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Introduction 

Multi-ligand binding residues (MLBRs) are 
defined as amino acids in protein sequences that 
interact with multiple different types of ligands, i.e., 
different small molecules, peptides, proteins, DNA, 

RNA and/or lipids. The ability to bind multiple 
ligands in the same site can be explained by the 
existence of populations of different protein 
conformers in solution.1 In the presence of a speci-
fic ligand, one of these conformations becomes 
energetically more favorable and the resulting
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Abstract 

Multi-ligand binding residues (MLBRs) are amino acids in protein sequences that interact with multiple dif-
ferent ligands that include proteins, peptides, nucleic acids, and a variety of small molecules. MLBRs are 
implicated in a number of cellular functions and targeted in a context of multiple human diseases. There 
are many sequence-based predictors of residues that interact with specific ligand types and they can be 
collectively used to identify MLBRs. However, there are no methods that directly predict MLBRs. To this 
end, we conceptualize, design, evaluate and release MERIT (Multi-binding rEsidues pRedIcTor). This tool 
relies on a custom-crafted deep neural network that implements a number of innovative features, such as 
a multi-layered/step architecture with transformer modules that we train using a custom-designed loss 
function, computation of evolutionary couplings, and application of transfer learning. These innovations 
boost predictive performance, which we demonstrate using an ablation analysis. In particular, they reduce 
the number of cross-predictions, defined as residues that interact with a single ligand type that are incor-
rectly predicted as MLBRs. We compare MERIT against a representative selection of current and popular 
ligand-specific predictors, meta-predictors that combine their results to identify MLBRs, and a baseline 
regression-based predictor. These tests reveal that MERIT provides accurate predictions and statistically 
outperforms these alternatives. Moreover, using two test datasets, one with MLBRs and another with only 
the single ligand binding residues, we show that MERIT consistently produces relatively low false positive 
rates, including low rates of cross-predictions. The web server and datasets from this study are freely 
available at http://biomine.cs.vcu.edu/servers/MERIT/. 
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protein–ligand complex is formed.2 An “extreme” 
case of the underlying structural plasticity are the 
intrinsically disordered regions3,4 that are capable 
of one-to-many binding, i.e., one disordered region 
binds multiple different partner molecules typically 
by folding into different structures.5 Well-known pro-
teins that include the one-to-many binding disor-
dered regions are p53 and 14-3-3.6,7 Other 
illustrative examples of MLBRs include G protein– 
coupled receptors and HIV-1 reverse transcriptase 
that have sites that interact with a variety of small 
ligands.8,9 MLBRs also bind large biomolecules, 
such as nucleic acids, proteins and peptides. For 
instance, sequence regions that interact with both 
DNA and RNA.10 Studies suggest that the multi-
ligand binding and the associated conformational 
flexibility are involved in the allosteric regulation 
and facilitate evolution of new binding functions.11,12 

Moreover, some drugs that combat human dis-
eases, which include cancers, mental disorders, 
cardiovascular diseases and HIV, rely on the bind-
ing sites composed of MLBRs.13,14,8,9 These exam-
ples suggest that identification of MLBRs has 
biological and practical value.
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Experimental methods, such as X-ray 
crystallography, nuclear magnetic resonance, and 
cryo-electron microscopy are used to identify 
binding residues in proteins.15 However, they do 
not scale to match the exponential growth of the 
protein sequence space, which currently has about 
300 million unique chains.16,17 One viable option to 
reduce this annotation gap is to develop and use 
accurate computational predictors of binding resi-
dues. Dozens of these predictors were developed 
to date and they can be divided into methods that 
use protein structure vs. protein sequence as the 
input.18–24 Some of the recently released 
structure-based predictors include GraphBind,25 

DeepPocket,26 GraphSite,27 LigBind,28 GeoBind,29 

and DeepProSite.30 We focus on methods that pre-
dict binding residues from the sequence since they 
are typically faster and require arguably easier to 
acquire sequences to make the predictions. A few 
popular and/or recently released methods that pre-
dict protein-binding residues include SCRIBER,31 

HybridPBRpred,32 PROBselect,33 DELPHI,34 

PITHIA,35 DeepPRObind,36 HN-PPISP,37 and 
ISPRED-SEQ.38 Representative sequence-based 
predictors of DNA-binding residues include Tar-
getDNA,39 DNAPred,40 and HybridDBRpred.41 

Example predictors of the RNA-binding residues 
are FastRNABindR,42 PredRBR,43 and 
HybridRNAbind.44 Popular methods that predict 
residues that bind small ligands include TargetS,45 

TargetVita,46 HEMEsPred,47 DeepATPseq,48 

SCAMPER,49 LMetalSite,50 and M-Ionic.51 While 
many tools are limited to a specific ligand type, 
some predict binding for multiple types of ligands. 
Prediction of the DNA binding and the RNA binding 
residues is covered by BindN+,52 DRNApred,53 

NucBind,54 TSNAPred,55 iNucRes-ASSH,56 and 

MucLiPred.57 The DNA, RNA and protein binding 
residues are predicted by DisoRDPbind,58 

