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Abstract

This paper is concerned with a branch of computational biology related to protein prediction and analysis of secondary structure of

proteins. Although traditional methods use a simple amino acid composition to predict the secondary structure content, hydrophobicity

has been recently found to improve the results in this and several related prediction tasks. To this end, we propose and analyze

advantages of two new hydrophobicity index-based scales that incorporate information about long-range interactions along the protein

sequence and contrast them with currently used raw hydrophobic index values. We also compare three leading hydrophobicity indices,

i.e., Eisenberg’s, Fauchere–Pliska’s, and Cid’s, using the proposed scales. The analysis is performed using fuzzy cognitive maps that

quantify the strength of relation between the hydrophobicity scales/indices and the protein content values. A set of empirical tests that

involve generation of fuzzy cognitive map models for a set of 200 low homology proteins have been performed. The results show that the

secondary structure content along the protein sequence is characterized by about 2.5 times stronger relation with the two proposed

hydrophobicity scales when compared with the currently used raw index values. The new scales exhibit stronger relation irrespective of

the applied hydrobhobicity indices. Analysis of different scales shows superiority of the Eisenberg’s hydrophobicity index, when used

with the new scales. In contrast, the Fauchere–Pliska’s index is found to perform better when compared with the two other indices when

using raw hydrophobic index values that disregard the long-range interactions.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the active research areas in computational
biology is prediction and analysis of protein structure.
Proteins are characterized by three structural levels:
primary sequence of amino acid (AA), and secondary
and tertiary structure. The secondary structures are usually
grouped into four categories: a-helices, b-strands, tight-
turns (Chou, 2000a), and coils. While the primary
sequences are currently publicly known for over 3 millions
of proteins, the secondary and tertiary structure is known
for relatively small number of proteins, i.e., the Protein

Data Bank (PDB) currently contains about 30 thousands
proteins (Berman et al., 2000). At the same time, research
in protein function and interactions requires knowledge of
the tertiary structure. Experimental methods for discovery
of tertiary (secondary) structure are relatively time
consuming, labor expensive, and cannot be applied to
some proteins. As a result, computational methods gain
momentum (Jones, 2000). Computational methods are
faster and cheaper and thus they can potentially close the
existing gap between the number of known primary and
unknown higher protein structures. Computational meth-
ods for secondary structure prediction are under develop-
ment for over 3 decades, and although their accuracy is
getting better, i.e., currently it reaches about 80% (Birzele
and Kramer, 2006; Rost, 2001), much work still needs to be
done. This is especially true when it comes to performing
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predictions for low homology proteins, i.e., the corre-
sponding accuracy is about 65–68% (Lin et al., 2005).
A-priori knowledge of protein content is an important
piece of information for prediction of the secondary
structure. While the secondary structure prediction aims
to predict one of the three categories for each AA in the
primary sequence, the secondary structure content predic-
tion methods predict amounts of helix and strand
structures in the protein sequence (the amount of coils
and turns is obtained as a complement of the remaining
two secondary structures). Meanwhile, significant efforts
have been made to predict protein structural class (see
Chou, 2000b; Luo et al., 2002; Chou and Cai, 2004a; Feng
et al., 2005; Shen et al., 2005; Niu et al., 2006; Kurgan and
Homaeian, 2006; Kedarisetti et al., 2006 as well as the
references cited in a recent review Chou, 2005a) and to
predict the protein fold patterns (Ding and Dubchak, 2001;
Shen and Chou, 2006a).

The existing protein content prediction methods use a set
of standard measures, which include AA composition, pair
coupled composition and hydrophobicity, to perform
prediction. Hydrophobicity is also used in a number of
other protein prediction tasks, such as prediction of
structural class, subcellular location, membrane protein
type, etc. Hydrophobicity is usually expressed by an index
that quantifies this property for each AA; these raw values
are used by prediction methods. In contrast, this paper
proposes hydrophobic scales that use the raw index values
to compute new hydrophobicity values (scales). The main
difference between the raw values and a scale is that the
index value is specific to a given AA, i.e., there are 20
values for 20 AA, while the scale gives a potentially
different hydrophobicity value for each AA along the
protein sequence. In this paper we propose two new
hydrophobic scales, investigate several hydrophobicity
indices, and compare the quality of the two new scales
with the currently used raw values. In contrast to the
currently used raw values, the proposed scales incorporate
information about long range (with respect to the protein
sequence) interactions. We use fuzzy cognitive maps
(FCMs) and their genetic algorithm-based learning method
to perform comparisons. The FCMs are used to learn and
quantify the relation between the two new hydrophobicity
scales and the currently used raw index values, and the
secondary structure content along protein sequences. The
motivation for using FCMs comes from their ability to
capture and quantify relations between multiple variables,
which is critical for the considered biological system, not
just relations between selected pairs of variables as in case
of the commonly applied correlation-based analysis. Based
on comprehensive experiments that use a set of 200 low
homology proteins we show that the two new hydro-
phobicity scales are characterized by a much stronger
functional relation with the secondary structure content
than the currently used raw index values. We also show
advantages and drawbacks of the considered three hydro-
phobicity indices with respect to the scales. Although this

paper does not propose a new prediction method, it
provides invaluable information that can be used to design
new prediction methods, and which can be extended to the
related protein prediction tasks.

