column are shown in bold font. Predictors are sorted by their AUCs. 

Methods AUC AUPRC F1 Precision Recall MCC 
DeepPRObind 0.808 0.457 0.454 0.448 0.460 0.355 
HybridPBRpred 0.772+ 0.337+ 0.359+ 0.377+ 0.343+ 0.251+ 
CombinationRule1 using 
SCRIBER and DisoRDPbind 

0.758+ 0.336+ 0.381+ 0.393+ 0.371+ 0.274+ 

CombinationRule3 using 
SCRIBER and DisoRDPbind 

0.756+ 0.334+ 0.392+ 0.401+ 0.383+ 0.286+ 

CombinationRule4 using 
SCRIBER and DisoRDPbind 

0.741+ 0.324+ 0.380+ 0.393+ 0.369+ 0.274+ 

CombinationRule2 using 
SCRIBER and DisoRDPbind 

0.735+ 0.320+ 0.373+ 0.396+ 0.352+ 0.269+ 

DisoRDPbind 0.699+ 0.312+ 0.381+ 0.394+ 0.369+ 0.274+ 
SCRIBER 0.692+ 0.294+ 0.334+ 0.363+ 0.310+ 0.227+ 
ANCHOR 0.658+ 0.271+ 0.338+ 0.358+ 0.320+ 0.228+ 
LORIS 0.592+ 0.195+ 0.192+ 0.230+ 0.165+ 0.078+ 
SSWRF 0.588+ 0.181+ 0.156+ 0.194+ 0.130+ 0.041+ 
SPRINGS 0.587+ 0.198+ 0.213+ 0.253+ 0.184+ 0.100+ 
CRFPPI 0.572+ 0.183+ 0.170+ 0.208+ 0.143+ 0.055+ 
fMoRFpred 0.524+ 0.168+ 0.144+ 0.181+ 0.119+ 0.027+ 
SPPIDER 0.477+ 0.156+ 0.163+ 0.200+ 0.137+ 0.046+ 
PSIVER 0.473+ 0.144+ 0.105+ 0.134+ 0.086+ -0.017+ 
SPRINT 0.403+ 0.133+ 0.095+ 0.123+ 0.078+ -0.027+ 



We also evaluate results separately for the structure-annotated and the disorder-annotated test proteins (Supp. 
Table S8). DeepPRObind provides the highest values for all metrics across both subsets of proteins when 
compared to the 12 predictors and the four results based on the four combination rules. The improvements are 
always statistically significant for the disorder-annotated proteins. We observe that DeepPRObind provides higher 
values which are not statistically significant for a few metrics on the structure-annotated proteins when compared 
with SCRIBER and hybridPBRpred. However, this is compensated by much larger and statistically significant 
differences for the disorder-annotated test proteins. We note that the disorder-trained predictors, DisoRDPbind 
and ANCHOR (excluding fMoRFpred that targets prediction of short MoRF regions), outperform the structure-
trained predictors on the disorder-annotated test proteins. The results reverse on the structure-trained proteins 
where the structure-trained methods, such as SCRIBER, CRFPPI, SSWRF and LORIS produce more accurate 
results than the disorder-trained methods. These results are in agreement with the recently published study [13], 
which motivated the release of HybridPBRpred and the development of DeepPRObind. Overall, we conclude that 
DeepPRObind secures accurate and the best results on the test dataset, irrespective of the type of the PBR 
annotations. 