HybridNAP,24 ProNA2020,59 and 
DeepDISOBind.60 MTDsite covers DNA, RNA, car-
bohydrate, and peptide binding.61 
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However, to the best of our knowledge, none of 
the current predictors directly identifies MLBRs. 
While one could use multiple methods in tandem 
to predict MLBRs, this is rather tedious and 
difficult to accomplish. It requires identifying 
suitable predictors, running them using their web 
servers or implementations (if they are 
operational), collecting and standardizing their 
predictions, which could be in different ranges and 
formats, to properly combine them. To this end, 
we introduce MERIT (Multi-ligand binding 
rEsidues pRedIcTor), first-of-its-kind deep network 
model that accurately predicts MLBRs. We 
consider MLBRs as residues that interact with 
multiple biologically-relevant ligands, as defined in 
the popular BioLiP resource.62,63 We developed 
and applied new training, validation and test data-
sets with annotations of MLBRs and residues that 
bind one ligand type. We utilize the latter annota-
tions to consider and minimize cross-predictions, 
defined as the residues that bind one ligand type 
that are incorrectly predicted as MLBRs. Low 
cross-prediction values mean that the correspond-
ing prediction properly differentiates single ligand 
binding residues vs. MLBRs. This is inspired by 
recent ligand-specific predictors of binding residues 
that similarly quantify and aim to combat cross-
predictions, defined as the residues that bind other 
ligand types that are predicted as binding to the tar-
get ligand.31,32,53,54,64–66 MERIT maximizes quality 
of the MLBR predictions by crafting a specialized 
deep network-based predictor that: (1) uses evolu-
tionary couplings to model the fact that multiple resi-
dues bind the same ligand; (2) hybridizes 
transformer modules and fully connected feed-
forward modules to adequately process different 
types of sequence-derived inputs; and (3) applies 
transfer learning and an advanced loss function to 
minimize the cross-predictions. We also empirically 
demonstrate that it generates predictions relatively 
quickly. 

Materials and Methods 

Selection of methods and construction of 
meta-predictors for comparative analysis 

We select and use a collection of nine 
representative sequence-based predictors of 
binding residues to indirectly predict MLBRs and 
provide a baseline that should be substantially 
improved by MERIT. These tools are highly cited 
and/or recently released, relatively fast, available 
as server or code, and cover a broad spectrum of 
ligands. We provide details in the Supplement. 
The nine selected tools are BindN+,52 TargetS,45
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Table 1 Predictive performance of MERIT, the current predictors of binding residues, meta-predictors of MLBRs, and a 
baseline logistic regression model on the test dataset. We report averages ± the corresponding standard deviations 
based on the 100 tests; see the last paragraph in in the “Assessment of predictive performance” sub-section. We 
calibrate sensitivity so that the corresponding predictions maintain the same FPR = 5% or produce the number of 
putative MLBRs that is equal to the number of native MLBRs. We give the p-values when comparing against the MERIT 
model inside the round brackets. The best results are shown in bold font. 

Type Prediction 

target 

Method 

name 

Sensitivity F1max AUROC 

Number of putative 

MLBRs equals 

number of 

native MLBRs 

FPR = 5% 

Current tools DNA BindN+ 0.085 ± 0.011 

(p = 2.0E 147) 

0.126 ± 0.014 

(p = 3.7E 156) 

0.103 ± 0.009 

(p = 8.8E 148) 

0.608 ± 0.014 

(p = 3.5E 162) 

DisoRDPbind 0.046 ± 0.007 

(p = 8.8E 176) 

0.065 ± 0.007 

(p = 2.0E 191) 

0.064 ± 0.005 

(p =  1.3E 177) 

0.502 ± 0.011 

(p = 4.9E 216) 

MTDsite 0.064 ± 0.009 

(p = 8.7E 163) 

0.096 ± 0.012 

(p = 5.7E 172) 

0.096 ± 0.009 

(p =  7.6E 153) 

0.614 ± 0.012 

(p = 5.9E 166) 

MucLiPred 0.115 ± 0.012 

(p = 2.0E 123) 

0.173 ± 0.013 

(p = 2.4E 134) 

0.136 ± 0.010 

(p =  1.3E 121) 

0.676 ± 0.012 

(p = 1.3E 124) 

RNA BindN+ 0.104 ± 0.012 

(p = 2.1E 130) 

0.156 ± 0.014 

(p = 5.0E 142) 

0.123 ± 0.010 

(p = 1.4E 131) 

0.633 ± 0.013 

(p = 8.0E 154) 

DisoRDPbind 0.028 ± 0.009 

(p = 7.3E 180) 

0.049 ± 0.011 

(p = 1.4E 189) 

0.065 ± 0.005 

(p = 9.3E 177) 

0.515 ± 0.014 

(p = 2.5E 201) 

MTDsite 0.065 ± 0.007 

(p = 2.6E 166) 

0.100 ± 0.013 

(p = 3.0E 168) 

0.101 ± 0.008 

(p =  5.6E 150) 

0.620 ± 0.012 

(p = 3.6E 166) 

MucLiPred 0.112 ± 0.015 

(p = 5.7E 119) 

0.180 ± 0.015 

(p = 7.0E 126) 

0.142 ± 0.009 

(p =  1.6E 117) 

0.687 ± 0.013 

(p = 6.3E 112) 

Protein DisoRDPbind 0.026 ± 0.006 

(p = 3.9E 188) 

0.043 ± 0.008 

(p = 1.7E 197) 

0.062 ± 0.005 

(p =  2.0E 179) 

0.477 ± 0.014 

(p = 6.1E 212) 

SCRIBER 0.060 ± 0.011 

(p = 1.5E 158) 

0.090 ± 0.014 

(p = 3.2E 169) 

0.080 ± 0.009 

(p = 5.1E 162) 

0.539 ± 0.020 

(p =  1.2E 171) 

ISPRED-SEQ 0.034 ± 0.008 

(p = 5.7E 180) 

0.058 ± 0.009 

(p = 2.2E 191) 

0.072 ± 0.006 

(p = 4.5E 172) 

0.554 ± 0.013 

(p =  8.5E 193) 

Peptide MTDsite 0.065 ± 0.007 

(p = 3.3E 167) 

0.096 ± 0.009 

(p = 2.2E 177) 

0.090 ± 0.007 

(p = 9.8E 161) 

