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Abstract

Current classification problems that concern data sets of large and increasing size require scalable

classification algorithms. In this study, we concentrate on several scalable, linear complexity

classifiers that include one of the top 10 voted data mining methods, Naı̈ve Bayes (NB), and

several recently proposed semi-NB classifiers. These algorithms perform front-end discretization

of the continuous features since by design they work only with nominal or discrete features. We

address the lack of studies that investigate the benefits and drawbacks of discretization in the

context of the subsequent classification. Our comprehensive empirical study considers 12 dis-

cretizers (two unsupervised and 10 supervised), seven classifiers (two classical NB and five semi-

NB), and 16 data sets. We investigate the scalability of the discretizers and show that the fastest

supervised discretizers fast class-attribute interdependency maximization (FCAIM), class-attribute

interdependency maximization (CAIM), and information entropy maximization (IEM) provide

discretization schemes with the highest overall quality. We show that discretization improves the

classification accuracy when compared against the two classical methods, NB and Flexible Naı̈ve Bayes

(FNB), executed on the raw data. The choice of the discretization algorithm impacts the significance

of the improvements. The MODL, FCAIM, and CAIM methods provide statistically significant

improvements, while the IEM, Class-attribute contingency coefficient (CACC), and Khiops discretizers

provide moderate improvements. The most accurate classification models are generated by the Aver-

aged one-dependence estimators (AODEsr) classifier followed by AODE and HNB (Hidden Naı̈ve

Bayes). AODEsr run on data discretized with MODL, FCAIM, and CAIM provides statistically

significantly better accuracies than both the classical NB methods. The worst results are obtained with

the NB, FNB, and LBR (Lazy Bayes rule) classifiers. We show that although the time to build the

discretization scheme could be longer than the time to train the classifier, the completion of the entire

process (to discretize data, compute the classifier, and predict test instances) is often faster than the NB-

based classification of the continuous instances. This is because the time to classify test instances is an

important factor that is positively influenced by discretization. The biggest positive influence, both on

the accuracy and the classification time, is associated with theMODL, FCAIM, and CAIM algorithms.

1 Introduction

Application areas such as intrusion detection, market basket analysis, and genomics and pro-

teomics, to name just a few, generate millions of data points daily. A 2003 survey reports that the

biggest decision support system at that time was at 29.2 terabytes, which is about 300% larger



than the largest system in 2001 (Winter & Auerbach, 2004). They also report that the average size

of Unix databases experienced a 6-fold, and Windows databases a 14-fold, increase compared to

year 2001, and that large commercial databases average about 10 billion data points (Winter &

Auerbach, 2004). This size explosion was triggered by recent advances in the low-cost storage

technology and the growing interest of research and industrial communities in automated analysis

of large quantities of data. Nowadays, data analysis algorithms, such as the classification algo-

rithms, must scale with these increasing sizes.

Classification, that is, prediction of a class label of an unknown instance based on a classifi-

cation model that is built from a set of training instances, is a methodology that is widely utilized

in both academic and industrial settings. The instances are usually described by a set of features

which can be nominal (e.g. color can be red, blue, white, etc.), ordinal (e.g. rank of a student in a

class), and numerical including both interval and ratio scales (e.g. temperature or a height of a

man). Both ordinal and numerical features are defined as continuous features, although ordinal

features cannot be scaled, that is, we cannot judge how much better is a student ranked first when

compared with a student who is ranked second or fifth. Some classification algorithms, like Naı̈ve

Bayes (NB; John & Langley, 1995), AQ (Kaufman & Michalski, 1999), CLIP (Cios & Kurgan,

2002, 2004), CN2 (Clark & Niblett, 1989), and DataSqueezer (Kurgan et al., 2006), work only with

nominal features (and continuous features that take on a small number of values). Other classifiers

that work with continuous features may perform better when dealing with nominal features

(Rissanen, 1978; Catlett, 1991; Liu et al., 2002; Kurgan & Cios, 2004). Therefore, one of the

important data preprocessing steps is discretization, which converts continuous features into

discrete (nominal or ordinal) features. The key characteristic of discretization is that the number of

values of a continuous feature is substantially reduced. The discretization methods were widely

examined during the last two decades (Wong & Liu, 1975; Rissanen, 1978; Paterson & Niblett,

1987; Wong & Chiu, 1987; Catlett, 1991; Kerber, 1992; Fayyad & Irani, 1993; Ching et al., 1995;

Dougherty et al., 1995; Liu & Setiono, 1997; Wang & Liu, 1998; Kurgan & Cios, 2001; Tay &

Shen, 2002; Kurgan & Cios, 2003; Boullé, 2004; Kurgan & Cios, 2004; Liu & Wang, 2005; Mehta

et al., 2005; Boullé, 2006; Kujala & Elomaa, 2007; Lee, 2007; Tsai et al., 2008). This research also

addressed the impact of discretization on some of the classifiers such as decision trees including

ID3 (Ching et al., 1995), C4.5 (Fayyad & Irani, 1992; Dougherty et al., 1995; Kohavi & Sahami,

1996; Liu & Setiono, 1997; Liu et al., 2002; Tay & Shen, 2002; Liu & Wang, 2005; Lee, 2007), and

C5.0 (Tay & Shen, 2002; Kurgan & Cios, 2003, 2004; Tsai et al., 2008), AQ rule-based learners

(Ching et al., 1995), CLIP4 classifiers (Cios & Kurgan, 2002; Kurgan & Cios, 2003, 2004), and

nearest neighbor and logistic regression (Abraham et al., 2006).

As was shown in (Flores et al., 2007), (Lee, 2007), discretization has a positive impact on the

NB classifier, that is, it helps to improve the classification performed with this classifier. This

classifier is very easy to use, that is, it does not require the user to input any parameters, and

provides competitive prediction accuracies (John & Langley, 1995), (Webb et al., 2005; Zhang

et al., 2005). NB was included in the recently published list of the top 10 data mining algorithms

due to its simplicity, elegance, and robustness (Wu et al., 2007). One of the most attractive features

of NB is that the classification model is built in linear time with respect to the number of instances,

which allows for applications to large data sets. The above advantages lead to a number of follow-

up studies that proposed novel extensions to the classical NB method (the so-called semi-NB

classifiers; Langley et al., 1992; Langley & Sage, 1994; John & Langley, 1995; Friedman et al.,

1997; Zheng & Webb, 2000; Webb et al., 2005; Zhang et al., 2005; Abraham et al., 2006; Jiang &

Zhang, 2006), which are also characterized by linear complexity. The abovementioned char-

acteristics and the extent of the subsequent works related to this classifier motivated us to focus

exclusively on the NB classifier and its descendants.

This classifier works only with nominal features and uses approximations (distributions) to

model continuous features. As a result, usage of high-quality data discretization methods instead

of the simplistic approximations would likely improve prediction performance of the NB algo-

rithm. Dougherty et al. have demonstrated that coupling the classical NB with the discretization
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method outperforms the NB that uses normal distribution to model continuous features

(Dougherty et al., 1995). A few more recent works also studied the impact of discretization

methods on the accuracy of the classical NB models (Boullé, 2004; Flores et al., 2007; Lee, 2007).

Unfortunately, these studies are limited in scope and thus they do not allow one to draw strong

conclusions. More specifically, they concentrate on the classical NB classifier and only a few

discretization methods; they investigate the impact of discretization only on the classification

accuracy, and their conclusions are based on a relatively small number of benchmarking problems.

The most comprehensive work to date by Yang and Webb compares 10 discretization methods on

a wide range of benchmark data sets (Yang & Webb, 2002). This study is also limited to classical

NB, focuses exclusively on classification accuracy, and investigates relatively old discretizers that

were developed before 2002. In contrast, we explore the impact of discretization on the classical

and several modern extensions of the NB classifier; we consider a dozen popular and modern

discretization methods; we investigate the impact of discretization on both the accuracy and time

needed to generate the discretization scheme and the classification model and to perform the

classification; and we perform the experimental tests using a large number of data sets to assure

that the conclusions are generic.

One recent study explored the impact of discretization on a few NB variants (Abraham et al.,

2006). However, the authors investigated only three older discretization methods and their

experiments were limited to a few medical data sets. In our preliminary report, we analyzed the

impact of discretization on the NB classifiers but this work was performed on only seven data

sets, and for eight discretizers and three NB classifiers (Mizianty et al., 2008). In this study, we

expanded our preliminary work by including 16 benchmark data sets, 12 discretizers, and

7 classifiers. We also performed a more detailed comparative analysis with respect to both clas-

sification accuracy and time, which allowed us to draw several interesting and sound conclusions.

Our analysis is based on the Friedman F-test and Nemenyi test (Demšar, 2006), as well as the 53 2

cv F-test (Alpaydin, 1999), and compares the quality of different combinations of classifiers and

discretizers over multiple data sets.

2 Background

2.1 Discretization

Discretization is a process of converting the continuous domain of a feature (including both numerical

and ordered features) into a nominal domain, that is, domain with a finite number of values. This

process results in the generation of a discretization scheme D for a given continuous attribute F. The

scheme defines disjoint discrete subintervals bound by a pair of values (boundary points).

DðFÞ : f½d1; d2�; . . . ; ½di ; diþ 1�; . . . ; ½dn� 1; dn�g

The first step of virtually all discretization algorithms is to create a set of potential boundary points.

Usually, those points are defined using unique values of the input attribute. Although the set of unique

values is sometimes used as potential boundary points, the most common approach is to use all

midpoints between the neighboring values and the sorted unique values set as the boundary points. In

case of some discretization algorithms, for example, algorithms that are based on information entropy

based criterions, the boundary points should be set between points with different class labels (Fayyad

& Irani, 1993), which can be used to filter out some of the potential boundary points. This speeds up

discretization since the main part of the discretization process concerns scanning of the potential

boundary point set to find the best subset of boundary points. In the second step, the discretization

algorithms use a statistical criterion to evaluate the quality of a given set of boundary points and to

guide a search for the best-performing set of boundary points.

As proposed in Liu et al. (2002), discretization algorithms can be classified along five different

characteristics that include supervised versus unsupervised, static versus dynamic, global versus

local, top-down (splitting) versus bottom-up (merging), and direct versus incremental.
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Unsupervised algorithms do not use information about class labels and generate schemes

based only on distribution of the values of the continuous attributes. Supervised methods use

class labels and a criterion to evaluate the quality of a given scheme in the context of the known

class labels.

Dynamic algorithms consider the interdependence among the features and discretize a given

continuous attribute using the knowledge of other attributes (e.g. discretization performed in the

C4.5 classifier (Quinlan, 1993)). Contrary to this, the static methods discretize each attribute

separately and discretization is completed independently of the subsequent learning task. In our

study, all discretization algorithms are static, whereas NB and Flexible Naı̈ve Bayes (FNB) use the

dynamic method to model continuous values.

Local methods use a subset of instances when deriving the scheme, while global algorithms use

all instances.

When performing discretization, the top-down/dividing algorithms start with only one interval

which covers all available instances and successively divide it into smaller intervals at the sub-

sequent iterations. The bottom-up/merging algorithms start with the maximal number of sub-

intervals (usually all midpoints are selected as the boundary points) and successively merge

neighboring intervals. Since usually the final discretization scheme consists of a small number of

intervals, the dividing algorithms require a smaller number of steps to converge when compared

with the merging algorithms.

Direct methods require a user to decide on the number of intervals of the final scheme. In

contrast, incremental algorithms find that number on their own. Some of the incremental methods

may require the user to provide a stopping criterion to terminate the discretization process.

2.2 Discretization criterions

Each supervised discretization algorithm uses a criterion to evaluate a given discretization scheme.

The most common way to store information about distribution of data points in the scheme is to

use a [k1 1] x [n1 1] dimensional matrix (called the quanta matrix), which represents an

exemplary discretization scheme with n intervals, k class labels, and M training instances, see

Table 1. Each following column of the matrix stores information about the number of training

instances in subsequent intervals. The rows represent the number of instances with subsequent

class labels. In addition, the last row and last column hold aggregated information.