3.2 Evaluation of cross-predictions and over-predictions 

Recent studies demonstrate that current sequence-based predictors frequently predict residues that do not bind 
proteins as PBRs [13, 19]. Consequently, we analyze the cross-predictions (i.e., residues that bind other types of 
ligands, such as nucleic acids and small ligands, predicted as PBRs) and over-predictions (i.e., residues that do not 
interact identified as PBRs) using AUCPC and AUOPC, respectively. Table 2 provides these values for the 13 
predictors on the test dataset. Higher AUCPC and AUOPC values denote higher rates of cross- and over-
predictions; they are defined in the Supplement. Results show that DeepPRObind produces the lowest amounts of 
both cross-predictions and over-predictions. The improvements over the 12 current methods are relatively large 
and statistically significant (p-value < 0.05). The second-best HybridPBRpred secures AUCPC of 0.343 and 
AUOPC of 0.220 vs. 0.297 and 0.185 for DeepPRObind. We directly compare the corresponding cross-prediction 
and over-prediction curves for the top four methods that secure AUCPC ≤ 0.4 and AUOPC ≤ 0.3 in Figure 2. We 
find that the DeepPRObind’s curves are particularly favorable when TPRs are < 0.3, leading to high quality 
prediction of PBRs coupled with near-zero rates of the cross-predictions and over-predictions.  

Table 2. Comparative assessment of the cross-predictions and the over-predictions on the test dataset. + means that 
DeepPRObind is statistically significantly better than another method at p-value<0.05. The best results for each column are 
shown in bold font. Predictors are sorted by their AUCPC values, where lower values denote higher quality predictions 

Methods AUCPC AUOPC 
SPRINT 0.580+ 0.598+ 
SPPIDER 0.555+ 0.520+ 
PSIVER 0.519+ 0.528+ 
CRFPPI 0.502+ 0.423+ 
FMoRFpred 0.485+ 0.475+ 
SSWRF 0.464+ 0.408+ 
SPRINGS 0.446+ 0.410+ 
ANCHOR 0.445+ 0.335+ 
LORIS 0.436+ 0.406+ 
disoRDPbind 0.401+ 0.294+ 
SCRIBER 0.376+ 0.303+ 
hybridPBRpred 0.343+ 0.220+ 
DeepPRObind 0.297 0.185 

Suppl. Table S9 summarizes results for the subsets of the disorder annotated and the order annotated proteins in 
the test dataset. The results are consistent with the overall results from Table 2. One exception is SCRIBER that 
secures the lowest rates of cross-predictions for the structure-annotated proteins. We note that SCRIBER was 
specifically designed to reduce the cross-predictions [34] but the caveat is that this strong result comes with 
relatively high cross- and over-prediction rates for the disorder annotated proteins. DeepPRObind is the only 



accurate predictor that generates similarly low AUCPC values across the two subsets of proteins, i.e., 0.294 for 
the structure annotated vs. 0.296 for the disorder annotated proteins. In the nutshell, we find that DeepPRObind 
generates relatively low amounts of the cross-predictions and over-predictions. 

 

Figure 2. Cross-prediction curves (Panel A) and over-prediction curves (Panel B) on the test dataset for DeepPRObind (black 
line) and three other methods with the lowest AUCPC and AUOPC on the test dataset: hybridPBRpred (red), SCRIBER (green), 
and DisoRDPbind (blue).  

3.3 Analysis of PPIs in the yeast proteome 

We apply DeepPRObind to analyze PPIs in yeast, which is a commonly used model organism that has one of the 
most complete PPI networks. We collect PPIs from the mentha resource [11], which is updated weekly and 
combines manually curated PPIs from several interaction databases from the IMEx (International Molecular 
Exchange) consortium. Several past studies have found that intrinsically disordered proteins are enriched among 
the hub proteins [57, 58, 76], which are highly connected in the PPI networks. This can be explained by the fact 
that disordered proteins are involved in one-to-many and in many-to-one interactions [54, 55] and since 
disordered regions may serve as scaffolds to assemble groups of interacting proteins [77, 78]. We empirically 
investigate whether the amounts of the putative PBRs generated by the disorder-trained vs. structure-trained 
models from DeepPRObind agree with these observations.  