0.591 ± 0.012 

(p =  6.3E 178) 

ADP TargetS 0.158 ± 0.018 

(p =  1.2E 69) 

0.230 ± 0.021 

(p =  1.5E 80) 

0.180 ± 0.020 

(p = 4.2E 53) 

0.656 ± 0.014 

(p =  7.6E 133) 

AMP TargetS 0.153 ± 0.015 

(p = 6.6E 83) 

0.212 ± 0.018 

(p = 1.6E 98) 

0.169 ± 0.013 

(p = 2.4E 81) 

0.683 ± 0.012 

(p = 1.1E 118) 

ATP TargetS 0.186 ± 0.017 

(p = 4.9E 39) 

0.248 ± 0.020 

(p = 5.5E 66) 

0.200 ± 0.019 

(p = 1.9E 30) 

0.677 ± 0.014 

(p = 1.7E 118) 

GDP TargetS 0.095 ± 0.012 

(p = 2.4E 137) 

0.161 ± 0.015 

(p =  6.5E 138) 

0.135 ± 0.011 

(p =  5.4E 120) 

0.690 ± 0.013 

(p =  3.7E 109) 

GTP TargetS 0.113 ± 0.013 

(p = 3.6E 123) 

0.187 ± 0.015 

(p = 7.2E 122) 

0.146 ± 0.010 

(p =  1.2E 111) 

0.657 ± 0.013 

(p = 5.6E 139) 

Ca2+ TargetS 0.089 ± 0.010 

(p =  2.1E 146) 

0.142 ± 0.011 

(p =  1.8E 155) 

0.112 ± 0.008 

(p =  2.5E 143) 

0.619 ± 0.010 

(p =  3.2E 171) 

MIonic 0.111 ± 0.010 

(p = 1.1E 130) 

0.159 ± 0.013 

(p = 3.3E 143) 

0.122 ± 0.008 

(p =  5.9E 136) 

0.623 ± 0.011 

(p = 1.1E 164) 

Fe2+ MIonic 0.146 ± 0.011 

(p =  1.1E 97) 

0.197 ± 0.018 

(p = 2.6E 110) 

0.167 ± 0.009 

(p =  3.2E 92) 

0.537 ± 0.005 

(p =  2.5E 225) 

Fe3+ TargetS 0.110 ± 0.009 

(p =  3.3E 135) 

0.181 ± 0.012 

(p = 8.2E 132) 

0.143 ± 0.008 

(p =  1.7E 119) 

0.674 ± 0.011 

(p =  2.6E 133) 

MIonic 0.142 ± 0.010 

(p =  8.4E 105) 

0.192 ± 0.015 

(p = 1.9E 120) 

0.151 ± 0.010 

(p =  3.3E 108) 

0.555 ± 0.006 

(p =  1.7E 215) 

Mg2+ TargetS 0.119 ± 0.012 

(p =  1.2E 121) 

0.207 ± 0.016 

(p =  1.1E 109) 

0.156 ± 0.011 

(p =  1.8E 101) 

0.664 ± 0.010 

(p =  9.1E 144) 

MIonic 0.184 ± 0.013 

(p =  1.4E 49) 

0.247 ± 0.014 

(p = 1.7E 77) 

0.189 ± 0.012 

(p =  4.1E 58) 

0.690 ± 0.013 

(p =  3.9E 109) 

Mn2+ TargetS 0.124 ± 0.009 

(p =  1.5E 124) 

0.194 ± 0.014 

(p = 8.3E 121) 

0.154 ± 0.009 

(p = 2.9E 106) 

0.675 ± 0.011 

(p = 3.3E 132) 

MIonic 0.183 ± 0.009 

(p =  2.1E 57) 

0.242 ± 0.013 

(p = 1.1E 85) 

0.187 ± 0.010 

(p =  1.2E 66) 

0.620 ± 0.008 

(p =  1.7E 178) 

( ntinued on next pag



Table 1 (continued)

TargetVita,46 DisoRDPbind,58 SCRIBER,31 

MTDsite,67 ISPRED-SEQ,38 MucLiPred,57 and M-
Ionic51 that collectively predict interactions with 22 
types of ligands (proteins, peptides, DNA, RNA, 
ATP, ADP, AMP, GDP, GTP, Ca2+ , Mg2+ , Mn2+ , 
Fe2+ , Fe3+ , Zn2+ , Co2+ , Cu2+ , Po4 

3 , So4 
2 , carbohy-

drate, heme, and vitamins). We apply them in two 
alternative ways: by using their outputs directly to 
predict MLBRs, and by developing three meta-
predictors that aim to identify residues predicted to 
bind multiple different ligands. The generation of 
the meta-predictions consists of two steps: normal-
ize the putative propensities generated by the nine 
tools and calculate the meta-predictions from these 
normalized values. We formulate the three meta-
predictors by considering three different normaliza-
tions, which we define in detail in the Supplement. 
They include a simple min–max normalization 
(MinMaxaverage meta-predictor), distribution 
mapping-based normalization (Mapaverage meta-
predictor), and a normalization that uses the binary 
state predictions (Binaryaverage meta-predictor). In 
the second step, we use the best predictor for a 
given ligand type which we select based on the 
highest AUROC on the test dataset for that ligand 

(Table 1). We average the two highest normalized 
propensities across the predictions for the 22 ligand 
types. This is motivated by the fact that MLBRs 
must interact with at least two different ligand types.
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Type Prediction 

target 

Method 

name 

Sensitivity F1max AUROC 

Number of putative 

MLBRs equals 

number of 

native MLBRs 

FPR = 5% 

Zn2+ TargetS 0.090 ± 0.008 

(p =  7.4E 150) 