Given the quanta matrix Q for the attribute F and the discretization scheme D, we can

define three probability values: pir, the probability of an instance from class i having a value in

Table 1 Two-dimensional quanta matrix for attribute F and discretization scheme D where qir is the

number of training instances with i-th class label which are in r-th interval, Mi1 is the number of all

training instancess with i-th class label, and M1r corresponds to the number of all training instancess

in r-th interval. two-dimensional quanta matrix for attribute F and discretization scheme D where qir is

the number of training instances with i-th class label which are in r-th interval, Mi1 is the number of

all training instancess with i-th class label, and M1r corresponds to the number of all training instancess

in r-th interval

Interval

Class [d1; d2] y (dr; dr1 1] y (dn2 1; dn] Class total

C1 q11 y q1r y q1n M11

y y y y y y y

Ci qi1 y qir y qin Mi1

y y y y y y y

Ck qk1 y qkr y qkn Mk1

Interval total M11 y M1r y M1n M
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the rth interval of F; pi1, the probability of an instance belonging to ith class; and p1r, the

probability of an instance having a value in the rth interval of attribute F. These probabilities

are defined as:

pir ¼ pðCi;Dr jFÞ ¼
qir
M

ð1Þ

piþ ¼ pðCiÞ ¼
Miþ
M

ð2Þ

pþr ¼ pðDr jFÞ ¼
Mþr
M

ð3Þ

The following sections briefly describe discretization criterions which are used by the algo-

rithms that are considered in this study.

2.2.1 Information entropy

Information entropy is a measure of uncertainty/indetermination associated with the random

variable. In the case of discretization, it represents the amount of information which is needed to

describe the scheme. The lower the entropy is, the better the scheme, as we need less information to

describe it. Entropy is defined as

EntðC;D jFÞ ¼
Xk
i¼ 1

Xn
r¼ 1

pirlog2
1

pir
ð4Þ

where if pir 5 0 then pirlog2
1
pir
¼ 0. Entropy is non-negative and reaches a maximum when all

probabilities have the same values.

2.2.2 Class-attribute interdependence redundancy and class-attribute interdependence uncertainty

CAIR (class-attribute interdependence redundancy; Wong & Liu, 1975) and CAIU (class-attribute

interdependence uncertainty; Huang, 1996) criterions measure interdependence between class

labels and generated intervals. Both criterions are insensitive to the number of class labels and

distinct values. In the case of CAIR, bigger criterion value corresponds to stronger correlation

between classes and intervals, while for CAIU this relation is reversed.

CAIR criterion is given by

CAIRðC;D jFÞ ¼ IðC;D jFÞ
EntðC;D jFÞ ð5Þ

where Ent(C,D |F ) is the information entropy and I(C,D |F ) is the class-attribute mutual

information defined as

IðC;D jFÞ ¼
Xk
i¼ 1

Xn
r¼ 1

pirlog2
pir

piþpþr
ð6Þ

As for CAIU, the criterion is expressed by:

CAIUðC;D jFÞ ¼ INFOðC;D jFÞ
EntðC;D jFÞ ð7Þ

where Ent(C,D |F ) is the information entropy and INFO(C,D|F) is the class-attribute infor-

mation defined as

INFOðC;D jFÞ ¼
Xk
i¼ 1

Xn
r¼ 1

pirlog2
pþr
pir

ð8Þ

2.2.3 Class-attribute interdependency maximization

CAIM (class-attribute interdependency maximization) criterion was proposed in Kurgan and Cios

(2004). This criterion generates intervals that contain as many instances assigned to only one of

the class labels as possible. In other words, this criterion aims to generate intervals for which a
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dominant associated class can be found. Larger CAIM value corresponds to bigger correlation

between classes and intervals. The CAIM criterion is defined as

CAIMðC;D jFÞ ¼

Pn
r¼ 1

max2r
Mþr

n
ð9Þ

where maxr is the maximal value of qir (for i in the range [0; S]) in the r-th interval; in other

words, maxr is the number of instances of the most frequent class label in the r-th interval.

The values of this criterion range between 0 and M. Value maxr
2 is divided by M1r to scale this

value and to reward intervals with only one dominating class. The numerator is divided by the

number of intervals n to generate discretization schemes with a small number of intervals.

2.2.4 Class-attribute contingency coefficient

Similar to the CAIM criterion, the CACC (Class-attribute contingency coefficient) criterion aims to

generate schemes that maximize interdependence between class labels and intervals (Tsai et al., 2008).

In contrast to CAIM, which favors schemes with a small number of intervals, CACC is more likely to

accept schemes with a larger number of intervals, thus potentially further increasing interdependence.

This criterion is given by

CACCðC;D jFÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y

y þ M

r
ð10Þ

where y is defined as

y ¼ M

Pk
i¼ 1

Pn
r¼ 1

q2ir
MiþMþr

logðnÞ ð11Þ

The variable y is divided by log(n) to reward schemes with a smaller number of intervals. We note

that in Equation (9), division by n similarly aims at minimizing the number of intervals. The authors of

the CACC criterion intentionally used log(n) instead of n to reduce the influence of this factor.

2.2.5 x2 criterion

The x2 criterion (Kerber, 1992) is based on the statistical x2test that is used to evaluate the

hypothesis of class attribute independence. The x2 criterion value corresponds to the distance

between the observed and expected frequencies of instances, and can be interpreted as the distance

to the hypothesis of independence between attributes. The x2 criterion is defined as

w2ðC;D jFÞ ¼
Xk
i¼ 1

Xn
r¼ 1

ðqir� eirÞ2

eir
ð12Þ

where expected frequencies eir are calculated as

eir ¼
MiþMþr

M
ð13Þ

If the hypothesis is true, then the x2-value is distributed like a x2 statistic with (n21)3 (k21)

degrees of freedom. A higher x2-value corresponds to lower confidence in the tested hypothesis.

2.2.6 MODL criterion

The MODL criterion, which has been introduced in (Boullé, 2006), combines the Bayesian approach

and MDL (minimal description length) model (Rissanen, 1978). The goal of the Bayesian approach is

to maximize the probability P(Model |Data), which, with the use of Bayesian rules and considering

that P(Data) is constant, is equivalent to maximizing

PðModel jDataÞ ¼ PðDataÞ lPðData jModelÞ ð14Þ

Provided that the calculation of the probabilities P(Model) and P(Data |Model) is feasible, the

Bayesian approach finds an optimal model for the data.
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By applying the MDL model, the Bayesian approach is reused replacing the probabilities with

their negative logarithms, which can be interpreted as Shannon code lengths. This coding problem

is solved by finding a model that minimizes:

LengthðModel jDataÞ¼LengthðDataÞlLengthðData jModelÞ ð15Þ

The above problem can be calculated by finding the scheme that minimizes the following

equation (Boullé, 2006):

MODLðC;D jFÞ ¼ logðMÞ þ log
M þ n � 1

n � 1

 !
þ
Xn
r¼1

log
Mþr þ k� 1

k� 1

 !

þ
Xn
r¼ 1

log
Mþr!

qi1!qi2! . . . qik!

 !
ð16Þ

Algorithms that use this criterion to search for the best schema should only compute the

differences between criterion values after and before splitting an interval or merging two adjacent

intervals. This is computationally more efficient than computing the criterion value from scratch.

2.3 Selected discretization algorithms

We selected a total of 12 discretization algorithms that cover various discretization approaches,

see Table 2. We included several older algorithms such as two unsupervised methods, equal width

and equal frequency, and four commonly used supervised methods, Maximum Entropy (ME)

(Wong & Chiu, 1987), Information Entropy Maximization (IEM) (Fayyad & Irani, 1993),

Paterson Niblett (Paterson & Niblett, 1987), and CADD (Ching et al., 1995). The main reason for

Table 2 Comparison of the 12 discretization algorithms used in the research

Year of

publication Name (reference) Abbreviation Characteristics Criterion

N/A Equal Width EW Unsupervised, splitting,

global, direct

N/A

N/A Equal Frequency EF Unsupervised, splitting,

global, direct

N/A

1987 Maximum Entropy (Wong

& Chiu, 1987)

ME Supervised, splitting,

global, direct

Inf. Entropy

1987 Paterson Niblett (Paterson

& Niblett, 1987)

PN Supervised, splitting,

global, direct

Inf. Entropy

1993 IEM (Fayyad & Irani, 1993) IM Supervised, splitting,

local, incremental

Inf. Entropy

1995 CADD (Ching et al., 1995) CD Supervised, splitting/

merging, global, direct

CAIR

2002 Modified x2 (Tay & Shen,

2002)

MC Supervised, merging,

global, incremental

x2

2003 FCAIM (Kurgan & Cios,

2003)

FC Supervised, splitting,

global, incremental

CAIM

2004 Khiops (Boullé, 2004) Kh Supervised, merging,

global, incremental

x2

2004 CAIM (Kurgan & Cios,

2004)

CM Supervised, splitting,

global, incremental

CAIM

2006 MODL (Boullé, 2006) MO Supervised, merging,

global, incremental

MODL

2008 CACC (Tsai et al., 2008) CC Supervised, splitting,

global, incremental

CACC
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their inclusion is the fact that these methods are commonly used as a benchmark set for modern

discretization algorithms (Kurgan & Cios, 2001; Liu et al., 2002; Kurgan & Cios, 2003, 2004;

Abraham et al., 2006; Boullé, 2006). Most of the older algorithms, except IEM, are direct, that is,

they require the user to specify the final number of intervals. The newer algorithms are incremental.

In the case of the direct methods, we use the following equation to determine the number of intervals:

d ¼ M

3k
ð17Þ

where M is the number of distinct values of F and k is the number of class labels (Wong & Chiu,

1987; Kurgan & Cios, 2004). When implementing the Paterson–Niblett algorithm, we used d and k to

compute the maximum and minimum number of intervals, respectively.

The simplest algorithms are unsupervised and they include the Equal Width and Equal

Frequency algorithms. Both are direct methods which need a user to determine the number of

intervals in the final scheme. The Equal Width method finds a minimal and a maximal value of

F and divides the corresponding interval into d equally wide intervals. The Equal Frequency

algorithm sorts the values of F and computes d intervals that contain the same number of values.

ME first uses the Equal Frequency algorithm to create d intervals and then perturbs interval

borders as long as the perturbation increases the entropy. At each step, only the perturbation of

one border that corresponds to the largest increase in the entropy is accepted.

CADD works similarly to ME, but instead of maximizing entropy, it tries to increase the value

of the CAIR criterion. It also adds one more step in which some neighboring intervals are merged.

Paterson Niblett is a splitting algorithm which starts with one big interval and successfully

divides it into smaller ones. In each cycle, a cut point that corresponds to the largest entropy gain

is chosen. This method is driven by the user who must determine both the minimum and maximum

number of intervals. After reaching the minimal number of intervals, the algorithm checks whether

the next division will improve entropy; otherwise, it terminates. If the entropy value increases, then

the algorithm terminates upon reaching the maximum number of intervals.

IEM is also a top-down algorithm but it uses only the data within a given interval to decide

whether the interval should be divided. After every division of an interval, the method recursively

checks whether the two new subintervals should be divided. It terminates when there are no more

intervals to be divided.

We also included six modern discretization algorithms including Modified x2 (Tay & Shen,

2002), CAIM (Kurgan & Cios, 2004), FCAIM (Kurgan & Cios, 2003), Khiops (Boullé, 2004),

MODL (Boullé, 2006), and CACC (Tsai et al., 2008).

Modified x2 is an improvement of the x2 algorithm (Liu & Setiono, 1997). This is a bottom-up

method which in each iteration decides, based on the x2 test, whether the two best adjacent

intervals should be merged.

The class-attribute interdependence maximization (CAIM) and Fast CAIM (FCAIM) methods

are both top-down methods that iteratively add boundary points by accepting a boundary, from

among all midpoints, that maximizes the value of the CAIM criterion. The difference between

these algorithms is that FCAIM uses a smaller set of potential boundary points that consists of

midpoints between adjacent unique values that have different class labels, whereas the CAIM

algorithm uses all midpoints.

The Khiops algorithm is a bottom-up method which uses the x2 statistic to choose a pair of

intervals that maximize the x2-value when merged. To shorten the execution time, this method

exploits the fact that the x2 criterion is additive. The criterion value for each interval is stored as it

will not change until this interval is merged and only the values that concern the merged intervals

are updated.