We collect PPIs from mentha and obtain sequences for the corresponding 6,063 yeast proteins from UniProt [79]. 
We release DeepPRObind’s predictions for the yeast proteins at https://www.csuligroup.com/DeepPRObind/. 
Next, we sort the yeast proteins by the number of their interaction partners and compare the content of putative 
PBRs (fraction of predicted PBRs in a protein sequence) and the average propensities produced by the structure-
trained and the disorder-trained models from DeepPRObind between the most-connected proteins (i.e., hubs) and 
the least-connected proteins. Since there is no clear consensus on how to define hubs (i.e., how many PPIs a given 
protein has to be involved in to be classified as a hub), we repeat this analysis by comparing the top 10%, 20% 
and 30% of most connected proteins against the same fraction of the least-connected proteins. We report results in 
Table 3. We find a consistent pattern where DeepPRObind identifies statistically significantly more disordered 
putative PBRs among the hub proteins and significantly more structured putative PBRs among the least connected 
proteins. This pattern holds true irrespective of how hubs are defined (top 10, 20 or 30%) and whether we 
measure the content or average propensities. This result is consistent with the findings in the literature [57, 58, 
76], where the disordered proteins were found to be over-represented among the hubs. This provides further 
support for the claim that DeepPRObind produces accurate predictions. 
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Table 3. Analysis DeepPRObind’s predictions in the yeast proteome. We compare the content of putative PBRs (fraction of 
PBRs in protein sequences) and average per-protein propensities generated by the disorder-trained and the structure-trained 
modules of the DeepPRObind model between the most-connected and the least-connected proteins in the PPI network of 
yeast. We report median [25th percentile, 75th percentile] for each protein set. We evaluate statistical significance of 
differences in the content and propensities between the most connected and the least connected proteins using the procedure 
described in Section 3.1. + means that the difference is statistically significant at p-value<0.05. Higher content/propensity is 
denoted by bold font 

Selection of the most connected/hub 
protein vs. the least connected proteins 

Predicted content of PBRs Average scores of predicted PBRs 
Structure-based 
model 

Disorder-based 
model 

Structure-based 
model 

Disorder-based 
model 

Top 10% vs. 
bottom 10%  

Most-connected 0.01[0.00, 0.05] + 0.13[0.01, 0.31] + 0.14[0.11, 0.26] + 0.29[0.15, 0.50] + 
Least-connected 0.54[0.01, 0.98] 0.04[0.00, 0.20] 0.54[0.31, 0.75] 0.17 [0.12, 0.24] 

Top 20% vs. 
bottom 20%  

Most-connected 0.01[0.00, 0.07] + 0.13[0.02, 0.32] + 0.18[0.11, 0.28] + 0.29 [0.15, 0.50] + 
Least-connected 0.18[0.03, 0.82] 0.03[0.00, 0.20] 0.35[0.22, 0.63] 0.17[0.11, 0.28] 

Top 30% vs. 
bottom 30%  

Most-connected 0.02[0.00, 0.08] + 0.12[0.02, 0.32] + 0.19[0.12, 0.29] + 0.29[0.15, 0.51] + 
Least-connected 0.10[0.02, 0.58] 0.03[0.00, 0.20] 0.31[0.19, 0.54] 0.17[0.11, 0.32] 