0.138 ± 0.011 

(p = 1.5E 155) 

0.118 ± 0.007 

(p =  1.9E 142) 

0.627 ± 0.010 

(p =  2.7E 167) 

MIonic 0.128 ± 0.008 

(p =  1.5E 122) 

0.177 ± 0.013 

(p = 6.0E 133) 

0.135 ± 0.007 

(p =  3.5E 129) 

0.596 ± 0.007 

(p =  1.6E 194) 

Co2+ MIonic 0.147 ± 0.009 

(p =  5.8E 104) 

0.194 ± 0.013 

(p = 2.7E 121) 

0.150 ± 0.008 

(p =  4.6E 112) 

0.586 ± 0.008 

(p =  2.9E 197) 

Cu2+ MIonic 0.123 ± 0.009 

(p =  4.4E 124) 

0.162 ± 0.014 

(p = 1.6E 138) 

0.137 ± 0.009 

(p =  1.8E 123) 

0.524 ± 0.004 

(p =  3.8E 232) 

Po4 
3 MIonic 0.215 ± 0.014 

(p =  7.2E 05) 

0.295 ± 0.017 

(p = 2.2E 18) 

0.220 ± 0.013 

(p =  9.3E 11) 

0.657 ± 0.010 

(p =  3.9E 149) 

So4 
2 MIonic 0.164 ± 0.015 

(p =  1.2E 69) 

0.241 ± 0.016 

(p = 1.4E 80) 

0.180 ± 0.013 

(p =  3.1E 68) 

0.653 ± 0.009 

(p =  8.5E 153) 

Carbohydrate MTDsite 0.061 ± 0.007 

(p =  3.5E 169) 

0.090 ± 0.010 

(p = 1.8E 178) 

0.085 ± 0.007 

(p =  2.4E 163) 

0.576 ± 0.012 

(p =  4.2E 186) 

Heme TargetS 0.063 ± 0.011 

(p =  6.5E 158) 

0.084 ± 0.013 

(p = 6.5E 175) 

0.093 ± 0.016 

(p =  1.1E 156) 

0.644 ± 0.009 

(p = 3.6E 162) 

Vitamin TargetVita 0.094 ± 0.010 

(p =  4.7E 143) 

0.130 ± 0.010 

(p =  2.7E 161) 

0.102 ± 0.008 

(p =  3.2E 149) 

0.585 ± 0.011 

(p =  2.1E 183) 

Meta predictor MLBRs MinMaxaverage 0.160 ± 0.010 

(p =  3.1E 86) 

0.222 ± 0.016 

(p =  2.3E 95) 

0.167 ± 0.010 

(p = 3.2E 90) 

0.720 ± 0.013 

(p =  1.9E 74) 

Mapaverage 0.150 ± 0.014 

(p = 1.4E 87) 

0.239 ± 0.017 

(p = 3.5E 79) 

0.179 ± 0.011 

(p =  7.9E 74) 

0.730 ± 0.013 

(p =  3.1E 61) 

Binaryaverage 0.137 ± 0.014 

(p = 8.0E 99) 

0.227 ± 0.018 

(p =  5.2E 87) 

0.171 ± 0.012 

(p = 3.4E 82) 

0.723 ± 0.014 

(p = 3.5E 69) 

Machine learning MLBRs Baseline regression 0.164 ± 0.015 

(p = 2.3E 69) 

0.241 ± 0.021 

(p =  6.0E 70) 

0.179 ± 0.015 

(p = 1.5E 65) 

0.702 ± 0.015 

(p = 5.0E 92) 

MERIT 0.223 ± 0.015 0.319 ± 0.019 0.233 ± 0.015 0.773 ± 0.011 
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Datasets 

We develop training, validation and test datasets 
with annotations of MLBRs and residues that 
interact with a single ligand type using BioLiP2. 
This resource provides access to annotations of 
residues that interact with biologically-relevant 
ligands (including peptides, proteins, nucleotides, 
nucleic acids and relevant small molecules) that 
are extracted from high-resolution structures 
(below 3 A) of protein–ligand complexes that we 
collected from the Protein Data Bank.68 We follow 
procedures in related works to construct these 
datasets.24,31,69 We use the training dataset to com-
pute the predictor, validation dataset to parametrize 
the trained model and ensure that it does not overfit 
the training dataset (i.e., we select parameters that 
maximize performance on the validation dataset), 
and test dataset to compare the trained model with 
alternative solutions (i.e., we exclude the test set

move_t0005
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during the model design process). We also appro-
priately ensure that proteins in these datasets share 
low, below 25% sequence similarity to be consistent 
with the published studies. We further detail the 
dataset collection in the Supplement. Supplemen-
tary Table S1 summarizes datasets, which are 
available at http://biomine.cs.vcu.edu/servers/ 
MERIT/. Supplementary Table S2 provides the 
breakdown of the number of binding residues and 
proteins for the ligands that interact with at least 
100 amino acids across the three datasets. More-
over, Supplementary Figure S1A shows the break-
down of the binding residues according to the 
number of ligand types they interact with. About 
60% of binding residues interact with one ligand 
type, 25% with two ligand types, <1% with over 5 
ligands, and the maximal number of interacting 
ligand types is 9. 
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Assessment of predictive performance 

The current ligand binding predictors, meta-
predictors that we formulate, and MERIT generate 
two types of outputs: real-valued propensity for 
multi-ligand binding and a binary state (MLBR vs. 
nonMLBR). The binary states are typically 
generated from the propensities using a threshold, 
where residues with propensities threshold are 
predicted as MLBRs, and otherwise as non-
MLBRs. We assess the predicted propensities 
with the popular area under the receiver operating 

characteristic curve (AUROC) metric and we use 
sensitivity and F1max to assess the binary 
predictions. Moreover, motivated by related 
studies,31,32,44,64–66 we evaluate cross-predictions 
(single ligand binding residues predicted as 
MLBRs) and over-predictions (non-binding residues 
predicted as MLBRs) using several metrics, CPRra-
tio and OPRratio for the binary state predictions and 
the area under the cross-prediction curve (AUCPC) 
and the area under the over-prediction curve 
(AUOPC) for the putative propensities. We define 
these metrics and how they are computed in the 
Supplement. 