The MODL algorithm uses the MODL criterion which is based on the Bayesian approach, and

thus it seems to be the best suited toward application with NB classifiers. It uses a technique

similar to Khiops to speed up the computations. It also applies a greedy postoptimization based

on the hill-climbing algorithm to find the most optimal discretization scheme.
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Finally, we include one of the most recent discretization methods, CACC, which is a top-down

method based on the CAIM algorithm that uses the CACC criterion when adding boundary points.

2.4 Naı̈ve Bayes and semi-Naı̈ve Bayes classifiers

Classification is the task in which a training set of t instances described by n features is used to

build a model that is used to predict the class label yAc1,y,ck for a test instance x5/x1,y,xnS,

where xi is the value of the i-th feature and k is the number of class labels.

2.4.1 Naı̈ve Bayes and Flexible Naı̈ve Bayes

The NB classifier assumes independency of features given a class label and performs classification

using:

argmaxyðP0ðyÞ
Yn
i¼ 1

P0ðxi j yÞÞ ð18Þ

where P(y) and P(xi | y) are estimates of the respective probabilities derived from the training

set. For nominal features, the conditional probabilities correspond to the probability of the i-th

feature having the value of xi for a given class label, whereas for continuous features NB uses

Gaussian distribution to model them and to estimate the probability. The maximum likelihood

estimates of the mean and the standard deviation of the normal distributions are based on the

sample average and standard deviation for each class label. Therefore, when the continuous

features do not obey the Gaussian distribution, the estimates may lead to classification errors. To

this end, a flexible NB, which improves the estimation of probability distribution for continuous

features, was developed (John & Langley, 1995). In this case, the distribution is averaged over a set of

Gaussian kernels, where their number equals the number of values of the i-th feature in class ci and

which have a mean equal to xi and the same standard deviation equal to 1ffiffiffiffi
tci
p where tci corresponds

to the number of instances in class ci. While NB and FNB accept continuous features, the remaining

NB-derived classifiers considered require front-end discretization of continuous features.

2.4.2 Lazy Bayes rule

Lazy Bayes rule (LBR; Zheng & Webb, 2000) is an extension to NB in which the assumption of

features independence is relaxed. Instead of using all features for a given class, LBR selects a

subset of features W and the independence is assumed only among this subset and the class label.

In this case, the classification is performed using:

argmaxyðP0ðy jWÞ
Yn
i¼ 1

P0ðxi j y;WÞÞ ð19Þ

W is selected using a heuristic wrapper that aims at minimizing error on the training data set

(Zheng & Webb, 2000). The selection of the subset is delayed to the classification step and it relies

on the data collected at the training step. This results in an increase in complexity, that is, the

complexity of the classification step equals O(tkn3).

2.4.3 Averaged one-dependence estimators

The estimation of W in LBR is time-consuming and thus a new algorithm, averaged one-

dependence estimators (AODE), which relaxes the assumption of features independence that is

used in the original NB, was developed (Webb et al., 2005). AODE is based on an ensemble of

1-dependence NB classifiers, that is, NB that assumes dependence on y and one feature xi

argmaxyð
X

i:1�i�n^FðxiÞ�30
P0ðy jxiÞ

Yn
j¼ 1

P0ðxj j y; xiÞÞ ð20Þ

where F(xi) is a count of the number of training instances having the attribute value xi. To avoid

false probability distributions, AODE averages only the models where F(xi). 30, a minimum

sample size that is widely used in statistics.

Discretization as the enabling technique 429



2.4.4 Hidden Naı̈ve Bayes

The hidden Naı̈ve Bayes (HNB) classifier also attempts to relax the assumption of the indepen-

dence of the features (Zhang et al., 2005). For each attribute, this classifier creates a hidden parent

which represents the influence of all other attributes. The hidden parent node is essentially a

mixture of the weighted influences from all other attributes, where the weight is used to represent

the importance of a given attribute. The weight can be either computed or manually assigned by a

human expert.

2.4.5 Weightily averaged one-dependence estimators

Weightily averaged one-dependence estimators (WAODE) extends the AODE algorithm by

varying the impact of each feature (Jiang & Zhang, 2006). While AODE treats each tree-

augmented NB equally, WAODE adds a weight for each 1-dependence NB classifier. The weight is

computed using correlation between a given feature and the class variable.

2.4.6 Efficient lazy elimination for averaged one-dependence estimators

This classifier is designed upon an observation that correlated features can degrade NB’s accuracy.

To this end, a new technique called lazy elimination (LE), whose goal is to identify and eliminate

pairs of features where one feature is a generalization of the other feature, was developed (Zheng

& Webb, 2006). During the training, the LE creates a table of probability estimates and the

algorithm delays the elimination to the classification step. Based on attribute values of the instance

that is being classified, LE deletes all features that are related to this instance. Since the infor-

mation which is computed by LE during the training step is the same as the information collected

by the AODE algorithm, the LE technique was coupled with AODE. At the same time, the LE

technique can be used with any Bayesian classifier.

We note that besides the abovementioned classifiers, a few other NB-based classifiers were

proposed. They include selective NB (SBC; Langley & Sage, 1994), tree augmented Naive Bayes

(TAN), and Super Parent TAN (SP-TAN) (Friedman et al., 1997). SBC uses forward feature

selection to find a suitable subset of attributes that are used to construct the NB. The results

presented in (Zhang et al., 2005) show that SBC is outperformed by HNB and hence the former

method was not included in our study. SP-TAN is a variant of TAN in which the conditional

independence between the features is relaxed and where each feature depends on the class label

and one other (the so-called parent) feature. The parent feature is selected based on conditional

mutual information (Keogh & Pazzani, 1999). The SP-TAN classifier was shown to provide

accuracy comparable to LBR (Wang & Webb, 2002) and thus it was also excluded from our study.

The NB and semi-NB classifiers are summarized in Table 3. The table also gives the compu-

tational complexity of the training (generation of the classification model on the training data set)

and classification (time to apply the classification model on a test set) performed with these

classifiers. We observe that all the considered methods have linear training time with respect to the

number of training instances, although some of them scale in a non-linear fashion (either quad-

ratic or cubic) with respect to the number of features. In addition, the LBR method performs

poorly in the context of the classification time.

3 Experimental results

All algorithms were implemented in JAVA. The classifiers used in the research were implemented

in the WEKA workbench (Witten & Frank, 2005), while we used in-house implementations for the

discretization algorithms.

We used 16 data sets from a UCI repository (Asuncion & Newman, 2007), see Table 4. We

selected data sets that cover a wide range of problems including different numbers of classes

(between 2 and 11), instances (between 208 and 10 992), and features (between 9 and 60). The top

eight data sets include mixed feature types, that is, both continuous and nominal, while the bottom

eight data sets include only continuous features.
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Since WAODE and HNB classifiers cannot handle missing values, we replace them with

averages (for numerical features) and modes (for nominal features). The same procedure for

imputation of missing values was implemented by the authors of these classifiers (Zhang et al.,

2005; Jiang & Zhang, 2006).

The experiments are based on five repetitions of twofold cross-validation, as suggested in

Alpaydin (1999), which results in a total of 10 folds (classifications). Each data set in each of the

cross-validations was discretized by all 12 algorithms using only one (training) fold to create the

discretization scheme. For each setup, that is, discretization algorithm and a data set, we com-

puted the average CAIR (Ching et al., 1995) and entropy values, as well as the average time needed

to perform discretization and the average number of discretization intervals for each continuous

feature. These values are used to evaluate and compare individual discretization algorithms.

Next, we use both the discretized and the raw data to evaluate the impact of discretization on

the subsequently performed classification with NB and semi-NB classifiers. We use NB and FNB

Table 3 Comparison and main characteristics of the nine considered Naı̈ve Bayes and semi-Naı̈ve Bayes

classifiers. k is the number of classes, t is the number of training instances, n is the number of attributes,

and v is the average number of distinct values for an attribute; tr stands for training and cl stands for

classification

Name (reference) Abbreviation Key characteristics Complexity (tr/cl)

Naı̈ve Bayes

(Langley et al.,

1992)

NB Minimizes the prediction error by selecting

argmax (y,P(y|x)); assumes that the features are

independent given the class label; uses Gaussian

distribution to model continuous features;

O(tn)/O(kn)

SBC (Langley &

Sage, 1994)

N/A Uses forward selection to find a good subset

of attributes and then uses this subset to

construct a NB;

O(tn3)/O(kn)

FNB (John &

Langley, 1995)

FNB Variant of the NB algorithm which improves

the estimation of probability distributions for

continuous features using a set of Gaussian

kernels;

O(tn)/O(kn)

SP-TAN

(Friedman et al.,

1997)

N/A Assumes that each feature depends on the

class label and one other attribute (parent),

which is selected based on conditional mutual

information;

accepts only discrete or nominal features;

O(tkn3)/O(kn)

LBR (Zheng &

Webb, 2000)

LB Relaxes the assumption of feature independence

by choosing a subset of features W, and

minimizing the prediction error by selecting;

accepts only discrete or nominal features;

O(tn)/O(tkn3)

AODE (Webb

et al., 2005)

A Builds a one-dependence classifier for each

attribute, in which the attribute is set to be the

parent of all other attributes;

accepts only discrete or nominal features;

O(tn2)/O(kn2)

HNB (Zhang

et al., 2005)

H creates a hidden parent for each attribute,

which represents the influences from all

other attributes;

accepts only discrete or nominal features;

O(tn2 1 kn2v2)/

O(kn2)

WAODE (Jiang &

Zhang, 2006)

WA extends the AODE algorithm by assigning

different weights to different tree augmented NB

in the aggregate of AODE;

accepts only discrete or nominal features;

O(tn2)/O(kn2)

AODEsr (Zheng

& Webb, 2006)

Asr extends the AODE algorithm by using LE (Lazy

Elimination) technique to eliminate all related

attributes at the classification time;

accepts only discrete or nominal features;

O(tn2)/O(kn2)
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classifiers on the raw data and NB and the remaining considered semi-NB classifiers on the

discretized data (we note that for the discrete data FNB is equivalent to NB). We train classifiers

on the same fold that was used to derive the discretization scheme. For each setup, that is,

classifier and a discretized/original data set, we compute average time to train the classification

model (training time) on the training fold, and average accuracy and average time to use the model

to classify the test samples (classification time) using the test fold. We note that training and test

folds are of the same size.

The results are presented in two subsections. In the first subsection, we compare discretization

methods based on the generated discretization schemes. In the second subsection, we compare and

analyze the impact of discretization on the accuracies of the classifiers and the time needed to

complete the entire process, that is, time to discretize the data, train a classification model, and

classify the test fold.

3.1 Comparison of discretization algorithms

For each data set, the considered 12 discretization algorithms are compared based on the average

CAIR and entropy values (over 10-folds using five repetitions of 2-fold cross-validation), which

are used to quantify the quality of the generated discretization schemes, average running time

(over 10-folds), and average number of intervals (over all continuous features and folds).

CAIR values quantify the interdependence between the discretized feature and the class labels

such that higher values are associated with stronger relation between these two features. The

discretization schemes with the highest CAIR values, see Table 5, are generated by CACC algo-

rithm, followed by CAIM, FCAIM, and MODL. The worst results are obtained for Maximum

Entropy, Khiops, and both unsupervised algorithms. The best entropy values, that is, higher

entropy values indicate weaker relation between the discretized feature and the class labels, see

Table 6, were obtained by the Paterson–Niblett and IEM algorithms. Again, the FCAIM, CAIM,

and MODL algorithms scored relatively well. The worst results were obtained by the Equal

Width, Maximum Entropy, and Khiops algorithms. We observe that although the results obtained

with CAIR and Entropy differ, that is, these measures focus on different aspects of discretization,

Table 4 Benchmark data sets used in the experiments

Data set Abbreviation

No. continuous

features

No.

features

No.

classes

No.

instances

Average no.

distinct val.