2. Background and methods

2.1. Protein prediction methods and hydrophobicity

The secondary protein structure is defined using
Dictionary of Secondary Structures of Proteins (DSSP)
(Kabsch and Sander, 1983). DSSP annotates each AA as
belonging to one of eight secondary structure types: H
(alpha-helix), G (3-helix or 310 helix), I (5-helix or p-helix),
B (residue in isolated beta-bridge), E (extended strand), T
(hydrogen bond turn), S (bend), and _ (any other).
Typically they are reduced to three groups: helix (H that
includes H and G), strand (E that includes E and B), and
coil (C that includes remaining types) (Moult et al., 1997).
Recent years show increasing interest in the computational
prediction of the secondary structure content. This task
is concerned with prediction of percentage amount of the
a-helix and b-strand content in a given protein sequence. It
concerns three granularities of the secondary structure: 3
states (structure types), 8 states, and 10 states in which the
extended strand is divided into subtypes including strand,
parallel strand and anti-parallel strand. The existing
prediction methods first convert the primary protein
sequence into feature space representation and use it to
predict the content values. Most methods use composition
vector-based representations and apply regression to per-
form prediction (Chou, 1999; Zhang et al., 1998; Liu and
Chou, 1999; Lin and Pan, 2001; Pilizota et al., 2004; Lee
et al., 2006; Homaeian et al., 2007). Table 1 shows
chronological comparison of recent content prediction
methods, which includes information about the prediction
algorithms, number of predicted structure types, and
sequence representations.
Another popular sequence representation is based on

hydrophobicity. The usefulness of this representation is
supported by its extensive prior use and desirable proper-
ties. In order to incorporate the sequence-order informa-
tion into a non-sequential discrete model for statistical/
machine learning prediction, instead of the classical
composition vector Chou proposed the pseudo AA
composition to represent a protein sequence (Chou,
2001). The concept of the Chou’s pseudo AA composition
has stimulated a series of follow-up studies in which
different types of pseudo AA composition have been
developed to improve the prediction quality of protein
attributes, such as protein structural class (Shen and Chou,
2005a; Chen et al., 2006a; Chen et al., 2006b; Xiao et al.,
2006a; Lin and Li, 2007a), membrane protein type (Guo,
2002; Wang et al., 2004; Liu et al., 2005a; Liu et al., 2005b;
Chou and Cai, 2005; Wang et al., 2005; Shen and Chou,
2005a; Shen et al., 2006; Shen and Chou, 2006b; Wang
et al., 2006), enzyme family class (Chou, 2005b; Cai et al.,
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2005; Cai and Chou, 2005), GPCR type (Chou and Elrod,
2002; Chou, 2005c; Guo et al., 2006; Wen et al., 2006),
protein quaternary structure (Chou and Cai, 2003a; Guo
et al., 2006; Wen et al., 2006; Zhang et al., 2006), protein
subcellular localization (Pan et al., 2003; Chou and Cai,
2003b, 2004b; Xiao et al., 2005a, b; Shen and Chou, 2005b;
Gao et al., 2005; Xiao et al., 2006b; Shen et al., 2007; Shi
et al., 2007; Chou and Shen, 2006a–d, 2007; Shen and
Chou, 2007a; Shen and Chou, 2007b, c), as well as other
protein attributes (Chou and Cai, 2006; Du and Li, 2006;
Mondal et al., 2006; Zhou and Cai, 2006; Lin and Li,
2007b). In most of these approaches, the hydrophobicity or
its combination with other AA properties have been used
to formulate different types of pseudo AA composition,
fully indicating the importance of the hydrophobicity scale
to the protein science.

Hydrophobicity is not only one of the major structural
forces, but is also able to show periodicity of the secondary
structure (Cornette et al., 1987). In an aqueous environ-
ment, hydrophobic molecules, including the hydrophobic
AA side chains, are forced together to minimize the
disruptive effect on the hydrogen-bonded water molecules
network. Thus, distribution of hydrophilic and hydropho-
bic AA side chains has a significant impact on the protein
structure. The hydrophobic side chains cluster in the
protein interior, while hydrophilic side chains arrange
themselves near the protein outside where they can form
hydrogen bonds with water and with other polar mole-
cules. The hydrophobic AAs are usually hydrogen-bonded
to other hydrophobic AAs or to the polypeptide protein
backbone.

Zhang and colleagues studied 14 hydrophobicity indices
with respect to the content prediction and concluded that
the best results are obtained by using Fauchere–Pliska’s
index (Zhang et al., 2001). The 14 indices were proposed by
Fauchere and Pliska (1983), Wold et al. (1987), Wertz and

Scheraga (1978), Sweet and Eisenberg (1983), Ponnuswamy
et al. (1980), Parker et al. (1986), Nishikawa and Ooi
(1980), Miyazawa and Jernigan (1985), Cid et al. (1992),
Bull and Breese (1974), and Biou et al. (1988), respectively.
Majority of existing hydrophobicity indices are stored in
the AA index database (Kawashima et al., 1999). The
Fauchere–Pliska’s index was used in several content
prediction methods (see Table 1) and in structural class
prediction (Kurgan et al., 2006). A substantial drawback of
the Zhang’s contribution is that the indices were tested only
with respect to prediction using a multiple linear regression
method, and not with respect of their overall correlation
with the content. A few years earlier, in 1998, Juretic and
Lucin showed that among 87 different AA indices that they
examined, the Eisenberg’s hydrophobicity index is the most
suitable to identify periodicity of the secondary structure
(Juretic and Lucin, 1998). Although their results have
shown the benefits associated with this index, it received
little attention among the researchers in the protein
structure prediction community, i.e., it was used to predict
structural classes (Kedarisetti et al., 2006; Kurgan and
Homaeian, 2006) and in one content prediction method
(Homaeian et al., 2007). Finally, a novel hydrophobicity
index, so-called Heuristic Molecular Lipophilicity Poten-
tial, was recently introduced (Du et al., 2006). This index,
which is based on quantum mechanical and statistical
mechanical principles introduced in Du et al. (2005),
quantifies lipophilic and hydrophilic properties of AA side
chains.