Figure 1. The architecture of MERIT. FCNN (fully connected feed-forward neural network); FF (feed-forward); 
numbers in the round brackets define the number of neurons used for a given network layer. Underlined text identifies 
major innovations.

As part of comparative analysis, we perform 
statistical significance tests to assess whether 
differences between the proposed method and 
other predictors are robust across a collection of 
diverse test sets. To do that, we compare 100 
results collected for randomly picked subsets of 
50% of the test proteins. We use the Anderson-
Darling test at 0.05 significance to check whether 
the corresponding measurements are normal. For 
normal data, we use the student t-test, and 
otherwise we apply the Wilcoxon rank-sum test. 
We assume that differences are statistically 
significant if p-value < 0.01. 

MERIT model 

MERIT aims to accurately predict MLBRs (high 
AUROC) and minimize the cross-predictions (low



AUCPC). It makes predictions in three main steps 
(Figure 1): (1) compute features; (2) predict 
binding residues using features; and (3) predict 
MLBRs.
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In the first step, we use the input sequence to 
derive a sequence matrix which we utilize to 
compute a custom-designed feature set that is 
suitable for processing by the deep neural network 
model. The sequence matrix is composed of 
columns that correspond to the amino acids in the 
sequence and multiple rows that include the 
sequence itself; multiple sequence alignment 
generated by HHblits70 using the UniProt30 data-
set; relative amino acids propensity for binding with 
ligands that we compute using the training dataset 
with the Composition Profiler program,71 putative 
intrinsic disorder produced by VSL2B,72 which 
was recently shown to provide accurate results in 
the context of identifying disordered binding 
residues73 ; secondary structure predicted by the 
popular PSI-PRED74 ; and relative solvent accessi-
bility predicted using fast and accurate ASAquick.75 

We use this sequence matrix to compute three dis-
tinct feature subsets (shown in Figure 1 by back-
grounds in three shades of blue): protein-level, 
window-level, and the typically used residue-level 
features. The protein-level features aggregate the 
data in the matrix over the entire sequence to quan-
tify an overall bias of a given protein to include 
MLBRs. The window-level features summarize 
information from the matrix in a sliding sequence 
window, which is motivated by the fact that binding 
residues cluster together in the sequence, i.e., 
some sequence segments include high density of 
binding residues vs. other that are devoid of binding 
residues. Finally, the residue-level features quantify 
inputs for individual amino acids including the pre-
dicted residue and its neighboring residues in the 
sequence. Development of these three distinct fea-
ture sets is motivated by their use in the flDPnn 
method, which produced accurate prediction of 
intrinsic disorder and disordered binding regions76 

in the recently completed CAID177 and CAID278 

experiments. We enumerate and define individual 
features in the Supplement. 
In step two, we input these three feature sets into 

a custom-designed deep neural network model that 
is composed of two modules that together predict 
ligand binding residues: the multi-ligand binding 
module (yellow background in Figure 1) and the 
single-ligand binding module (green background in 
Figure 1). Each module consists of three units that 
process the corresponding three feature sets. We 
input the protein-level and the window-level 
features into two fully connected feedforward 
neural networks (FCNNs) since these features are 
not ordered. These features are calculated by 
averaging the information from individual rows in 
the sequence matrix for a given sequence window 
and over the entire sequence. In other words, use 

of other, more complex network types is not 
warranted since these two feature sets quantify 
different types of input characteristics that do not 
follow a spatial or sequence arrangements. The 
two FCNNs include five layers where the last two 
layers are shared and the layers are gradually 
reduced in size to compact the resulting latent 
feature spaces. We process the residue-level 
features with a unit composed of three stacked 
transformers since these features follow the 
sequence order (i.e., they represent a short 
sequence window). The transformers are relatively 
fast to train and capable of exploiting the 
sequence order. Each transformer consists of a 
self-attention unit, a feedforward layer, and a 
normalization layer. The feature space generated 
by the transformer unit is merged with the spaces 
generated for the other two feature sets using the 
last two feedforward layers. 

6

In the third step, we refine predictions of MLBRs 
by using a 4-layer FCNN that merges latent 
feature spaces generated in the second step by 
the single-ligand and the multi-ligand binding 
modules. The objective is to improve accuracy of 
the MLBR predictions by reducing the cross-
predictions with the help of the single-ligand 
binding predictions. As in step two, the 
subsequent layers are gradually smaller to reduce 
the resulting latent feature space to a single 
output neuron that generates the propensity for 
multi-ligand binding. We use the ReLU activation 
function for all nodes in the feedforward layers, 
except for the output node where we apply the 
sigmoid function to properly scale the output 
propensities. We train this architecture using 
Pytorch with the popular Adam optimizer on the 
training dataset. We set the learning rate and the 
batch size to 0.001 and 256, respectively. 
The MERIT’s model includes five key innovations 