Annealing data Anneal 6 38 6 898 23.38

Horse colic database Colic 7 22 2 368 37.87

Credit approval Credit 6 15 2 690 124

Cylinder bands Cylinder 18 39 2 540 44.36

Heart disease databases

cleveland

Heart 6 13 2 303 47.98

Hypothyroid disease Hypo 7 29 4 3772 130

Thyroid disease records Sick 7 29 2 3772 130

Vowel recognition data Vowel 10 13 11 990 444

Glass identification Glass 9 9 7 214 63.8

Ionosphere Iono 34 34 2 351 121

Blocks classification Page 10 10 5 5473 665

Pen-based recognition of

handwritten digits

Pen 16 16 10 10992 99.99

Statlog (Landsat satellite) Sat 36 36 7 6433 75.01

Image segmentation data Seg 19 19 7 2310 451

Connectionist bench (sonar,

mines vs. rocks)

Sonar 60 60 2 208 97.85

Statlog (vehicle silhouettes) Vehicle 18 18 4 846 66.28
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Table 5 The average CAIR values associated with the discretization performed by the 12 discretization algorithms on the 16 benchmark data sets; higher CAIR value

indicates better discretization scheme. The values in round brackets indicate standard deviation (over the 10-folds). The values in third row show rank of a given

discretization algorithm for a given data set. Values in bold indicate the best results for a given data set. Last column shows average rank of a given algorithm over all

data sets. Abbreviations for data set names can be found in Table 4

Algorithm Anneal Colic Credit Cylinder Heart Hypo Sick Vowel Glass Iono Page Pen Sat Seg Sonar Vehicle Avg. rank

Equal Width 0.058 0.023 0.029 0.009 0.037 0.053 0.023 0.092 0.127 0.076 0.042 0.125 0.201 0.168 0.036 0.055 8.25

(0.002) (0.004) (0.003) (0.001) (0.005) (0.005) (0.005) (0.002) (0.008) (0.004) (0.007) (0.001) (0.002) (0.001) (0.003) (0.003)

9 7 12 8 9 8 8 7 8 9 8 8 6 9 6 10

Equal frequency 0.062 0.022 0.037 0.01 0.036 0.036 0.021 0.092 0.127 0.073 0.041 0.125 0.2 0.168 0.034 0.057 8.31

(0.004) (0.004) (0.004) (0.001) (0.005) (0.002) (0.002) (0.001) (0.009) (0.005) (0.002) (0.001) (0.002) (0.002) (0.003) (0.002)

8 8 9 7 10 9 9 8 7 10 9 7 8 8 7 9

Maximum Entropy 0.012 0.01 0.034 0.006 0.022 0.026 0.014 0.086 0.073 0.068 0.035 0.12 0.159 0.159 0.023 0.044 10.75

(0.004) (0.003) (0.003) (0.001) (0.003) (0.001) (0.001) (0.001) (0.011) (0.004) (0.002) (0.001) (0.002) (0.002) (0.003) (0.002)

12 11 10 10 12 11 10 9 12 11 12 9 11 11 9 12

Paterson Niblett 0.066 0.02 0.04 0.011 0.04 0.158 0.063 0.062 0.152 0.085 0.087 0.115 0.171 0.157 0.032 0.067 7.56

(0.002) (0.009) (0.008) (0.001) (0.009) (0.01) (0.006) (0.001) (0.009) (0.005) (0.009) (0.001) (0.002) (0.002) (0.008) (0.004)

7 9 8 6 8 2 5 12 5 7 6 10 9 12 8 7

IEM 0.07 0.009 0.049 0.003 0.047 0.135 0.071 0.073 0.113 0.103 0.108 0.134 0.201 0.228 0.02 0.08 6.94

(0.006) (0.008) (0.008) (0.003) (0.007) (0.011) (0.006) (0.003) (0.015) (0.009) (0.01) (0.001) (0.001) (0.002) (0.008) (0.005)

6 12 7 12 6 6 4 11 9 4 5 2 7 5 11 4

CADD 0.018 0.026 0.053 0.016 0.04 0.015 0.008 0.099 0.103 0.111 0.037 0.138 0.211 0.187 0.074 0.063 6.44

(0.005) (0.007) (0.005) (0.001) (0.004) (0.012) (0.001) (0.001) (0.014) (0.007) (0.002) (0.002) (0.003) (0.002) (0.004) (0.003)

11 6 3 2 7 12 12 5 10 3 10 1 4 7 2 8

Modified x2 0.088 0.032 0.053 0.005 0.059 0.112 0.06 0.379 0.272 0.095 0.067 0.103 0.17 0.217 0.02 0.083 5.5

(0.004) (0.02) (0.006) (0.002) (0.006) (0.012) (0.018) (0.001) (0.009) (0.027) (0.006) (0.001) (0.04) (0.001) (0.005) (0.005)

1 5 2 11 2 7 7 1 1 5 7 12 10 6 10 1

CAIM 0.076 0.035 0.052 0.015 0.053 0.138 0.074 0.104 0.179 0.087 0.139 0.131 0.212 0.229 0.039 0.074 3.5

(0.004) (0.009) (0.007) (0.001) (0.007) (0.009) (0.006) (0.002) (0.008) (0.004) (0.01) (0.001) (0.003) (0.002) (0.006) (0.004)

4 3 4 3 3 4 2 3 4 6 2 5 2 3 3 5

FCAIM 0.08 0.035 0.052 0.015 0.053 0.138 0.074 0.104 0.179 0.084 0.138 0.131 0.212 0.229 0.039 0.074 3.5

(0.004) (0.009) (0.007) (0.001) (0.007) (0.009) (0.006) (0.002) (0.008) (0.004) (0.01) (0.001) (0.003) (0.002) (0.006) (0.004)

2 3 4 3 3 4 2 3 3 8 3 5 2 3 3 5

Khiops 0.048 0.013 0.032 0.007 0.031 0.026 0.013 0.082 0.085 0.049 0.037 0.111 0.145 0.168 0.019 0.053 10.75

(0.005) (0.005) (0.004) (0.001) (0.005) (0.001) (0.001) (0.002) (0.012) (0.006) (0.002) (0.001) (0.001) (0.002) (0.004) (0.003)

10 10 11 9 11 10 11 10 11 12 11 11 12 10 12 11

MODL 0.07 0.035 0.051 0.012 0.053 0.142 0.063 0.096 0.147 0.126 0.124 0.133 0.204 0.23 0.039 0.083 4.25

(0.005) (0.012) (0.007) (0.002) (0.007) (0.007) (0.016) (0.003) (0.011) (0.009) (0.008) (0.001) (0.001) (0.003) (0.007) (0.005)

5 2 6 5 5 3 6 6 6 2 4 3 5 2 5 3

CACC 0.079 0.056 0.055 0.027 0.063 0.16 0.077 0.336 0.23 0.127 0.145 0.131 0.214 0.235 0.079 0.083 1.5

(0.004) (0.007) (0.007) (0.002) (0.006) (0.008) (0.006) (0.012) (0.018) (0.011) (0.007) (0.001) (0.002) (0.003) (0.007) (0.005)

3 1 1 1 1 1 1 2 2 1 1 4 1 1 1 2
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Table 6 The average Entropy values associated with the discretization performed by the twelve discretization algorithms on the 16 benchmark datasets; lower entropy

value corresponds to better discretization scheme. The values in round brackets indicate standard deviation (over the 10-folds). The values in third row show rank of a

given discretization algorithm for a given data set. Values in bold indicate the best results for a given data set. Last column shows average rank of a given algorithm

scored over all data sets. Abbreviations for data set names can be found in Table 4

Algorithm Anneal Colic Credit Cylinder Heart Hypo Sick Vowel Glass Iono Page Pen Sat Seg Sonar Vehicle Avg. rank

Equal width 2.202 2.788 3.178 2.674 3.169 2.153 2.776 6.299 3.353 4.175 2.561 5.549 4.056 4.715 4.314 3.745 7.81

(0.064) (0.042) (0.059) (0.056) (0.074) (0.171) (0.214) (0.015) (0.091) (0.05) (0.069) (0.007) (0.014) (0.012) (0.055) (0.032)

6 9 8 8 10 9 8 7 5 10 7 8 6 7 9 8

Equal frequency 2.417 3.275 4.406 3.124 3.491 3.256 4.093 6.659 4.069 4.674 4.981 5.565 4.082 5.728 4.872 4.014 10.38

(0.067) (0.054) (0.029) (0.028) (0.038) (0.043) (0.028) (0.008) (0.034) (0.068) (0.021) (0.008) (0.011) (0.018) (0.025) (0.021)

10 12 11 11 11 10 10 9 11 12 11 9 7 10 11 11

Maximum Entropy 1.849 3.024 4.581 3.245 3.504 3.843 4.716 6.694 3.504 4.654 5.631 4.722 3.826 5.875 4.893 3.964 9.44

(0.125) (0.058) (0.036) (0.023) (0.035) (0.037) (0.028) (0.01) (0.086) (0.082) (0.026) (0.008) (0.008) (0.016) (0.022) (0.033)

2 11 12 12 12 11 12 10 8 11 12 2 3 11 12 10

Paterson Niblett 2.183 1.268 1.287 1.16 1.325 0.576 0.407 4.425 2.73 1.264 0.71 4.841 3.25 3.288 1.253 3.293 2

(0.145) (0.065) (0.046) (0.045) (0.055) (0.029) (0.012) (0.007) (0.103) (0.044) (0.033) (0.028) (0.059) (0.006) (0.03) (0.052)

5 2 1 3 1 1 1 2 3 1 1 3 1 1 3 3

IEM 1.919 1.032 1.532 1 1.437 0.909 0.847 4.196 2.418 1.584 1.743 5.383 4.492 4.219 1.145 2.957 2.88

(0.122) (0.076) (0.141) (0.036) (0.082) (0.09) (0.071) (0.064) (0.096) (0.119) (0.096) (0.032) (0.035) (0.038) (0.059) (0.063)

4 1 2 1 2 2 2 1 1 4 6 4 10 4 1 1

CADD 1.727 2.754 4.166 2.827 3.112 1.835 3.663 6.609 3.344 4.028 4.472 4.618 3.539 5.53 4.532 3.741 7.06

(0.142) (0.072) (0.065) (0.037) (0.08) (0.211) (0.076) (0.009) (0.072) (0.057) (0.109) (0.024) (0.031) (0.021) (0.045) (0.049)

1 8 10 9 9 8 9 8 4 9 9 1 2 9 10 7

Modified x2 2.875 1.492 2.527 1.057 1.872 1.495 2.032 8.63 5.217 1.747 4.389 8.138 5.789 7.814 1.179 3.851 7.94

(0.075) (0.425) (0.419) (0.057) (0.251) (0.275) (0.61) (0.011) (0.053) (0.395) (0.429) (0.006) (1.559) (0.02) (0.041) (0.124)

12 3 7 2 6 7 7 12 12 5 8 12 11 12 2 9

CAIM 2.273 1.533 1.79 1.367 1.77 1.206 0.888 5.588 3.481 1.396 1.24 5.518 4.048 4.123 1.719 3.44 4.25

(0.079) (0.085) (0.026) (0.105) (0.098) (0.113) (0.062) (0.101) (0.102) (0.105) (0.057) (0.027) (0.019) (0.017) (0.078) (0.061)

8 4 3 4 4 4 3 4 7 3 3 6 4 2 4 5

FCAIM 2.212 1.533 1.79 1.367 1.77 1.206 0.888 5.588 3.477 1.389 1.253 5.518 4.048 4.123 1.719 3.44 4.12

(0.084) (0.085) (0.026) (0.105) (0.098) (0.113) (0.062) (0.101) (0.103) (0.115) (0.062) (0.027) (0.019) (0.017) (0.078) (0.061)

7 4 3 4 4 4 3 4 6 2 4 6 4 2 4 5

Khiops 2.539 2.901 3.353 3.093 2.938 4.421 4.324 6.141 3.583 2.938 4.867 6.925 6.353 5.504 2.805 4.853 9.69

(0.091) (0.154) (0.069) (0.058) (0.1) (0.078) (0.049) (0.05) (0.045) (0.078) (0.052) (0.016) (0.025) (0.041) (0.054) (0.049)

11 10 9 10 8 12 11 6 9 8 10 11 12 8 8 12

MODL 1.853 1.642 1.939 1.498 1.761 0.926 1.001 5.003 2.721 2.337 1.503 5.503 4.407 4.295 1.73 3.273 4.81

(0.103) (0.069) (0.102) (0.063) (0.106) (0.112) (0.079) (0.093) (0.102) (0.088) (0.098) (0.016) (0.031) (0.029) (0.039) (0.064)

3 6 6 6 3 3 5 3 2 7 5 5 9 6 6 2

CACC 2.342 2.053 1.922 2.134 2.134 1.251 1.287 7.976 3.729 1.912 1.169 5.614 4.089 4.224 2.559 3.434 6.88

(0.151) (0.197) (0.254) (0.131) (0.28) (0.255) (0.401) (0.114) (0.229) (0.103) (0.047) (0.012) (0.02) (0.126) (0.288) (0.062)

9 7 5 7 7 6 6 11 10 6 2 10 8 5 7 4
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a few generic conclusions can be drawn. CAIM, FCAIM, and MODL perform well for both quality

measures, while Khiops, Maximum Entropy, and both unsupervised methods score relatively poorly.