2.2. Proposed hydrophobicity scales

The prediction methods described in Section 2.1 use only
raw hydrophobic index values, i.e. hydrophobicity values
of corresponding AAs. To this end, we propose two novel
hydrophobic scales that transform the raw values into a
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Table 1

Comparison of recent secondary structure content prediction methods; MLR stands for multiple linear regression and NN stands for neural network

Reference Prediction algorithm ] predicted types Sequence representation

(Eisenhaber et al., 1996) vector decomposition 3 Composition vector

(Zhang et al., 1998) MLR 3 Composition vector, autocorrelation based on hydrophobicity

(Fauchere–Pliska index)

(Chou, 1999) MLR 8 Pair coupled composition vector

(Liu and Chou, 1999) MLR 10 Pair coupled composition vector

(Zhang et al., 2001) MLR 3 Composition vector, autocorrelation based on hydrophobicity

(Fauchere–Pliska index)

(Lin and Pan, 2001) MLR 3 Composition vector, autocorrelation based on hydrophobicity

(Fauchere–Pliska index), side chain mass interaction functions

(Cai et al., 2002a) NN 10 Pair coupled composition vector

(Cai et al., 2002b) NN 8 Pair coupled composition vector

(Pilizota et al., 2004) MLR 3 Composition vector

(Ruan et al., 2005) NN 3 Composition moment vector

(Lee et al., 2006) MLR, NN, SVR 8 PSI-BLAST-based composition vector

(Homaeian et al., 2007) MLR 3 Composition and composition moment vectors, autocorrelation

based on hydrophobicity (Fauchere–Pliska’s and Eisenberg’s

indices), property groups
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new representation that provides better correlation with
the secondary structure content. Similarly to the raw
values, the new scales produce a single value for each
residue along the sequence. At the same time, raw values
are identical for the same AAs, while the scale values differ
for each AA along the protein sequence. We investigate the
added-value of the new scales by applying them with the
most commonly used Fauchere–Pliska’s index and the
Eisenberg’s index. We also use the Cid’s index, which is the
most recent index studied by Zhang and colleagues (Zhang
et al., 2001), in order to contrast and compare the other
two indices. Table 2 shows the three selected indices.

The proposed scales are based on aggregation of raw
index values along the sequence, i.e. for the tth residue they
sum the hydrophobicity index values for the first t residues.
The accumulation of the first t index values to compute the
value for the tth residue can be seen as injection of
aggregated (global) information stored in the first t

residues. This allows for representing long-range trends in
hydrophobicity, which may help to represent the existing
long-range interactions in the secondary structures. For
instance, b-sheets are often formed by segments that are far
apart in the sequence. The proposed aggregation procedure
is motivated by the translation process that occurs in the
ribosome. During that process, the peptide synthesis occurs
from N-terminus (beginning of the sequence) to C-terminus
(end of the sequence), i.e., incoming AAs are added to the
growing C-terminus, which motivates summation starting
from the N-terminus. At the same time, we note that the
residues behind the residue at position t also have impact
on the folding.

The first proposed scale is based on the above described
summation, while the second additionally incorporates
information about local interactions, i.e., it computes
3-point moving average of the summed values. In contrast,
the raw hydrophobicity index values used in the recent
contributions does not consider long-range interac-
tions. The index values and the two proposed scales are
defined as

� Raw hydrophobicity index (Hx) ¼ X tf g

� Cumulative hydrophobicity scale (CHx) ¼
Pt

i¼1X i

� �
� 3-points moving average of cumulative hydrophobicity

scale (3CHx) ¼
Pt

i¼t�2

Pi
j¼1X i

n o
where t ¼ 1, 2,y, N, N is the protein sequence length; Xt is
the corresponding hydrophobicity index value for tth AA
in the sequence; subscript x denotes the corresponding
index which will be used with the scale, i.e., E for the

Eisenberg’s index, F for the Fauchere–Pliska’s index, and C

for the Cid’s index.
Additionally, for each primary protein sequence the

content values have been computed based on known
secondary sequence:

� %helix (%h)—|H|t/t, where |H|t is the number of
residues in helical conformation in the substring of
protein sequence from the position 1 to t;
� %strand (%s)—|E|t/t, where |E|t is the number of

residues in strand conformation in the substring of
protein sequence from the position 1 to t.

The two proposed scales, the raw index values, and the
above two secondary protein content variables constitute a
real-valued function with respect to the primary protein
sequences.