3.4 Case study 

We illustrate DeepPRObind’s predictions using one of the test proteins, structured protein YbaA from Shigella 
Flexneri (UniProt ID: P0AAQ9). This case study is not meant to represent a broader comparative analysis that we 
already cover in Sections 3.1 and 3.2, but instead aims to visualize and compare outputs generated by 
DeepPRObind and selected best other methods. We select methods that secure high AUCs in Table 1: ANCHOR, 
SCRIBER, DisoRDPbind and HybridPBRpred. This protein forms a dimer where residues identified with black 
markers in Suppl. Fig S2 compose the corresponding interface (PBD ID: 2OKQ). ANCHOR and DeepRDPbind 
do not predict PBRs, i.e., propensities that they generate are below the threshold which is used to identify putative 
PBRs (Suppl. Figure S2). This can be explained by the fact that they target predictions of disordered PBRs while 
this protein is structured. The structure-trained SCRIBER correctly identifies majority of native PBRs, although it 
over-predicts PBRs. Both methods capable of finding structured and disordered PBRs, HybridPBRpred and 
DeepPRObind, also correctly predict many of the native PBRs. HybridPBRpred, which is a consensus of 
SCRIBER and DisoRDPbind, identifies a subset of PBRs that are predicted by SCRIBER. This stems from the 
fact that this consensus relies on a simple combination of the two predictions. In contrast, DeepPRObind produces 
a prediction that identifies a larger fraction of native PBRs and where these predictions (particularly residues with 
high putative propensities > 0.4) are better aligned with the high-density regions of binding residues, which are 
localized at both termini and in the middle of the sequence. This shows that while disorder-trained methods target 
predictions for the disordered proteins, DeepPRObind makes predictions that identify PBRs in the structured 
proteins and which are different than the outputs from HybridPBRpred and SCRIBER. 

3.5 Web server 

We provide a free and convenient web server that implements DeepPRObind at 
https://csuligroup.com/DeepPRObind/. The web server supports batch predictions of up to 20 protein sequences in 
one request. The input protein sequence(s) should be formatted using FASTA format and can be entered via a text 
box or a text file. Predictions are done on the server side and they take about 40 seconds for an average size 
protein sequence (~200 amino acids in length). This low runtime is a consequence of using fast tools to produce 
inputs (IUPred2A, ANCHOR, ASAquick, single-sequence version of PSIPRED and HHblits) and a relatively 
small deep network, which reduces the time needed to process predictions. Users can optionally provide email 
address where we send a notification once the predictions are completed. The outputs include the putative 
propensities and binary predictions of PBRs for each residue in the input protein sequences. We provide these 
predictions in three complementary formats: 1) a parsable text file that can be downloaded from the URL 
provided by the web server; 2) webpage that tabularizes results per residues and annotates putative PBRs in green 
color; 3) an interactive graphical format that visualizes propensities and binary predictions in the format similar to 
Suppl. Figure S2. The graphical plot can be adjusted to zoom in and out on specific sequence regions and 



provides useful information, such as numeric values of propensity and residue positions, on mouse hover. We will 
store the user-generated predictions for at least one month on the web server.  

4 Summary 

Predictors of PBRs in protein sequences are categorized into two major classes: structure-trained vs. disorder-
trained [13, 14]. Since disordered PBRs are different from structured PBRs in several key ways [54, 56, 57], a 
recent study finds that the structure-trained and the disorder-trained predictors provide inaccurate predictions for 
the other annotation type [13]. The existing consensus-based solution, HybridPBRpred [13], relies on a simple 
model that limits its predictive performance and results in substantial amounts of cross-predictions and over-
predictions. To this end, we introduce a modern deep learner, DeepPRObind, that benefits from a carefully 
designed modular convolutional architecture. We empirically demonstrate that the two innovations that underlie 
this architecture, i.e., use of aggregate feature and hand-crafted approach to combine results from modules, 
produce substantial improvements in predictive performance (see Sections 2.4.2. and 2.4.3). Using a recently 
introduced low-similarity test set [13], we show that DeepPRObind generates the most accurate predictions of 
structured and disordered PBRs and significantly reduces cross-predictions when compared to the comprehensive 
collection of 12 current predictors of PBRs that include HybridPBRpred. Given the relatively low runtime of 
DeepPRObind (~40 seconds per average size protein), we further validate results generated by DeepPRObind 
based on a comparative analysis of putative structured and disordered PBRs in the yeast proteome. We show that 
the predicted disordered PBRs are significantly enriched among hub proteins, which agrees with published 
observations [57, 58, 76] and further demonstrates value of the DeepPRObind predictor. We release a free and 
user-friendly web server that implements DeepPRObind at https://www.csuligroup.com/DeepPRObind/.  
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