This observation is supported by the fact that the unsupervised methods are very simple and thus they

cannot perform as well as the supervised algorithms. Similar observations were made in Kurgan and

Cios (2004), but they concerned a smaller set of seven discretization methods. The tables show that

CAIM, FCAIM, and MODL rank consistently well across all data sets, while the performance of

other methods such as modified x2 and CADD varies between the data sets. Some discretizers,

including CACC, IEM, and Patterson–Niblett, score very well for one criterion, while the quality of

their schemes is shown to be poor when evaluated with the other measure.

The results concerning the average time of the discretization process, see Table 7, show (as

expected) that the two unsupervised methods are the fastest. Although theoretically the Equal

Width algorithm is faster than the Equal Frequency since it does not require sorting of feature

values, we had to sort the values to compute the number of intervals d. As a result, both of the

unsupervised methods have virtually identical running time. We note that if the user would specify

the number of the intervals, the Equal Width algorithm, which is the only method that has linear

complexity with respect to the number of feature values, would be the fastest.

The fastest supervised algorithm is FCAIM followed by CAIM and IEM. The slowest methods

include MODL followed by Modified x2 and CADD. These numerical results stem from the

design of these methods, that is, merging methods are in general slower than splitting methods. In

addition, as shown in Table 8, the CAIM, FCAIM, and IEM methods generate a small number of

intervals, which further improves their speed when compared with the other splitting methods. We

observe that some differences are relatively large. For instance, for the page data set, which is

characterized by the largest average number of distinct values, the unsupervised methods are two to

three times faster than the fastest supervised methods, and they are three orders of magnitude faster

than the slowest supervised methods. In the case of the pen data set, which has the largest number of

instances, the fastest supervised and unsupervised discretizers are characterized by similar running

time, while they are an order of magnitude faster than the slowest supervised methods.

In the next section, we aggregate the running time of the discretizers with the time required to

build the classification model on the discretized data and the time to perform classification on the

test fold to give further insights on the impact of discretization on the subsequent classification.

Table 8 gives the average number of intervals per continuous feature generated by the 12

algorithms. In general, schemes with a lower number of intervals cannot be considered better than

schemes with a higher number because this information would have to be coupled with the

information that quantifies how well these intervals describe the data distribution (e.g. CAIR or

Entropy). However, if the distribution of the data is described equally well by two different

discretization schemes, one should prefer the smaller scheme. We observe that the smallest

schemes are generated by the IEM, FCAIM, CAIM, and MODL algorithms. For these algo-

rithms, the number of intervals is often close to the number of classes in a given data set. We stress

that the schemes generated by FCAIM, CAIM, and MODL are also characterized by favorable

CAIR and entropy values. However, the biggest numbers of discretization intervals are generated

by both unsupervised algorithms and by Maximum Entropy, Khiops, and Modified x2 algorithms.

For unsupervised algorithms as well as for the Maximum Entropy, Paterson–Niblett, and CADD

algorithms, the number of intervals is defined using the formula proposed in Wong and Chiu

(1987); however, the supervised algorithms merge some of these intervals reducing the resulting

number of discretization intervals. The Khiops and ME discretizers also obtain poor CAIR and

entropy values, see Tables 5 and 6, which indicate that these schemes are characterized by rela-

tively poor quality. Our results show that Modified x2 generates schemes with a large number of

intervals when dealing with large data sets such as vowel, seg, and pen, which is consistent with

findings in (Tay & Shen, 2002).

Overall, we conclude that the best trade-off between the running time, the quality of the

discretization scheme expressed using CAIR and Entropy, and the number of discretization

intervals is achieved by the FCAIM, CAIM, and IEM algorithms. The MODL method has a
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Table 7 The average running time (ms) associated with the discretization performed by the 12 discretization algorithms on the 16 benchmark data sets. The values in round

brackets indicate standard deviation (over the 10-folds). The values in third row show rank of a given discretization algorithm for a given data set. Bolded values indicate the best

results for a given data set. Last column shows average rank of a given algorithm scored over all data sets. Abbreviations for data set names can be found in Table 4

Algorithm Anneal Colic Credit Cylinder Heart Hypo Sick Vowel Glass Iono Page Pen Sat Seg Sonar Vehicle Avg. rank

Equal Width 1.095 0.359 0.784 1.514 0.511 5.596 5.223 1.818 0.296 2.137 12.28 52.84 45.75 7.64 2.35 2.516 1.56

(0.153) (0.039) (0.11) (0.202) (0.43) (0.876) (0.117) (0.184) (0.026) (0.36) (1.563) (8.61) (7.455) (0.055) (0.173) (0.027)

2 2 1 1 2 2 2 1 2 1 1 2 1 1 2 2

Equal frequency 1.049 0.341 0.817 1.554 0.319 5.131 4.727 2.056 0.289 2.196 13.05 44.86 48.23 7.687 2.23 2.508 1.44

(0.166) (0.046) (0.143) (0.123) (0.045) (0.552) (0.438) (0.025) (0.019) (0.376) (2.151) (5.504) (6.334) (0.061) (0.212) (0.01)

1 1 2 2 1 1 1 2 1 2 2 1 2 2 1 1

Maximum Entropy 3.165 4.521 46.22 22.44 6.081 171 208 139 3.259 112 1488 454 368 909 178 33.88 6.06

(0.833) (1.063) (22.02) (1.758) (2.188) (53.52) (45.74) (6.373) (0.757) (16.36) (264) (77.8) (65.71) (114) (11.07) (3.04)

3 7 9 8 7 6 8 4 3 10 6 4 4 5 9 4

Paterson Niblett 15.44 4.935 22.61 19.47 4.815 360 119 2220 27.08 79.59 6884 7347 2664 2701 79.79 92.8 8.5

(1.946) (0.692) (2.52) (1.979) (0.759) (50.63) (11.49) (13.18) (2.875) (15.24) (1439) (254) (351) (368) (6.251) (14.9)

10 8 6 6 6 9 6 10 10 9 10 10 10 10 7 9

IEM 9.354 4.391 25 19.63 6.318 148 132 323 8.468 45.95 1376 2580 1970 1349 44.34 63.26 6.44

(1.78) (0.888) (6.869) (2.793) (1.112) (20.01) (20.93) (49.15) (1.142) (7.77) (218) (203) (280) (334) (7.016) (1.565)

7 5 7 7 8 5 7 6 4 6 5 7 8 7 6 8

CADD 10.3 12.59 338 126 31.17 587 1037 609 8.96 1697 41550 555 581 11954 1105 195 9.94

(2.181) (2.431) (41.61) (18.09) (5.986) (89.47) (319) (54.98) (3.071) (381) (5583) (78.27) (100) (1196) (283) (26.93)

8 10 12 12 12 10 12 9 6 12 12 5 5 12 12 10

Modified x2 35.52 28.4 102 85.79 16.92 744 774 192 10.33 181 3947 9193 11184 769 354 203 9.81

(7.737) (3.483) (5.673) (14.22) (2.811) (68.02) (204) (54.41) (2.732) (23.28) (384) (2645) (4036) (266) (299) (22.08)

11 12 10 10 11 11 10 5 8 11 9 11 12 4 11 11

CAIM 8.652 2.862 15.08 11.93 2.61 202 99.95 479 11.78 29.84 2939 2114 1665 1740 31.95 46.58 5.88

(1.235) (0.399) (2.341) (1.683) (0.634) (17.95) (8.333) (80.9) (2.917) (4.004) (431) (11.9) (286) (291) (4.427) (8.239)

6 4 5 5 3 7 5 7 9 5 7 6 7 8 4 6

FCAIM 6.008 2.071 10.4 9.593 3.122 74.14 46.79 481 8.984 12.4 849 2899 1231 1034 18.69 40.53 5

(0.96) (0.368) (2.131) (1.335) (0.436) (9.038) (4.527) (81.18) (1.497) (1.36) (193) (639) (195) (182) (4.925) (6.772)

5 3 4 4 5 4 4 8 7 3 4 9 6 6 3 5

Khiops 3.801 4.486 7.31 6.113 2.997 14.09 12.49 61.29 8.69 27.31 114 91.1 89.39 152 39.06 9.987 3.62

(0.435) (0.67) (6.999) (0.864) (1.646) (2.275) (1.338) (5.635) (5.976) (2.216) (24.99) (55.03) (23.84) (102) (28.34) (0.972)

4 6 3 3 4 3 3 3 5 4 3 3 3 3 5 3

MODL 39.17 12.66 123 86.34 10.55 983 911 3775 31.81 79.23 23035 12346 7011 11107 82.31 430 10.81

(7.137) (1.234) (26.76) (5.215) (1.539) (112) (179) (493) (6.995) (10.55) (3674) (1702) (741) (1404) (9.096) (74.73)

12 11 11 11 10 12 11 11 11 8 11 12 11 11 8 12

CACC 11.19 5.648 30.9 48.5 9.631 266 362 18595 33.27 60.92 3425 2687 1998 1983 198 61.9 8.94

(1.988) (3.412) (47.87) (17.75) (11.08) (84.95) (207) (1049) (10.75) (9.318) (818) (494) (22.33) (348) (71.65) (2.369)

9 9 8 9 9 8 9 12 12 7 8 8 9 9 10 7
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Table 8 The average number of intervals for a continuous feature associated with the discretization performed by the 12 discretization algorithms on the 16 benchmark

data sets. The values in round brackets indicate standard deviation (over the 10-folds). The values in third row show rank of a given discretization algorithm for a given

data set. Values in bold indicate the smallest number of intervals for a given data set. Last column shows average rank of a given algorithm scored over all data sets.

Abbreviations for data set names can be found in Table 4

Algorithm Anneal Colic Credit Cylinder Heart Hypo Sick Vowel Glass Iono Page Pen Sat Seg Sonar Vehicle Avg. rank

Equal width 6 6.714 21.17 7.856 8.617 11.29 22.11 14.03 7 20.73 44.82 10 7 22.63 16.76 6.683 9.38

(0) (0.178) (0.401) (0.184) (0.158) (0.202) (0.361) (0.067) (0) (0.795) (0.349) (0) (0) (0.186) (0.099) (0.053)

9 11 11 11 11 10 11 7 8 11 10 5 3 11 11 10

Equal frequency 6 6.714 21.17 7.856 8.617 11.29 22.11 14.03 7 20.73 44.82 10 7 22.23 16.76 6.683 9.31

(0) (0.178) (0.401) (0.184) (0.158) (0.202) (0.361) (0.067) (0) (0.795) (0.349) (0) (0) (0.189) (0.099) (0.053)

9 11 11 11 11 10 11 7 8 11 10 5 3 10 11 10

Maximum Entropy 1.933 5.586 19.12 7.15 8.383 10.7 20.74 14.03 3.467 19.21 44.48 3.969 4 22.13 16.76 5.994 7.62

(0.274) (0.238) (0.343) (0.126) (0.112) (0.196) (0.392) (0.067) (0.155) (1.194) (0.333) (0.033) (0) (0.189) (0.097) (0.049)

2 10 10 10 10 9 10 7 4 10 9 2 2 9 10 8

Paterson Niblett 5.817 2.3 2 2.167 2.033 4.957 1.286 14.98 5 2.238 8.53 19.59 11.21 6.763 2.033 4.922 5.75

(0.346) (0.171) (0) (0.114) (0.07) (0.901) (0.165) (0.042) (0) (0.258) (0.931) (0.773) (0.608) (0.2) (0.052) (0.272)

7 6 2 6 4 7 1 10 6 3 6 10 10 3 5 6

IEM 3.4 1.129 1.717 1.078 1.567 2.157 1.529 3.03 1.989 2.509 4.95 8.488 9.381 7.242 1.222 3.017 2.31

(0.402) (0.081) (0.209) (0.065) (0.086) (0.171) (0.096) (0.177) (0.269) (0.164) (0.314) (0.21) (0.252) (0.197) (0.08) (0.126)