2.3. Fuzzy cognitive maps

The analysis of the proposed hydrophobicity scales and
the raw index values is performed with the use of fuzzy
cognitive maps (FCMs). FCMs, which were introduced by
Kosko (1986) as an extension to cognitive maps (Axelrod,
1976), are convenient tool for modeling and simulation of
dynamic systems. They describe a given system as a
collection of concepts that are connected by cause-effect
relations, which is depicted with a graph. The graph’s
nodes represent concepts and the causal relations between
them are depicted by directed edges. Each edge is
associated with a weight value that reflects strength of
corresponding relation, i.e., it determines the degree of
considered causal relation between the two concepts. This
value is usually normalized to the interval [�1,1]. Positive
values reflect promoting effect, whereas negative describe
inhibitory effect. The value of �1 represents full negative,
+1 full positive, and 0 denotes no causal effect. Other
values correspond to the intermediate levels of causal
effect. The graph can be equivalently expressed by a square
matrix, called connection matrix, which stores all weight
values for edges between corresponding concepts repre-
sented by corresponding rows and columns. The FCM
model is simulated by calculating its state during a number
of consecutive iterations. This state is represented by a
state vector, which determines values of each node. The
FCM iteratively updates the state of the system, i.e.,
value of a node is calculated in each iteration from
values in the preceding iteration of nodes that exert
influence on the given node (nodes that are connected to
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Table 2

The Eisenberg’s, Fauchere–Pliska’s, and Cid’s hydrophobicity indices

Index AA A C D E F G H I K L M N P Q R S T V W Y

Eisenberg 0.62 0.29 �0.90 �0.74 1.19 0.48 �0.40 1.38 �1.50 1.06 0.64 �0.78 0.12 �0.85 �2.53 �0.18 �0.05 1.08 0.81 0.26

Fauchere�Pliska 0.42 1.34 �1.05 �0.87 2.44 0.00 0.18 2.46 �1.35 2.32 1.68 �0.82 0.98 �0.30 �1.37 �0.05 0.35 1.66 3.07 1.31

Cid 0.17 1.24 �1.07 �1.19 1.29 �0.57 �0.25 2.06 �0.62 0.96 0.60 �0.90 �0.21 �1.20 �0.70 �0.83 �0.62 1.21 1.51 0.66

L.A. Kurgan et al. / Journal of Theoretical Biology 248 (2007) 354–366 357
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the given node)

Cjðtþ 1Þ ¼ f
XN

i¼1

eijCiðtÞ

 !
,

where Ci(t) is the value of ith node at the tth iteration, eij is
the edge weight (relationship strength) from the concept Ci

to the concept Cj, t is the iteration number (time point), N

is the number of concepts, and f is the transformation
(transfer) function.

The transformation function is used to reduce un-
bounded weighted sum to a certain range, which is usually
set to [0,1]. This allows for comparisons between nodes,
which can be defined as active (value of 1), inactive (value
of 0), or active to a certain degree (value between 0 and 1).
Three most commonly used transformation functions are
bivalent, trivalent, and logistic. There are several advan-
tages of modeling dynamic systems using FCM models.
FCMs are very simple and intuitive to understand. They
are also flexible in terms of system design and applications
since they have comprehensible structure and operation,
are adaptable to a given domain, and capable of abstract
representation (Koulouriotis et al., 2003).

Development of FCM models almost always relies on
human knowledge (Aguilar, 2005). As a result, the
developed models strongly depend on experts beliefs,
which imply subjectivity of the model and problems with
unbiased assessment of its accuracy. The main difficulty is
to accurately establish weights (strength) of the defined
relations. A novel method for learning the weights based
on real-coded genetic algorithm (RCGA) (Herrera et al.,
1998) was recently proposed (Stach et al., 2004, 2005). The
method allows for automated generation of FCM models
from data based on a genetic algorithm based optimiza-
tion. Considering the fact that FCM model can be fully
described by its connection matrix, the learning goal is to
find N*N parameters. The RCGA algorithm exploits input
data to find the parameters. Input data are a sequence of
states described by state vectors at a particular time
(iteration). In this paper, the input data are the values of
the two considered hydrophobicity scales, the raw index
values, and the protein content along the primary protein
sequence (each residue corresponds to a time-point). The
learning objective is to generate the same state vector
sequence for the same initial state vector defined by the
input data. At the same time, the learned matrix generalizes
the inter-relations between concept nodes, which are
inferred from the input data. The FCM model is suitable
to perform simulation for different initial state vectors, and
quantify the degree and type of cause–effect relations
between the concepts. The learned parameters quantify the
strength of the relation between the scales, raw index and
content, i.e., higher absolute values correspond to stronger
relations while values close to zero indicate weak relations.
Although relations between all pairs of concepts (scales,
raw index, content) are computed (see Appendix A), the
experimental section concentrates on analysis of relations

between the proposed scales/raw index values and the
secondary structure content.

2.4. Goals

Our goals are four-fold:
GOAL 1: To quantify and compare strength of relation

between the hydrophobicity scales and the raw index
values, i.e., Hx, CHx, and 3CHx, and the secondary
structure content. FCMs are used to quantify the degree of
relation between the scales that use each of the three
selected hydrophobicity indices and the content values.
This goal allows concluding which of the considered scales
is the most useful with respect to capturing the secondary
structure when considering different indices.
GOAL 2: To evaluate two types of directed relations

between hydrophobicity-based scales/raw index values and
the secondary structure content, i.e. impact of the content
on the hydrophobicity and impact of the hydrophobicity
on the content. This analysis is possible due to inherent
capabilities of FCMs, which in contrast to commonly used
correlation based analysis reflect both strength and
direction of a given relation.
GOAL 3: To quantify and compare the three hydro-

phobicity indices, i.e., Eisenberg’s, Fauchere–Pliska’s, and
Cid’s, with respect to their ability to correlate with the
secondary structure content. Each of the indices is
compared for each of the considered scales and when
using the raw index values, and on average between all
scales.
GOAL 4: To evaluate effectiveness of the FCM based

analysis. The results are compared with results when using
correlation analysis.