(Figure 1 identifies them using underline): (1) 
calculation of the evolutionary couplings in the 
sequence matrix; (2) use of transformer modules 
to process the residue-level features; (3) 
application of the transfer learning to develop the 
two modules in the second step; (4) design of a 
multi-step architecture where the third step is used 
to refine and improve prediction of the MLBRs 
from the multi ligand binding module in step two; 
and (5) development and use of an advanced loss 
function to train the network. The first two 
innovations aim to maximize overall performance 
of the MLBR predictions while the motivation for 
the latter three innovations is to minimize the 
cross-predictions. 
The evolutionary couplings are evolutionarily 

conserved pairwise amino acid associations that 
are typically calculated from multiple sequence 
alignments. They link residues that coevolved 
together and which correspondingly may share 
similar purpose. One of these purposes could be
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ligand binding,79 in which case all residues that 
interact with the same ligand should be evolutionar-
ily coupled. Thus, couplings should help with finding 
MLBRs that on average should have more cou-
plings since they are included in multiple sets of 
binding (“coupled”) residues that interact with differ-
ent ligands when compared with the single-ligand 
binding residues. We compute the evolutionary 
coupling sores from the multiple sequence align-
ments generated with HHblits70 against the Uni-
Clust30 database. We detail their calculation in 
the Supplement. 
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The transformer units are particularly suitable to 
model latent feature spaces for inputs that are 
sequence-ordered.44,80,81 We posit that they can 
be effectively combined with the FCNN to improve 
predictive performance. 
We use transfer learning to train the two modules, 

the multi-ligand binding and the single ligand 
binding, in the step two of our architecture 
(Figure 1). We pre-train the single ligand binding 
module using the training set annotated with the 
single ligand binding residues (i.e., we set MLBRs 
as negatives). We similarly pre-train the multi 
ligand binding module using the training set 
annotated with the MLBRs (i.e., we set the single 
ligand binding residues as negatives). We pre-
trained these two modules separately using the 
cross-entropy loss function with the objective to 
maximize the AUROC value on the validation 
dataset. We also ensure that the difference in 
AUROC between the training and validation 
datasets is small (<0.03) to prevent potential 
overfitting into the training dataset. These 
modules specifically target predictions of the two 
distinct types of binding residues and use them to 
refine prediction of MLBRs by reducing the cross-
predictions (prediction of MLBRs for the putative 
single ligand binding residues). We do that by 
freezing the two pre-trained networks when we 
subsequently train MERIT (i.e., we “transfer” the 
pre-trained networks into the MERIT model). 

Loss function 

The default loss function for training the network 
is the cross-entropy. Its main drawback is the 
inability to effectively differentiate between 
different types of errors, i.e., mispredicting single 
ligand binding for multi ligand binding, non-binding 
for multi ligand binding, and multi ligand binding 
for non-binding. We substitute the cross-entropy 
with the focal loss function82,83 for training the 
MERIT model with the pre-trained single ligand 
binding and multi ligand binding modules. We re-
formulate the focal loss function to suit our predic-
tion by introducing a and b coefficients that allow 
us to balance cross-predictions vs. over-
predictions, with the objective to minimize cross-
predictions while maintaining an overall high predic-
tive performance: 

Focal Loss 1 predmulti 
r 
labelmulti log predmulti 

a predmulti 
r labelnon log 1 predmulti 

b predmulti 
r labelsingle log 1 predmulti 

where predmulti is the predicted MLBR propensity; 
labelmulti, labelnon, and labelsingle stand for the multi 
ligand binding, non-binding and single ligand 
binding annotations, respectively; r is set to 2 to 
reduce impact of the errors for well-predicted 
MLBRs, i.e., difference between the label 1 that 
denotes MLBR vs. the predicted propensity is 
small; and a and b are parameters that quantify 
contribution of the over-prediction and cross-
prediction errors, respectively. We fine-tune a and 
b using the training and validation datasets. We 
consider a = {0.5, 1, 2, 4} and b = {1, 5, 8, 10, 12, 
15, 20}, where values of b are larger since we aim 
to reduce the cross-predictions. We run a grid 
search over these parameters and sele a =  
and = 10 that provides high value of AUROC 
and low value of AUCPC on the validation dataset 
for the model trained on the training dataset using 
MLBRs as labels. Moreover, like for the pre-
training, we ensure that the difference in AUROC 
between training and validation datasets is below 
0.03 to avoid overfitting. 

ct 
b 

Results 

Ablation analysis 

We empirically test contributions of the five 
innovations to the predictive performance of 
MERIT. We perform an ablation analysis where 
we remove these innovations, one at the time, 
which leads to the following five configurations: (1) 
exclude evolutionary couplings; we re-train the 
model but when the evolutionary couplings-based 
inputs are removed; (2) replace transformer unit; 
we re-train the model where the transformer unit is 
replaced by a FCNN unit; (3) remove transfer 
learning; we re-train the model without pre-training 
the modules in step 2; in other words, we train the 
entire network at once; (4) remove step 3; we 
reduce this network to the multi-ligand binding 
module from step 2; and (5) use default loss 
function; we re-train using the default cross-
entropy loss function. 
Figure 2 compares performance of the MERIT 