4 1 1 1 1 1 2 1 1 4 2 3 9 4 1 1

CADD 1.833 5.357 17.82 6.572 7.567 3.8 15.71 13.99 3.367 14.75 29.15 3.938 3.853 19.41 16.16 5.811 6.44

(0.272) (0.236) (0.474) (0.18) (0.335) (0.5) (0.628) (0.074) (0.166) (0.462) (1.115) (0.059) (0.049) (0.172) (0.181) (0.137)

1 9 9 9 9 5 9 6 3 9 8 1 1 8 9 7

Modified x2 14.88 2.214 5.15 1.178 2.9 4.329 7.271 383 44.74 2.674 48.48 98.12 38.94 295 1.267 6.656 8.25

(0.599) (1.311) (2.636) (0.101) (1.019) (1.167) (3.889) (2.546) (1.501) (0.829) (12.72) (0.17) (28.31) (2.148) (0.064) (0.831)

12 4 7 2 6 6 7 12 12 5 12 12 12 12 2 9

CAIM 5.983 2 2 1.978 2 3.429 1.714 11 7.011 1.912 5 10 7 6.132 2 4 3.44

(0.053) (0) (0) (0.029) (0) (0) (0) (0) (0.035) (0) (0) (0) (0) (0.028) (0) (0)

8 2 2 3 2 3 3 4 10 1 3 5 3 1 3 2

FCAIM 5.017 2 2 1.978 2 3.429 1.714 11 6.878 1.912 5 10 7 6.132 2 4 3.12

(0.214) (0) (0) (0.029) (0) (0) (0) (0) (0.152) (0) (0) (0) (0) (0.028) (0) (0)

6 2 2 3 2 3 3 4 7 1 3 5 3 1 3 2

Khiops 4.65 4.657 6.567 5.55 4.817 15.83 15.57 9.96 3.956 4.926 23.77 28.45 29.39 15.04 4.115 9.644 7.88

(0.183) (0.443) (0.326) (0.26) (0.364) (0.663) (0.495) (0.363) (0.107) (0.208) (0.76) (0.444) (0.414) (0.517) (0.126) (0.246)

5 8 8 7 7 12 8 3 5 8 7 11 11 7 7 12

MODL 3.233 2.257 2.617 2.033 2.183 2.243 1.986 5.73 2.944 4.144 4.76 8.875 8.717 7.289 2.235 4.006 4.31

(0.344) (0.113) (0.261) (0.054) (0.214) (0.136) (0.125) (0.279) (0.307) (0.134) (0.344) (0.121) (0.176) (0.211) (0.063) (0.142)

3 5 5 5 5 2 5 2 2 7 1 4 8 5 6 4

CACC 6.95 4.1 4.033 6.322 5.333 5.743 5.871 306 15.42 3.244 5.05 10 7 9.784 11.19 4.289 7.12

(0.981) (1.321) (5.964) (1.127) (3.599) (2.569) (4.124) (15.72) (4.301) (0.278) (0.053) (0) (0) (5.852) (3.615) (0.11)

11 7 6 8 8 8 6 11 11 6 5 5 3 6 8 5
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drawback of being relatively slow, but it also generates high quality discretization schemes.

However, the worst performing methods include the two unsupervised methods, as well as

Maximum Entropy, and Khiops, although these methods are relatively fast.

3.2 Classification with Naı̈ve Bayes and semi-Naı̈ve Bayes algorithms

We compare 6 classifiers on the data discretized by the 12 discretization algorithms, and two

classifiers on the raw data. Hence, we have generated 74 different setups (classifier and discretizer

pairs). Each setup was run on all 16 data sets where for each data set we performed five twofold

cross-validations, that is, a total of ten test folds for each data set was considered for each set.

Owing to their excessive size, the tables that provide all results are available online at http://

biomine.ece.ualberta.ca/discretizationNB/. The results are summarized using the Friedman

F-test and Nemenyi test, as suggested in (Demšar, 2006). These tests allow one to compare the

quality of classifiers (measured using accuracy) across multiple data sets and to show the corre-

sponding results in a convenient graphical format.

First, we compare accuracy using the Friedman F-test (Iman & Davenport, 1980). This test checks

the null hypothesis whether accuracies of the considered classifiers are statistically equal based on the

average place scored by a classifier along all data sets. If the null hypothesis is rejected, then a post hoc

test (the Nemenyi test (Nemenyi, 1963)) is performed. This test orders the classifiers according to their

quality and allows the selection of subsets of classifiers that are statistically undistinguishable, that is,

classifiers for which the accuracies are not statistically significantly different. The best performing

classifier is the method which has the lowest rank; this method is located in the rightmost position on a

Nemenyi test figure. The worst classifier has the highest rank and is located in the left far end of a

Nemenyi test figure. The setups for which ranks differ by less than the CD value are statistically

indistinguishable from one another for the considered set of classifier accuracies obtained on a given

set of data sets. The Nemenyi test figures use the abbreviated names of the discretizers and classifiers

that can be found in Tables 2 and 3, respectively.

Two sets of tests are performed. First, we compare the impact of the 12 discretization methods

on the accuracy of the same classifier. We also compare these results against baseline setups in

which NB and FNB are run on the raw data. Second, we perform the test when considering all 74

setups together. For all performed tests, the null hypothesis was rejected, and hence we perform

the post hoc test and present the corresponding graphical representation.

The results for NB classifier, see Figure 1(a), show that the accuracy of this classifier can be

significantly improved by using discretization. This confirms the results obtained in previous

studies (Flores et al., 2007; Lee, 2007). At the same time, for six discretization schemes, which were

generated by the two unsupervised algorithms and the Maximum Entropy, CADD, Paterson–

Niblett, and Khiops supervised algorithms, there is no statistical difference between the accuracies

of the NB run on the raw data and on the discretized data. This means that in the context of the

classification accuracy, usage of these discretizers would not benefit the user. However, a statis-

tically significant difference is found for the remaining discretization algorithms including

Modified x2, CAIM, IEM, FCAIM, CACC, and MODL and also when using the FNB classifier.

The Nemenyi test also shows that the classification accuracies of classifiers generated with FNB,

and classifiers generated using NB on the data discretized with Paterson–Niblett, Equal Fre-

quency, Khiops, Modified x2, CAIM, IEM, FCAIM, CACC, and MODL are characterized by

statistically insignificant differences. We observe that discretization with any of the considered

12 methods does not lead to statistically significant improvement when compared with results

obtained with FNB. The five best performing discretizers for the NB classifier, that is, the methods

that achieve the lowest ranks, are MODL, CACC, IEM, and FCAIM ex aequo, and CAIM.

LBR is a classifier which works only with discrete data. This method is applied on the data

discretized by the 12 discretizers and is compared against the NB and FNB classifiers that use

the raw data. The results for the LBR classifier, see Figure 1(b), show that the results obtained on

the discretized data are better than the results obtained by both the NB and FNB classifiers on
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the raw data. The results obtained for the data discretized by the five discretization algorithms

(Maximum Entropy, Equal Width, Paterson–Niblett, CADD, and Khiops) are not statistically

significantly better than the results obtained with NB. Statistically significant improvements over

NB were obtained by using the remaining seven discretizers. The setups that are statistically

significantly better than the results of both NB and FNB incorporate discretization with MODL,

CAIM, and FCAIM. The five best results for the LBR classifier were obtained for schemes

generated by the same discretization algorithms as the top five for the NB algorithm.

Figure 1 Graphical representation of the Nemenyi test performed for results obtained by NB and FNB run

on the 16 original data sets. The results for the Naı̈ve Bayes, LBR, AODE, HNB, WAODE, and AODEsr

classifiers are shown in panels (a, b, c, d, e), and (f), respectively, and they concern runs on the 16 data sets

discretized by the 12 discretization algorithms. The best result is obtained by the setup with the lowest rank;

CD is the critical value which determines whether different setups are statistically different. The sets of

classifiers that are not significantly different are shown using the horizontal lines. The considered setups are

shown in the x:y form where x denotes a classifier and y denotes a discretization method; abbreviations for x

and y can be found in Tables 2 and 3, respectively. O denotes the original (raw) data
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For the AODE classifier, see Figure 1(c), all the results obtained on the discretized data are

again better than the results obtained by NB and FNB. We observe that three setups, which

concern the Paterson–Niblett, Equal Width, and CADD discretizers, generate classification

models with accuracies that are not statistically significantly higher that the accuracies of the NB

classifier on the raw data. The four setups that are significantly better than both NB and FNB use

data discretized with MODL, CACC, FCAIM, and CAIM. These four setups are also included in

the top five list for the NB and LBR classifier. The IEM algorithm is also in the top five list for the

AODE classifier, but this time it occupies this spot ex aequo with the Khiops algorithm.

In the case of the HNB classifier, see Figure 1(d), we yet again observe that the setups which

incorporate discretization perform better than the classification models generated by the NB and

FNB classifiers on the raw data. This time, however, six setups are not significantly better than

NB. The setup with the IEM algorithm, which is in the top five lists for all other classifiers, placed

seventh. The setups that are significantly better than both NB and FNB applied on the raw data

use data discretized with MODL, FCAIM, and CAIM. For the HNB classifier, the top five setups

differ from the setup that scores best for others classifiers. More specifically, the IEM and CACC

algorithms are replaced by the Equal Frequency and Khiops algorithms. However, the top three

setups are consistent and they are based on the MODL, FCAIM, and CAIM algorithms.

Figure 1(e) presents results for the WAODE classifier. Only four setups are shown to be

significantly better than the results obtained with the NB classifier. These setups include dis-

cretization performed with the FCAIM, MODL, CAIM, and CACC algorithms. We also observe

that the results obtained by this classifier using the discretized data are not significantly better than

the results obtained with FNB. There are three setups which obtained worse scores than FNB, and

they are based on the Maximum Entropy, CADD, and Paterson–Niblett algorithms. The five best

setups for WAODE are consistent with the top scoring setups for the NB, LBR, AODE, and

AODEsr classifiers.

Results for the AODEsr classifier that are given in Figure 1(f) again show that NB and FNB

executed on the raw data achieve the worst accuracies. Nevertheless, five setups are not sig-

nificantly better than NB (CADD, Maximum Entropy, Paterson Niblett, Equal Width, and

Modified x2) and the top five setups are statistically better than both NB and FNB. The latter

group includes MODL, FCAIM, CAIM, IEM, and CACC, which is consistent with the top five

lists of all other classifiers except HNB.

Overall, the results show that NB executed on the raw data is outperformed by NB and semi-

NB classifiers that use discretized data. For all classifiers, except WODE and NB, the second

worst rank was obtained by the FNB classifier, that is, discretization performed within FNB is

outperformed by discretization performed by the considered 12 methods. The top five setups for

all classifiers, except HNB, include the same five discretization algorithms, MODL, FCAIM,

CAIM, IEM, and CACC. Moreover, the setups that incorporate these algorithms are always

significantly better than the results obtained by using NB on the raw data; the only exception is the

setup that includes IEM and WAODE. In the case of the HNB classifier, the best three setups

include the MODL, FCAIM, and CAIM algorithms, and these discretizers are in the top three

setups when considering other classifiers; except for NB where they are in the top five and AODE

where CAIM is fourth. The results achieved by all setups that incorporate the unsupervised

methods and older supervised methods, except IEM, were almost always comparable (not sig-

nificantly better) with the results obtained by applying NB and FNB on the raw data. This shows

that recently developed discretizers provide a significant improvement when compared with the

older method. The setups with the two discretization methods based on x2 criterion (Modified x2

and Khiops) scored in the middle of the considered setups. At the same time, usage of the Khiops

algorithm gave better results than setups that are based on the Modified x2 algorithm for all but

the NB and LBR classifiers.

Figure 2 summarizes the results of the Nemenyi test for all considered setups. The large CD

values are due to the large number of setups, that is, 74, when compared with the number of data

sets, that is, 16. In spite of that, we observe that the results which are significantly better than the
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worst results that are obtained using NB on the raw data include almost all setups with the three

discretization algorithms, MODL, FCAIM, and CAIM; only the setups with the NB classifiers are

not in this group. However, all setups that use the NB classifier on the discretized data are shown

to be comparable with the results obtained with the NB on the raw data. The setups which include

the AODEsr and AODE classifiers (except the setup with the Paterson–Niblett discretizer) are

among the best results. The best three setups which are on the far right end of the plot are setups

that couple the AODEsr classifier with the MODL, FCAIM, and CAIM discretization algorithms.