3. Experiments and results

The FCMs were used to evaluate the quality of the two
hydrophobicity scales and the raw index values (for the
three hydrobhobicity indices) with respect to their relation
to the secondary structure content. To do that, a protein
set has been carefully selected and used to generate input
data consisting of the scale values and the corresponding
content values along the sequences.

3.1. Experimental setup

The input data has been generated based on a set of 210
low homology proteins, which were used in two recent
studies concerning secondary structure content prediction
(Zhang et al., 2001; Kurgan and Homaeian, 2005).
However, similarly as in Kurgan and Homaeian (2005),
11 of them (1MBA_, 1MDC_, 1OPAA, 4SBVA, 1FBAA,
1ETU_, 1GP1A, 3ADK_, 1CSEI, 1ONC_, and 1FUS_)
have been excluded from experiments. These proteins
include at least one unknown amino acid type in their
sequence in the newest release of the PDB. As a result,
experiments have been performed with 199 proteins. The
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proteins are divided into three structural classes: a-class
that contains 55 proteins, b-class with 72 proteins, and ab-
class with 72 proteins. The a-class contains proteins that
have majority of helix structures, i.e. 415% helices,
ando10% strands, b -class contains proteins that have
majority of strand structures, i.e. 415% strands,
ando10% helices, while the ab-class contains remaining
proteins (Zhang et al., 2001). To improve presentation of
the results, the analysis of the relations has been performed
separately for each of the structural classes. Table 3
describes the input data that was computed for each
protein using the formulas defined in Section 2.2. H series
exploit relation between hydrophobicity scale and the
protein content, whereas series CH, 3CH, and 3CCH
investigate the two new cumulative scales, both separately
and together. The input data has been generated for
each examined index, i.e. Eisenberg’s, Fauchere–Pliska,
and Cid.

Total of 3� 4� 199 ¼ 2388 series have been computed
and used to learn FCM models. Considering the restric-
tions imposed by FCMs, the input data has been linearly
normalized to the interval [0,1]. The average length of
sequences belonging to the different structural classes
equals 131.8, 150.2, and 164.8 for the a, b, and ab classes,
respectively. Differences in sequence length result in
learning bias, i.e., structural classes, which express different
secondary structure characteristics, have different average
sequence lengths and input data length is shown to have
impact on the quality of FCM learning (Stach et al., 2004).
Therefore, to remove the bias the initial 41 points
(corresponding to the first 41 AAs) have been used for
each series, which corresponds to the length of the shortest
protein in the data set (1LTSC). We note that these 41
points are representative of the entire data set, i.e., the
secondary structure content of the original data set for each
structural class is shown to be virtually identical to the

content of the first 41 residues, see Table 4. In other words,
the selected subset of points can be used to express the
relation between the secondary structure and the hydro-
phobicity scales/raw values.
Example input data for 1YSAC protein, which belong to

a-class, is shown using black lines in Fig. 1. The 2388
connection matrices (FCM models) have been computed
and average values for different series and structural classes
are reported.

3.2. Experimental results

A sample result for 1YSAC protein using Cid hydro-
phobic index and for the four considered data series is
shown in Fig. 1.
The original hydrophobicity index values produce

sharply changing curves (see Fig. 1a), which are hardly
correlated with the smooth curves of the content values. On
the other hand, both proposed hydrophobicity scales are
much smoother. The generated FCM models were able
to reproduce the smooth signals, whereas in case of
the original scale, their smoothing tendency is observed.
The trends generated by FCMs for the proposed hydro-
phobicity scales exhibit correlation with the smooth
content curves, which in turn shows that there is a strong
relation between protein structural content and the hydro-
phobicity.
Detailed experimental results are included in Appendix

A. The strength of the relations of interest with respect to
the defined goals is summarized in Fig. 2 using bar-plots.
The higher is the bar, the stronger is the corresponding
relation. The figure allows performing visual analysis of
relations from three different perspectives: scale/raw
values-wide, index-wide, and direction-wide. The bars
shown in Figs. 2a and c, and e depict the strength of
relation that the protein content exerts on the corres-
ponding scales/raw index values, whereas remaining sub-
figures show the strength of relation that the scales/raw
index values exerts on the protein content. Rows in the
figure show the strength of the relation for different
hydrophobicity indices, while columns correspond to
different directions of the relation. Finally, each figure
compares the results for the different hydrophobicity
scales/raw values, i.e., the non-cumulative, H, raw index
values are shown in white, and the proposed cumulative
scales are shown using other colors, and is divided into the
three structural classes. The CH1 and 3CH1 bars
correspond to CH and 3CH (cumulative) scales from the
3CCH series.