model (dark blue bars) with the five ablation 
setups. We find that each of the five innovations 
provides statistically significant improvements to 
MERIT (p-values < 0.01) when considering the 
overall performance (AUROC in Fig 2A an  
F1max in Fig 2B), cross-predictions (AUCPC in 
Figure 2C) and over-predictions (AUOPC in 
Figure 2D). The exclusion of the step 3 of the 
model (yellow bars in Figure 2) leads to the 
largest drop in AUROC (from 0.773 to 0.736) and 
the biggest increase in the cross-predictions (from 
0.303 to 0.383 in AUCPC) and in the over-
predictions (from 0.223 to 0.257 in AUOPC). This
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demonstrates the value of using the single ligand 
binding module in step 2 to limit the number of 
false positives (incorrectly predicted MLBRs), 
particularly considering the big drop in the cross-
predictions. We also find that use of the optimized 
focal loss function (orange bars in Figure 2), 
evolutionary couplings (green bars in Figure 2), 
and transformer units (gray bars in Figure 2) also  
provide large reductions in cross-predictions and 
overpredictions, leading to the substantial 
increases in AUROC. The smallest magnitude of 
the change is associated with the use of the 
transfer learning (light blue bars in Figure 2); 
however, this innovation still provides statistically 
significant improvements over each of the four 
metrics. 
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Figure 2. Ablation analysis on the test dataset that compares MERIT with its five variants where one of the five 
innovations is removed. We quantify the predictive performance with AUROC (panel A; higher values are better), 
F1max values (panel B; higher values are better), AUCPC values (panel C; lower values are better), and AUOPC 
values (panel D; lower values are better). We show averages (bars) with the corresponding standard deviations (error 
bars) based on the 100 tests; see the last paragraph in the “Assessment of predictive performance” sub-section. We 
report the corresponding p-values at the top of the bars by comparing against the complete MERIT model. 

Comparative assessment 

Table 1 compares MERIT with the nine selected 
popular and/or recent predictors of DNA, RNA, 
protein, and small ligand binding residues, the 
three meta-predictors use their results to predict 
MLBRs, and a baseline predictor that applies the 
same inputs as MERIT and a simple logistic 
regression on the test dataset. The results 
produced by the current tools that predict 
interactions with specific ligand types provide 

modest levels of performance when applied to find 
MLBRs (AUROC 0.69). The meta- predictors 
provide more accurate results, with the best 
Mapaverage model that secures AUROC of 0.730, 
F1max of 0.18, and sensitivity at FPR = 5% of 
0.24. This is because they predict MLBRs by 
combining results across multiple ligands. This 
best meta-predictor outperforms the baseline 
regression model that obtains AUROC of 0.702, 
F1max of 0.18 and sensitivity at FPR = 5% of 
0.24, which in turn improves over the predictions 
of the individual ligand types. MERIT generates 
the most accurate results, with AUROC of 0.77, 
F1max of 0.23 and sensitivity at FPR = 5% of 
0.32, significantly outperforming all other methods 
(p-value < 0.01). The sensitivity reveals that 
MERIT secures 0.32/0.05 = 6.4 times higher true 
positive rate compared to its false positive rate. 
This and the AUROC > 0.75 suggest that MERIT 
generates relatively accurate predictions of 
MLBRs. The corresponding ROC curves 
(Supplementary Figure S2A) shows a wide margin 
between the MERIT’s curve and the curves of the 
other methods. Comparison of MERIT with the 
baseline regression quantifies the overall 
contribution of using the multi-step deep neural 
network model. The differences have large 
magnitude (AUROC of 0.77 vs. 0.70; F1max of
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0.23 vs. 0.18; sensitivity at FPR = 5% of 0.32 vs. 
0.24) and they are statistically significant (p-
value < 0.01). 
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Supplementary Figure S1B analyzes differences 
in the predictive performance, quantified with 
sensitivity, across MLBRs that interact with 
different number of distinct ligands. We compare 
MERIT, the most accurate Mapaverage meta-
predictor, and the baseline regressor. We 
consider MLBRs that bind 2, 3, 4, 5 and >5 
ligands; we combine MLBRs that bind 6 and more 
distinct ligands due to relatively small sample size 
(i.e., <50 MLBRs for each number of ligands). 
Supplementary Figure S1B shows that MERIT’s 
performance increases as the number of ligands 
grows, from 0.21 for MLBRs that interact with two 
ligand types to 0.29 for >5 ligands; the overall 
MERIT’s sensitivity is 0.22 (Table 1). To compare, 
the performance of the best meta-predictor and 
the baseline regressor does not change in the 
function of the number of interacting ligands 
(Supplementary Figure S1B), staying around their 
overall sensitivity of 0.15 and 0.16 (Table 1), 
respectively. However, we note that these results 
should be considered accurate given that the 
overall fraction of MLBRs in the test dataset is 
0.032. 
We also performed this analysis for ligands that 

we grouped into five broad classes: (1) nucleic 
acids; (2) proteins and peptides; (3) metal ions; (4) 
nucleotides; and (5) other ligands. Supplementary 
Figure S1C compares predictive performance of 
MERIT against the best meta-predictor and 
baseline regressor for MLBRs that interact with 
ligands that belong to one ligand class, two 
classes and three ligand classes. There are only a 
few MLBRs that interact with four ligand classes 
and none that interact across the five classes, 
which is why exclude these cases from our 
analysis. Similar to the other result, MERIT’s 
performance improves for MLBRs that cover more 
ligand classes. The two other methods follow 
similar trend but their predictions are consistently 
less accurate than MERIT’s predictions. The 
consistent increase in the MERIT’s performance 
as the number of interacting ligands and ligand 
classes grows can be explained by the use of the 
evolutionary couplings, which are not dependent 
on similarity between ligands that underlies the 
ligand classes, and transformers that can 
adequately take advantage of these inputs. 
Altogether, we find that MERIT offers accurate 

predictions of MLBRs that outperform the current 
and alternative solutions, and makes modestly 
more accurate predictions of MLBRs that bind 
larger number of ligand types and classes. 