The big gap between these three and the remaining setups demonstrates a relatively big

improvement between the scores of this group and the fourth and subsequent setups.

An alternative way to compare the accuracies is to count the wins, draws, and losses which a

given setup achieves when compared against all other setups on all data sets (Demšar, 2006), that

is, we compared each setup against every other setup on each data set. To compare whether a

given setup is better than another setup, we used the combined 53 2 cv F-test (Alpaydin, 1999),

that is, a win and a loss indicate that the difference is statistically significant. The table that gives

all results can be found at http://biomine.ece.ualberta.ca/discretizationNB/. It compares

all setups against the scores achieved by every classifier, that is, for each classifier, it sums up all

wins, draws, and losses that a given setup achieves against all setups built using a given classifier.

Table 9 summarizes the results by comparing a given setup with the aggregated (across all setups)

results of another classifier. If the classifier is also used in the considered setup, then we can

analyze how well a given discretization algorithm compares against all other discretization algo-

rithms used with this classifier. We also compute a coefficient WDLC

WDLC ¼
W �L

W þ D þ L
ð21Þ

whereW, D, L stand for the number of wins, draws, and losses, respectively, and c indicates a given

setup. If the coefficient value is bigger than 0, then the corresponding setup wins more often than it

loses, whereas when the value is smaller than 0, the setup suffers more losses than wins. A value of 0

indicates an equal number of wins and losses. The coefficient values range between 21, that is, a given

setup always loses, and 1, that is, a given setup always wins. The coefficients across all setups sum up

to 0 since the number of wins and losses is equal. To better visualize the differences in Table 8, the

cells, where WDLC is bigger than 0.2, are given in bold. However, the cells that correspond to setups

with WDLC that is lower than 20.2 are underlined.

The setup that includes the NB classifier on the raw data is shown to often lose with other

setups (it loses 553 times and wins only 68 times). Similarly, all setups with the NB classifier and

Figure 2 Graphical representation of the Nemenyi test performed for results obtained by NB and FNB run

on the 16 original data sets, and the results for the 6 classifiers run on the 16 data sets discretized by the 12

discretization algorithms. The best result is obtained by the setup with the lowest rank; CD is the critical value

which determines whether different setups are statistically different. The sets of classifiers that are not

significantly different are shown using horizontal lines. The considered setups are shown in the x:y form

where x denotes a classifier and y denotes a discretization method; abbreviations for x and y can be found in

Tables 3 and 2, respectively. O denotes the original (raw) data
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Table 9 Number of wins, draws, and losses, respectively, achieved by a setup in a given row when

compared against all setups (using all discretization methods) for a given classifier shown in the column.

The setups include NB or FNB classifier run on the 16 raw data sets and each of the six classifiers run on

the 16 data sets discretized by each of the 12 discretization algorithms. Bolded scores show WDLC scores

greater than 0.2; underlined scores correspond to WDLC scores smaller than 20.2. Gray shading indicates

comparison between setups that use the same classifier. The last column contains the aggregated, over all

other setups, scores for a given setup. Abbreviations for algorithms and classifiers names can be found in

Tables 2 and 3, respectively

Original data Discretized data

NB FNB NB LBR AODE HNB AODEsr WAODE Aggregated

Original Data

NB – 0/9/7 8/108/76 5/107/80 5/92/95 15/77/100 7/75/110 28/79/85 68/547/553

FNB 7/9/0 – 32/137/23 8/121/63 6/112/74 25/92/75 10/95/87 39/88/65 127/654/387

NB

EW 5/10/1 1/11/4 18/138/20 5/115/72 3/108/81 19/83/90 5/81/106 28/85/79 84/631/453

EF 8/8/0 1/12/3 22/133/21 10/115/67 7/118/67 31/83/78 10/90/92 43/69/80 132/628/408

ME 3/12/1 1/12/3 9/106/61 7/96/89 5/86/101 27/70/95 9/75/108 40/64/88 101/521/546

PN 5/9/2 2/11/3 15/119/42 9/118/65 6/113/73 29/89/74 11/100/81 42/77/73 119/636/413

IM 8/7/1 3/11/2 33/134/9 13/122/57 13/116/63 36/84/72 15/98/79 45/75/72 166/647/355

CD 5/10/1 1/11/4 9/111/56 6/92/94 5/79/108 24/63/105 5/76/111 28/80/84 83/522/563

MC 5/10/1 2/11/3 25/122/29 6/129/57 9/111/72 29/90/73 11/96/85 38/86/68 125/655/388

CM 8/8/0 3/11/2 31/145/0 11/133/48 10/123/59 35/96/61 14/112/66 43/85/64 155/713/300

FC 7/9/0 2/12/2 33/142/1 11/133/48 11/123/58 35/93/64 15/107/70 44/81/67 158/700/310

Kh 6/10/0 1/13/2 17/124/35 6/102/84 5/88/99 24/75/93 7/73/112 31/73/88 97/558/513

MO 8/8/0 3/11/2 42/134/0 16/126/50 11/123/58 36/90/66 17/100/75 47/73/72 180/665/323

CC 8/7/1 3/11/2 30/136/10 9/132/51 10/119/63 33/90/69 14/108/70 44/81/67 151/684/333

LBR

EW 6/9/1 5/10/1 52/126/14 16/133/27 13/109/70 32/100/60 14/98/80 42/86/64 180/671/317

EF 8/8/0 4/12/0 68/123/1 22/134/20 16/135/41 41/109/42 17/118/57 52/89/51 228/728/212

ME 7/9/0 6/9/1 53/131/8 13/126/37 9/129/54 31/101/60 10/103/79 43/89/60 172/697/299

PN 7/8/1 5/10/1 54/120/18 10/119/47 11/125/56 36/99/57 12/119/61 42/93/57 177/693/298

IM 7/9/0 5/11/0 69/121/2 35/135/6 25/138/29 46/98/48 30/106/56 57/84/51 274/702/192

CD 5/10/1 4/10/2 52/116/24 15/124/37 8/116/68 31/90/71 11/91/90 37/94/61 163/651/354

MC 5/10/1 4/10/2 47/123/22 9/132/35 14/129/49 30/114/48 17/119/56 43/96/53 169/733/266

CM 8/8/0 7/9/0 87/105/0 30/143/3 22/144/26 48/116/28 26/128/38 56/102/34 284/755/129

FC 7/9/0 6/10/0 87/104/1 30/141/5 23/143/26 48/116/28 28/127/37 56/101/35 285/751/132

Kh 5/11/0 3/13/0 49/133/10 17/124/35 14/127/51 34/99/59 16/103/73 43/93/56 181/703/284

MO 7/9/0 6/10/0 86/105/1 34/141/1 24/141/27 47/101/44 29/115/48 55/94/43 288/716/164

CC 8/7/1 8/7/1 78/106/8 31/136/9 25/138/29 48/109/35 27/120/45 55/95/42 280/718/170

AODE

EW 7/8/1 4/11/1 52/132/8 39/128/25 17/126/33 42/103/47 16/111/65 46/99/47 223/718/227

EF 9/6/1 8/8/0 85/105/2 47/136/9 23/140/13 45/123/24 25/126/41 56/106/30 298/750/120

ME 8/8/0 6/10/0 76/98/18 38/128/26 18/112/46 37/105/50 17/114/61 49/98/45 249/673/246

PN 7/8/1 5/10/1 52/124/16 13/133/46 11/111/54 34/99/59 12/108/72 44/82/66 178/675/315

IM 7/9/0 5/10/1 72/120/0 52/132/8 31/133/12 57/113/22 27/130/35 57/105/30 308/752/108

CD 7/8/1 6/8/2 79/92/21 47/108/37 17/115/44 43/102/47 21/100/71 48/99/45 268/632/268

MC 6/9/1 4/11/1 53/117/22 17/142/33 15/125/36 37/112/43 18/126/48 48/103/41 198/745/225

CM 9/7/0 8/8/0 91/101/0 61/130/1 34/140/2 57/116/19 26/133/33 58/109/25 344/744/80

FC 9/7/0 8/8/0 90/102/0 62/130/0 33/142/1 59/117/16 27/138/27 58/115/19 346/759/63

Kh 9/7/0 6/10/0 87/97/8 41/140/11 23/125/28 41/121/30 18/132/42 54/106/32 279/738/151

MO 9/7/0 7/9/0 88/104/0 61/131/0 34/138/4 56/123/13 33/142/17 61/115/16 349/769/50

CC 8/8/0 7/9/0 77/115/0 48/136/8 29/135/12 55/120/17 25/143/24 58/108/26 307/774/87

HNB

EW 7/6/3 4/9/3 63/96/33 47/106/39 34/107/51 27/120/29 17/115/60 32/129/31 231/688/249

EF 10/5/1 7/7/2 91/65/36 53/86/53 41/101/50 28/122/26 24/104/64 45/105/42 299/595/274

ME 7/7/2 7/6/3 85/59/48 44/88/60 23/98/71 20/101/55 14/97/81 40/105/47 240/561/367

PN 6/9/1 5/9/2 44/119/29 13/108/71 13/96/83 13/98/65 9/93/90 22/99/71 125/631/412

IM 7/8/1 5/10/1 73/98/21 59/108/25 35/126/31 30/126/20 26/124/42 36/134/22 271/734/163

CD 7/6/3 6/6/4 80/52/60 39/89/64 25/83/84 16/109/51 15/86/91 23/105/64 211/536/421

MC 8/7/1 5/8/3 62/89/41 20/112/60 14/113/65 19/117/40 17/115/60 34/112/46 179/673/316

CM 11/5/0 8/7/1 98/82/12 68/112/12 47/126/19 38/132/6 29/131/32 51/127/14 350/722/96

FC 10/6/0 8/7/1 93/87/12 65/115/12 45/126/21 40/130/6 28/131/33 51/127/14 340/729/99

Kh 9/5/2 6/8/2 86/71/35 54/101/37 36/112/44 36/111/29 26/108/58 48/121/23 301/637/230
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discretized data register more losses than wins. The two best classifiers are AODE and AODEsr.

The setups that involve these classifiers are almost always characterized by more wins than losses.

The WDLC values are visualized in Figures 3 and 4. The former figure gives the coefficient values

when comparing a given setup against all other setups that use a different classifier, while the latter

figure shows the values when comparing a given setup against all other setups that use the same

classifier. As such, Figure 3 allows comparison between a given setup and other classifiers and Figure 4

enables comparison of different discretization algorithms for the same classifier.