3.3. Discussion of results for goal 1

This section concentrates on comparison of relation
strengths between different hydrophobicity scales/raw
index values and the protein content. Based on the results
shown in bold and underline in Table 5, the average values
are 0.35 for the new cumulative (CH and 3CH) scales and

ARTICLE IN PRESS

Table 3

Summary of input data for FCM modeling

H CH 3CH 3CCH

Hx CHx 3CHx CHx

%helix %helix %helix 3CHx

%strand %strand %strand %helix

%strand

Table 4

Comparison of the secondary structure content between the original data

set and data set used in the experimentation

Structural

class

Average content values for

the original data set

Average content values for

the first 41 AAs

Helix Strand Coil Helix Strand Coil

a 39.8 59.9 0.3 41.0 58.5 0.4

b 2.7 70.4 26.9 2.0 73.0 25.0

ab 22.2 60.9 16.9 19.2 61.6 19.3
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0.143 for the currently used raw index values (H) in case of
relation that the content exerts on the scale. Therefore, the
proposed cumulative scales are characterized by about 2.5
times stronger relation when compared with the current
non-cumulative raw values. On the other hand, for the
opposite direction of the relation, relatively similar 0.482
and 0.592 values were recorded for cumulative scales and
non-cumulative raw values, correspondingly. The strongest
average strength of relation (over different hydrophobicity
indices and directions) equals (0.511+0.392+0.507)/
3 ¼ 0.469 and it was observed for the 3CH scale. The
average strength for the CH scale is comparable and equals
0.443, while the strength of the relation for the H raw
values is the lowest and equal to 0.367. The cumulative, i.e.
CH and 3CH, scales exhibit stronger relation irrespective
of the applied hydrobhobicity indices when compared with
the raw index values, except for the Cid’s index when the
relation from the scale/raw values to the content is
considered. This shows that the cumulative scales, which
include information about long-range interactions, are
significantly better with respect to their relation with the
secondary structure content.

3.4. Discussion of results for goal 2

We focus on evaluation of two types of directed relations
between hydrophobicity based scales/raw index values and
the protein content, i.e. relation that the content exerts on
the scales/raw values and the scales/raw values exert on the
content. In general, the strength of the relation varies for
the two directions:

� In the case of relation that the scales/raw values exert on
the protein content on average both the cumulative
scales and the non-cumulative index values are char-
acterized by similar relation strength. The two rightmost
bars in Figs. 2b, d, and f show that series 3CCH, which
considers both con-cumulative scales together, results in
weaker relation. This may be caused by strong correla-
tion between the two scales, which diminishes strengths
of relation between them and the content, and therefore
only one of them in separation should be used.
� In the case of relation that the content exerts on the

scales/raw values, the cumulative scales exhibit virtually
always significantly stronger relation when compared to
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Fig. 1. Experimental results for the 1YSAC protein: (a) H series, (b) CH series, (c) 3CH series, and (d) 3CCH series; black lines correspond to the data

used for learning, gray lines were obtained from simulation of the best-found FCM model.
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the non-cumulative raw values, which is shown using
white bars in Figs. 2a, c, and e. The results for ab-class
show weaker strength for this direction of relation when

compared with a- and b-classes, while in case of the
other direction there is no significant difference between
different structural classes.
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Fig. 2. Strength of relations that the content exerts on the hydrophobicity scales/raw index values (a) for the Eisenberg’s index, (c) for the Fauchere–Pliska

index, (e) for the Cid index; strength of relations that the hydrophobicity scales/raw index values exert on the content (b) for the Eisenberg’s index, (d) for

the Fauchere–Pliska index, and (f) for the Cid index.

Table 5

Summary of experiments with 199 proteins

Scales Relations that the content exerts on the scale Relations that the scale exerts on the content Avg both directions

E index F index C index Avg E index F index C index Avg E index F index C index

CH 0.335 0.243 0.425 0.334 0.608 0.508 0.540 0.552 0.472 0.376 0.483

3CH 0.418 0.273 0.478 0.389 0.603 0.510 0.535 0.549 0.511 0.392 0.507

CH1 0.310 0.170 0.355 0.278 0.513 0.423 0.438 0.458 0.412 0.297 0.397

3CH1 0.415 0.285 0.498 0.399 0.473 0.328 0.310 0.370 0.444 0.307 0.404

Avg cumulat. scales 0.369 0.243 0.439 0.350 0.549 0.442 0.456 0.482 0.459 0.343 0.448

H 0.203 0.065 0.163 0.143 0.593 0.595 0.588 0.592 0.398 0.330 0.376
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� Each of the two cumulative scales exhibit twice stronger
relation with protein content for the relation that the
protein content exerts on the hydrophobicity scales,
while comparable strength of relation (about 0.55 when
CH and 3CH scales are used separately vs. 0.59 for H
raw values) is reported for the opposite direction.
� Finally, the average strength of relation that the content

exerts on the scales/raw values is about twice weaker
than the strength of the relation that the scale exerts on
the content.

3.5. Discussion of results for goal 3

In this section, we compare the strength of relation
between the hydrophobicity and the protein content with
respect to the three hydrophobicity indices, i.e. Eisenberg’s,
Fauchere–Pliska’s, and Cid’s. The comparison among
different hydrophobicity indices is performed based on
average, over different scales, strengths of relations. To
facilitate the comparison, average values of the cumulative
scales are reported in Table 5, i.e., avg cumulat. scales row
gives average for all cumulative scales and avg both

directions column gives average over both directions. The
bolded values (without underline) indicate the best
performing indices for both the cumulative scales and the
non-cumulative raw index values.

The table reveals that the Eisenberg’s index provides the
best results, i.e., the average strength of relation equals
0.511, 0.459 and 0.398 for the 3CH, over all cumulative
scales, and for the H raw values, respectively. This confirms
the conclusions from Juretic and Lucin (1998) and
application of this index for a cumulative scale performed
in Homaeian et al. (2007).