Evaluation of the cross- and over-predictions 

MLBRs and single ligand binding residues share 
some characteristics (e.g., they should be 
evolutionarily conserved and most of them should 

be localized on protein surface) when contrasted 
with the non-binding residues. Thus, MLBRs 
should be harder to differentiate from the other 
binding residues (cross-predictions) compared to 
the non-binding residues (over-predictions). This 
is why we expect that in relative terms the cross-
predictions are likely to dominate false positives 
when compared to the over-predictions. 
Supplementary Table S3 compares the cross-
prediction and over-prediction errors. The 
corresponding cross-prediction curves and over-
prediction curves are in Supplementary Figures 
S2B and S2C, respectively. 
We find that the cross-predictions for all methods, 

except MERIT, are at the near-random levels, with 
AUCPCs > 0.4. As expected, they are higher than 
the over-predictions, where the meta-predictors 
and the baseline regression secure AUOPCs of 
around 0.3. Similar observations are true when 
using the CPRratio and OPRratio values. 
CPRratios are lower than OPRratios and 
CPRratios for many of the methods are at near 
random levels, i.e., values are close to 1. 
OPRratios for the meta-predictors and regression 
are in the 5.2–6.3 range, suggesting that these 
solutions are 5–6 times better than random in the 
context of the over-predictions. The poor cross-
prediction performance can be explained by the 
fact that the meta-predictors and the logistic 
regression baseline were not optimized to exclude 
single ligand binding residues among their 
predictions of MLBRs. 
Importantly, MERIT secures relatively low rates of 

cross-predictions and over-predictions, which are 
significantly better than the results of all other 
methods (p-value < 0.01; Supplementary 
Table S3). It secures AUCPC of 0.303, which is 
reasonably good, and a low AUOPC of 0.223. The 
cross-prediction and over-prediction curves of 
MERIT are better/lower than the curves of the 
other methods by a wide margin (Supplementary 
Figures S2B and S2C). The MERIT’s CPRratio 
and OPRratio measured when predicting the 
correct number of MLBRs (i.e., numbers of 
putative and native MLBRs are equal) reveal that 
our tool is 3.8 and 9.6 times better than a random 
predictor when considering the cross-predictions 
and over-predictions, respectively. These results 
suggest that MERIT performs very well in the 
context of the over- and cross-predictions, which 
can be attributed to the several innovations which 
specifically aim to reduce these errors. 

Assessment on the single ligand binding 
proteins 

Using the clustered sequences from the fourth 
step of the dataset selection process described in 
the Supplement, we randomly select 200 proteins 
that have single ligand binding residues and no 
MLBRs. This dataset shares low, below 25% 
similarity with the training and validation datasets,



and is available on the MERIT page at http:// 
biomine.cs.vcu.edu/servers/MERIT/. We use it to 
assess whether MERIT improves over the other 
methods for these challenging “negative” proteins. 
Supplementary Figure S3 compares performance 
of MERIT, the three meta-predictors of MLBRs 
and the baseline regression model on this dataset. 
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Supplementary Figure S3A, which quantifies the 
false positive rates (fraction of residues incorrectly 
predicted as MLBRs) on this dataset shows that 
MERIT generates substantially better results than 
the meta-predictors and the baseline. These 
improvements are consistent for the cross-
predictions (Supplementary Figure S3B) and over-
predictions (Supplementary Figure S3C). Using 
the threshold for the generation of the binary 
states that is calibrated to produce the correct 
number of MLBRs on the test dataset (i.e., the 
numbers of the predicted and the native MLBRs 
are equal), we find that MERIT generates 2.8% of 
residues as MLBRs on this dataset with the single 
ligand binding residues. To compare, the baseline 
regression and the best meta-predictor predict 
4.7% and 4.9% residues as MLBRs, respectively. 
As expected, the cross-prediction rate is higher 
than the over-prediction rate; however, MERIT 
predicts 11% of the single ligand binding residues 
as MLBRs (cross-predictions), which corresponds 
to on average two cross-predicted residues per 
protein, compared to 14% for the baseline and 
17% for the best meta-predictor. 
A modest amount of cross-predictions could be 

explained because annotations of binding 
residues are potentially incomplete, i.e., 
interactions with some ligands might be missing in 
the source databases, which is true across all 
datasets used to develop predictors of the ligand 
binding residues. Thus, some of the single ligand 
binding residues could in fact bind multiple ligand 
types, suggesting that some cross predictions 
could actually be correct predictions. 
Correspondingly, MERIT shows higher rate of 
MLBR predictions for the single binding residues 
(Supplementary Figure S3B) than for the non-
binding residues (Supplementary Figure S3C). We 
posit that its cross-predictions could be 
investigated to potentially uncover these missing/ 
not-yet-annotated interactions. However, this 
analysis is beyond the scope of this method/web 
server article. Altogether, we argue that MERIT’s 
predictions generalize well for the single ligand 
binding proteins, consistently improving over the 
alternatives. 

Runtime analysis 

We use a random selection of 100 proteins from 
the test dataset to investigate a relation between 
the MERIT runtime and sequence length. We sort 
the sequences in the ascending order by their 

length into four equally sized subsets. 
Supplementary Figure S4 plots the median per-
protein runtimes measured in minutes against the 
median sequence length for the four protein sets. 
The overall median per protein runtime for MERIT 
is 8.9 min, with the first and third quartiles of 3.7 
and 16.5 min, respectively. The runtime grows 
with the sequence length for shorter proteins and 
then the growth saturates for proteins with 500 or 
more residues. The main factor that drives runtime 
is the calculation of evolutionary couplings, which 
is done for conserved residues. The leveling of the 
runtime for the longer proteins is likely due to a 
drop in the fraction of conserved residues, relative 
to the sequence length, i.e., a larger fraction of 
residues is conserved for shorter chains 
compared to the fraction for longer proteins. 
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Web server 

MERIT is available as a free web server at http:// 
biomine.cs.vcu.edu/servers/MERIT/. We provide 
further details in the Supplement. The server page 
also provides access to the training, validation and 
test datasets, which can be used to facilitate 
future research in the area of analysis and 
prediction of MLBRs. 
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