Figure 3 shows that the best results along all considered classifiers were obtained by the

AODEsr classifier for which all setups have a positive coefficient (the coefficient for the setup

which includes a Modified x2 discretizer is positive and close to 0). On the opposite end, all

Table 9 (Continued)

MO 9/7/0 7/8/1 86/94/12 67/111/14 41/138/13 43/131/2 30/138/24 52/134/6 335/761/72

CC 9/6/1 7/7/2 79/94/19 51/116/25 33/128/31 32/131/13 25/126/41 46/121/25 282/729/157

AODEsr

EW 9/6/1 5/10/1 77/104/11 55/118/19 44/121/27 55/112/25 22/126/28 56/115/21 323/712/133

EF 10/5/1 9/6/1 94/79/19 66/94/32 47/123/22 51/117/24 25/129/22 58/113/21 360/666/142

ME 9/6/1 6/9/1 91/73/28 51/101/40 33/110/49 42/103/47 14/101/61 49/101/42 295/604/269

PN 9/7/0 6/9/1 64/123/5 26/128/38 22/122/48 42/106/44 13/110/53 50/90/52 232/695/241

IM 8/8/0 6/10/0 82/110/0 63/128/1 53/134/5 67/116/9 34/131/11 62/120/10 375/757/36

CD 7/8/1 7/7/2 81/87/24 55/101/36 31/123/38 36/118/38 14/109/53 47/113/32 278/666/224

MC 7/7/2 6/8/2 67/99/26 19/134/39 20/131/41 32/118/42 15/118/43 47/105/40 213/720/235

CM 11/5/0 9/7/0 104/87/1 83/107/2 57/135/0 74/117/1 36/138/2 70/122/0 444/718/6

FC 11/5/0 9/7/0 103/88/1 86/104/2 60/131/1 74/118/0 38/137/1 71/121/0 452/711/5

Kh 10/6/0 7/8/1 96/87/9 69/105/18 50/120/22 55/118/19 27/119/30 66/105/21 380/668/120

MO 10/6/0 8/8/0 101/91/0 81/111/0 70/122/0 81/110/1 46/129/1 72/120/0 469/697/2

CC 9/6/1 9/6/1 95/88/9 66/116/10 49/131/12 67/115/10 36/125/15 71/106/15 402/693/73

WAODE

EW 9/4/3 4/8/4 69/84/39 52/93/47 40/98/54 34/119/39 22/113/57 23/121/32 253/640/275

EF 8/6/2 7/7/2 76/68/48 52/85/55 39/95/58 29/122/41 19/112/61 24/130/22 254/625/289

ME 8/5/3 6/7/3 80/52/60 43/80/69 17/97/78 21/98/73 11/93/88 14/108/54 200/540/428

PN 6/8/2 4/8/4 51/101/40 15/106/71 13/100/79 18/109/65 9/86/97 11/106/59 127/624/417

IM 6/9/1 4/10/2 71/92/29 57/101/34 45/106/41 48/113/31 28/115/49 30/133/13 289/679/200

CD 6/7/3 5/7/4 81/69/42 44/96/52 25/111/56 19/128/45 12/112/68 16/116/44 208/646/314

MC 4/9/3 4/7/5 55/77/60 11/109/72 13/104/75 13/118/61 7/105/80 18/118/40 125/647/396

CM 8/6/2 7/6/3 87/74/31 72/88/32 51/108/33 47/129/16 30/127/35 33/142/1 335/680/153

FC 8/6/2 7/6/3 87/74/31 73/87/32 49/110/33 48/128/16 30/128/34 34/141/1 336/680/152

Kh 8/4/4 6/6/4 85/71/36 58/94/40 38/104/50 35/118/39 25/107/60 29/118/29 284/622/262

MO 7/8/1 6/8/2 87/80/25 71/87/34 53/104/35 51/119/22 36/112/44 39/137/0 350/655/163

CC 7/7/2 5/8/3 73/87/32 59/90/43 39/108/45 42/118/32 25/121/46 38/124/14 288/663/217

Figure 3 WDLC values for all considered setups. The values are based on comparison with all other setups

except the setups that include the same classifier. The setups include NB or FNB executed on the 16 raw data

sets and each of the 6 classifiers on the 16 data sets discretized by each of the 12 algorithms. Abbreviations for

algorithms and classifier names can be found in Tables 2 and 3, respectively
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coefficient values for the NB classifier are negative. Relatively good scores were also obtained with

the AODE and HNB classifiers.

Most importantly, we observe that the scores obtained by each classifier strongly depend on the

discretization method used to discretize the input data. Figure 4 shows that five discretizers, which

include MODL, FCAIM, CAIM, IEM, and CACC, generate the highest and always positive

values across all considered classifiers. However, several algorithms such as Maximum Entropy,

Paterson–Niblett, CADD, and Modified x2 always obtain negative coefficient values. The latter

group incorporates relatively old algorithms, except for the Modified x2. The remaining algo-

rithms have a similar number of losses and wins. The above conclusions are similar to the

observation derived when using the Freidman F and Nemenyi tests.

3.3 Running time analysis

We also investigate the trade-off between the classification accuracy and the running time

necessary to compute the discretization scheme and the classification model, and to compute

predictions for the test instances. We note that the classification model is built only once, while it

can be used to classify an unlimited number of test instances. This motivates us to consider the

time to predict the test instances. In addition, we note that some of the semi-NB classifiers, such as

LBR, are characterized by higher complexity associated with the prediction, see Table 3.

Similarly, as in the case of the classification model, the discretization process is performed only

once before a classifier is built. After that, the generated discretization scheme can be used to

discretize multiple samples. The time needed to discretize a single instance with a given scheme is

directly proportional to the number of continuous attributes and the number of intervals in a

given scheme. Therefore, the smaller the average number of intervals in a given scheme is, the

faster the discretization process is. We observe that this time is negligible when compared to the

time necessary to compute the scheme and the classifier, that is, the conversion into the discrete

feature uses a pre-computed look up table that represents the discretization scheme, and thus

we disregard it in our analysis.

Owing to the limited amount of space, our analysis is based on three data sets. We choose the

smallest (glass), the average size (hypo), and the biggest (pen) data sets. The remaining plots are

given on http://biomine.ece.ualberta.ca/discretizationNB/. The plots show the average

time (over the five twofold cross-validation experiments) to build the discretization scheme using

black bars, the average time to train a classifier using white bars, and the average time to classify a

test set using gray bars. We focus on the analysis of the training and prediction times since the

discretization time was already discussed in the context of Table 7.

Figure 5(a) summarizes the results for the smallest data set. It shows that the process to

compute the discretization scheme can be time-consuming when compared with the time needed to

Figure 4 WDLC values for all considered setups. The values are based on comparison among setups that are

based on the same classifier. The setups include NB or FNB executed on the 16 raw data sets and each of the

six classifiers on the 16 data sets discretized by each of the 12 algorithms. Abbreviations for algorithms and

classifier names can be found in Tables 2 and 3, respectively
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build the classification model and to classify the test instances. However, the time needed to

classify discretized instances by any classifier, except LBR, is generally lower than the time needed

to classify the original instances, which is associated with the NB and FNB classifiers. Most

importantly, we observe that the whole process of discretizing, training, and classifying data is almost

always shorter, except for the setups that apply the CACC discretizer and the LBR classifier, than the

process of training and classifying the raw data using the FNB classifier. This is particularly important

in the context of the fact that the building of the discretization scheme and the classification model is

done only once, whereas the time needed to classify test instances is additive.

The longest training time is required for the HNB classifier and it is also associated with the setups

in which data were discretized with the Modified x2 algorithm. The latter is likely caused by the

relatively large number of intervals generated for this particular data set by the Modified x2 method,

see Table 8. The setups which incorporate the CACC and CADD discretizers need more time to build

the classification model. Although the schemes generated by CACC include a relatively large number

of intervals, this is not the case for the CADD algorithm. Therefore, we hypothesize that the reason

for the long training time is poor quality of the corresponding schemes.

Figure 5 Time plots for the glass, hypo and pen data sets are shown in panels (a, b), and (c), respectively. The

y axis gives the time in milliseconds; the x axis lists all setups including NB and FNB executed on the raw data and

the six classifiers run on the data discretized by each of the 12 algorithms. Black bars show the time of the

discretization process on the training fold; white color represents the time to train the classification model on the

training fold; gray color denotes the time needed to classify the test fold. Training and test folds have the same

number of instances. Abbreviations for algorithms and classifier names can be found in Tables 2 and 3, respectively
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Figure 5(b) gives the results for the hypothyroid data sets. This data set has average size and it

consists of seven continuous and 22 nominal features. Owing to the relatively small number of

continuous features, the results show that the time to classify the raw instances by NB is shorter

than the time necessary to generate classification with most of the discretization-based setups.

Only the setups that use the NB classifier on the discretized data are faster than NB on the raw

data. We again observe that the time to classify raw data by FNB is longer than the time needed to

classify instances by most of the other classifiers, except LBR, that use the discretized data. The

difference is not as large as for the glass data set since FNB is very efficient for nominal features

that are present in the raw data set. The longest training time, that is, time to compute the

classification model, is observed for HNB.

The results for the biggest data set are presented in Figure 5(c). This data set consists exclusively

of continuous features. The observations are similar to the observations on the glass data set. The

time to classify discretized data is generally lower than the time needed to classify the raw data by

NB and FNB (except for the LBR classifier). This is especially transparent in the case of FNB that

requires a substantial amount of time to predict the test instances. Most of the discretization times,

except for the Paterson–Niblett, Modified x2, MODL, and CACC algorithms, are 5 to 10 times

smaller than the time to classify the test set. The large number of intervals generated by the

Modified x2 algorithm results in long training and classification times.

Similar conclusions can be drawn for the remaining data sets; see http://biomine.ece.

ualberta.ca/discretizationNB/ for the time plots. The longest time to classify the test instances

is observed for the LBR classifier. This time is almost always two orders of magnitude greater than

the combined time to perform discretization and generation of the classifier. Discretization

reduces the time to build the classifier and to predict the test instances. This is especially trans-

parent for data sets that consist only of numerical (continuous) features, while for a few smaller

mixed (both continuous and nominal features) data sets the benefits are not always as significant.

We observe that the ratio between the discretization and classification times is smaller for bigger

data sets. Classification with FNB most often takes more time than combined discretization and

classification with semi-NB classifiers. For larger data sets that consist of continuous features, the

usage of the discretization-classification combo, except when slow discretization methods such as

MODL, Modified x2, and Paterson–Niblett are used, is also faster than the NB classifiers executed

on the raw data.

4 Summary and conclusions

The comparison of the 12 considered discretizers indicates that unsupervised methods are faster

than supervised methods. The fastest supervised algorithm is FCAIM followed by CAIM and

IEM. The slowest is MODL followed by Modified x2 and CADD. The best overall quality

measured over multiple dimensions, which include running time, quality of the discretization

scheme expressed using CAIR and Entropy criteria, and the number of discretization intervals, is

achieved by the FCAIM, CAIM, and IEM algorithms. Three algorithms, MODL, FCAIM, and

CAIM, generate the smallest discretization schemes and achieve favorable CAIR and entropy

values. The MODL method has a drawback of being relatively slow, but it also generates

high-quality discretization schemes. The IEM algorithm is fast and generates small schemes with

good Entropy and acceptable CAIR values. The worst performing methods include the two

unsupervised methods, Equal Width and Equal Frequency, and the ME and Khiops algorithms.

We also note that the Modified x2 algorithm generates a large number of discretization intervals.

Analysis of the impact of discretization on the classification with NB and semi-NB classifiers

shows that discretization generally improves the accuracy when compared against NB and FNB

run on the raw data. At the same time, we observe that the choice of the discretization algorithm

impacts the significance of the improvement. The MODL, FCAIM, and CAIM methods have

the biggest positive influence on the accuracy of the subsequent classification. Their application

in tandem with most of the semi-NB classifiers results in statistically significant improvements.
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The IEM and CACC algorithms also guarantee a good improvement, which is slightly better than

the improvement obtained with the Khiops algorithm. The unsupervised methods, as well as the

Modified x2, Paterson–Niblett, CADD, and ME algorithms, produce relatively large discretiza-

tion schemes, and provide the smallest improvements for the subsequent classification.

When analyzing the performance of the considered classifiers, we found that the most accurate

models are generated by the AODEsr method followed by AODE and HNB. The classification

accuracies obtained when combining AODEsr with the top performing discretizers that include

MODL, FCAIM, and CAIM give statistically significant improvement over the classification

performed with both classical NB methods, NB and FNB. The worst accuracies are obtained when

using the original NB followed by FNB and LBR.

We found that the results of the evaluation of the discretization methods correlate with the

accuracy of the classification performed on the discretized data, that is, well scoring discretizers

provide good quality data, which in turn results in improved accuracies (irrespective of the type of

classifier used). This shows that the quality indices used to evaluate discretization schemes can be

used to indicate the quality of the classification with the NB-based classifiers.

Investigation into the impact of discretization on the classification time shows that although the

time needed to build the discretization scheme could be longer than the time needed to train the

classifier, the time to classify the discretized instances (that includes the time to discretize data,

compute the classifier, and predict the test instances) is often shorter than the time needed to

classify continuous instances. We show that the time needed to classify test instances is an

important factor that is strongly influenced by discretization. At the same time, the time needed to

build the classification model is not as strongly influenced by discretization.

We show that discretization not only has a positive impact on the accuracy of NB and semi-NB

models, but it also has a positive impact on their classification time, that is, a strong positive

influence is observed in the context of the time needed to classify an instance. The magnitude of this

influence varies depending on which method was used to derive the discretization scheme. We found

that the biggest positive influence, both on the accuracy and the classification time, is associated with

three algorithms that generate the smallest discretization schemes, MODL, FCAIM, and CAIM.
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