In case of the non-cumulative, H, raw values and
the relation that the scales exert on the content all three
indices are characterized by comparable strength. At the
same time, the strongest relation (0.595) corresponds to
the Fauchere–Pliska index. This is consistent with the
reported results, i.e., the raw values with this index were
used in Lin and Pan (2001), Zhang et al. (1998, 2001).
The strength of the relation that the content exerts on the
H raw values is relatively low, i.e., below 0.2, for all three
indices.

In short, the results show that, on average, the
Eisenberg’s index with the cumulative scales is better than
the currently used Fauchere–Pliska index and non-cumu-
lative raw index values. As expected, the Cid index remains
in the shadow of the other two indices.

3.6. Discussion of results for goal 4

The analysis concentrates on evaluation of effectiveness
of the FCM-based results by comparing them with results
using commonly applied correlation-based analysis. To
perform comparison, Pearson correlation coefficients
between corresponding concepts (hydrophobicity scales/
raw values, and helix and strand content) for each data
series have been computed. Absolute values of the
correlation coefficients were used to compute averages,
see Table 6.
The results show that the average, over the three indices,

correlations for the cumulative scales equal (0.466+
0.586+0.439)/3 ¼ 0.50, (0.448+0.581+0.422)/3 ¼ 0.48 and
for the 3CH and CH scales, while for the H raw values
the correlation equals (0.111+0.104+0.112) ¼ 0.11. Very
similar values are observed when each index is analyzed
separately. This confirms the results achieved with FCMs,
although a much bigger difference is observed. The
coefficient values around zero are usually associated with
weak or no correlation, which indicates that the non-
cumulative index values are weakly correlated with the
secondary structure content. On the other hand, correla-
tion of about 0.5 and higher are associated with strong
correlation, which gives further confirmation of the quality
of the two proposed scales.
The average, over the two scales and the raw index

values, correlation for each index equals (0.111+0.448+
0.466)/3 ¼ 0.34 for Eisenberg’s index, (0.104+0.581+
0.586)/3 ¼ 0.42 for the Fauchere–Pliska’s index, and
(0.112+0.422+0.439)/3 ¼ 0.32 for the Cid’s index. This
shows that Fauchere–Pliska’s index is better correlated
with protein content when compared with the Eisenberg’s
index. Also, the average correlation for non-cumulative, H,
raw values and Fauchere–Pliska’s index is lower than for
both Cid’s and Eisenberg’s indices, which is in disagree-
ments with results published in Zhang et al. (2001). These
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Table 6

Correlation coefficients

Eisenberg’s index Fauchere�Pliska’s index Cid’s index

H scale CH scale 3CH scale H scale CH scale 3CH scale H scale CH scale 3CH scale

a %h 0.096 0.431 0.449 0.097 0.500 0.506 0.129 0.426 0.446

ab %h 0.118 0.487 0.508 0.097 0.583 0.595 0.085 0.465 0.484

%s 0.126 0.403 0.419 0.128 0.603 0.604 0.130 0.380 0.382

b %s 0.105 0.471 0.487 0.093 0.639 0.640 0.104 0.419 0.445

Avg 0.111 0.448 0.466 0.104 0.581 0.586 0.112 0.422 0.439
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results also do not agree with our conclusions that were
drawn using FCMs. We argue that the correlation results
are deceptive since they consider correlations between the
hydrophobicity and only one of the content (helix or
strand) values at the time. It is clear that since a protein
contains both helices and strand and they are inherently
related, only methods that can consider relation between
all three concepts can give reliable results. Also, the
correlation based analysis does not allow studying the
strength of relations between concepts with respect to
the direction of relation, which is one of the inherent
features of the FCMs.

4. Conclusions

This paper proposes and performs analysis of two novel
hydrophobicity scales. In contrast to the currently used raw
index values, the new scales incorporate long-range
interactions along the protein sequence. The two new
scales and the raw hydrophobicity index values were
compared using three hydrophobicity indices, i.e. Eisen-
berg’s, Fauchere–Pliska’s, and Cid’s. The degree of the
relation between the scales and the secondary structure
content was quantified using fuzzy cognitive maps (FCMs)
and a comprehensive set of 200 low homology proteins.

The results show that the new cumulative hydrophobi-
city scales are characterized by much stronger relation with
the secondary protein content when compared to the
currently used non-cumulative raw values. This conclusion
holds true irrespective of the applied hydrobhobicity index.
The strength of relation indicates that Eisenberg’s index
with the proposed scales is better than the currently used
Fauchere–Pliska index and the raw values.
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Appendix A

The below table includes nine connection matrices (for
the three corresponding hydrophobicity indices, i.e.,
Eisenberg’s, Fauchere–Pliska’s and Cid’s, and three protein
structural classes, i.e., a, b, and ab) for each series. The
matrices correspond to average, over the corresponding
protein sets, FCM models. Each cell contains an average
strength of relation across the proteins in the same
structural class and for a given series computed using the
same hydrophobicity index. The values reflect the strength
of directed relation between the two corresponding
concepts, which is normalized to the [�1,1] interval. For
instance, value of �0.51 in the first row and the second
column in table for H series shows that the strength of the
cause–effect relation from concept H to concept %h for the
H series. This value shows that the strength of the relation
that the raw index values computed using Eisenberg’s index
exhibits on helix content is relatively high. In contrast,
value of 0.17 in the second row and the first column shows
that strength of the relation that the helix content exhibits
on the raw hydrophobicity values based on Eisenberg’s
index is relatively low. The values shown in bold describe
relations of our interest, which are summarized in Fig. 2 in
the paper.
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H series Eisenberg’s index Fauchere-Pliska’s index Cid’s index

H %h %s H %h %s H %h %s

a H 0.07 �0.51 �1.00 �0.08 �0.51 �1.00 �0.25 �0.50 �0.90
%h 0.17 0.11 �0.76 �0.06 0.03 �0.81 �0.04 0.06 �0.80
%s 0.03 0.15 0.19 0.22 �0.05 0.05 0.06 0.16 0.09

ab H 0.04 �0.64 �0.62 �0.13 �0.62 �0.60 �0.21 �0.63 �0.60

%h 0.16 0.27 �0.57 �0.02 0.15 �0.52 �0.33 0.00 �0.60
%s 0.34 �0.60 0.24 0.14 �0.58 0.11 0.03 �0.57 0.05

b H 0.07 �0.95 �0.60 �0.09 �0.94 �0.65 �0.22 �0.94 �0.62

%h 0.09 0.14 0.11 �0.01 0.06 �0.01 0.15 0.10 �0.03
%s 0.14 �0.77 0.00 �0.04 �0.65 �0.04 �0.25 �0.72 0.00

CH series Eisenberg’s index Fauchere-Pliska’s index Cid’s index

CH %h %s CH %h %s CH %h %s

a CH 0.44 �0.50 �0.99 0.56 �0.43 �0.92 0.50 �0.44 �0.88
%h �0.48 0.03 �0.78 �0.34 0.22 �0.82 �0.51 0.03 �0.77
%s 0.00 0.04 0.18 0.09 0.16 0.12 0.03 0.01 0.21

ab CH 0.37 �0.65 �0.64 0.47 �0.57 �0.52 0.41 �0.60 �0.55

%h �0.30 0.31 �0.44 �0.12 0.39 �0.26 �0.38 0.23 �0.42
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%s �0.26 �0.50 0.24 �0.19 �0.40 0.24 �0.34 �0.56 0.25
b CH 0.32 �0.95 �0.64 0.45 �0.92 �0.51 0.32 �0.92 �0.57

%h �0.01 0.12 0.02 0.24 0.28 0.14 �0.08 0.12 0.02
%s �0.30 �0.74 0.02 �0.32 �0.63 0.12 �0.47 �0.71 0.05

3CH series Eisenberg’s index Fauchere-Pliska’s index Cid’s index

3CH %h %s 3CH %h %s 3CH %h %s

a 3CH 0.53 �0.49 �0.99 0.60 �0.43 �0.90 0.56 �0.44 �0.93
%h �0.52 0.07 �0.89 �0.35 0.24 �0.82 �0.59 0.04 �0.72
%s �0.05 0.16 0.16 0.10 0.07 0.27 �0.02 0.08 0.07

ab 3CH 0.47 �0.65 �0.64 0.52 �0.58 �0.52 0.53 �0.58 �0.54

%h �0.34 0.28 �0.45 �0.17 0.37 �0.41 �0.44 0.17 �0.52
%s �0.34 �0.55 0.24 �0.17 �0.37 0.39 �0.41 �0.60 0.22

b 3CH 0.39 �0.95 �0.63 0.49 �0.92 �0.51 0.41 �0.91 �0.58

%h 0.03 0.13 0.07 0.19 0.04 0.15 �0.05 0.25 �0.03
%s �0.47 �0.78 �0.00 �0.40 �0.62 0.15 �0.47 �0.70 0.12

3CCH series Eisenberg’s index Fauchere-Pliska’s index Cid’s index

CH 3CH %h %s CH 3CH %h %s CH 3CH %h %s

a CH 0.33 0.13 �0.45 �0.98 0.42 0.20 �0.30 �0.72 0.43 0.24 �0.38 �0.64
3CH 0.12 0.44 �0.39 �0.99 0.16 0.45 �0.28 �0.68 0.06 0.38 �0.26 �0.68
%h �0.46 �0.58 0.02 �0.75 �0.28 �0.47 0.21 �0.57 �0.49 �0.53 0.19 �0.69
%s �0.04 0.11 0.11 0.14 0.17 �0.03 0.06 0.19 0.17 �0.14 0.07 0.22

ab CH 0.35 0.16 �0.58 �0.50 0.34 0.11 �0.48 �0.43 0.47 0.24 �0.50 �0.39

3CH 0.03 0.34 �0.49 �0.55 0.12 0.43 �0.35 �0.35 �0.07 0.32 �0.30 �0.35

%h �0.29 �0.33 0.34 �0.30 �0.06 �0.19 0.49 �0.29 �0.24 �0.49 0.27 �0.51
%s �0.18 �0.34 �0.44 0.30 �0.10 �0.14 �0.34 0.35 �0.22 �0.35 �0.48 0.24

b CH 0.36 0.10 �0.94 �0.52 0.29 0.03 �0.81 �0.48 0.37 0.08 �0.78 �0.48

3CH �0.04 0.31 �0.93 �0.46 0.13 0.44 �0.71 �0.33 �0.06 0.36 �0.68 �0.33

%h 0.16 �0.02 0.10 0.09 0.05 0.11 0.27 0.18 0.02 �0.04 0.12 0.03
%s �0.31 �0.41 �0.70 0.08 �0.24 �0.34 �0.47 0.18 �0.47 �0.62 �0.56 0.18
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