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Abstract. Research in protein structure and function is one of the most impor-
tant subjects in modern bioinformatics and computational biology. It often uses 
advanced data mining and machine learning methodologies to perform predic-
tion or pattern recognition tasks. This paper describes a new method for predic-
tion of protein secondary structure content based on feature selection and multi-
ple linear regression. The method develops a novel representation of primary 
protein sequences based on a large set of 495 features. The feature selection 
task performed using very large set of nearly 6,000 proteins, and tests per-
formed on standard non-homologues protein sets confirm high quality of the 
developed solution. The application of feature selection and the novel represen-
tation resulted in 14-15% error rate reduction when compared to results 
achieved when standard representation is used. The prediction tests also show 
that a small set of 5-25 features is sufficient to achieve accurate prediction for 
both helix and strand content for non-homologous proteins. 

1   Introduction 

In the recent years increasing knowledge of protein structure accelerated medical 
research. Research in protein structure and interactions is of paramount importance to 
modern medicine, as it enhances general understanding of biological processes, and 
protein functions in particular. One of the most important related applied research and 
development areas is rational drug design, which aims to cut down costs and acceler-
ate development process of drugs based on analytical models. 

Protein structure can be learned by experimental and computational procedures. 
This paper develops a new computational method for prediction of protein secondary 
content. It proposes to perform prediction based on combination of feature selection 
procedure and data mining based approach. The proposed method extends the existing 
prediction methods by using a novel representation of primary protein structure. Com-
prehensive feature selection procedure performed with a very large set of almost 
6,000 proteins resulted in development of an accurate prediction method that reduced 
error rates by 14-15% when compared to commonly used feature representation. In-
dependent prediction on non-homogenous protein sets show that a small set of 5-25 
features is sufficient to achieve high quality prediction models. 
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In general, protein structure can be described on three levels: primary structure 
(Amino Acid (AA) sequence also called primer), secondary structure (folding of the 
primer into two-dimensional shapes, such as helices, strands, and various coils or 
turns), and tertiary structure (folding of the two-dimensional shapes into three-
dimensional molecule). The Dictionary of Secondary Structures of Proteins annotates 
each AA as belonging to one of eight secondary structure types [4], which are typi-
cally reduced to three groups: helix, strand, and coil. The primary structure is cur-
rently publicly known for hundreds of thousands of proteins, e.g. NCBI protein data-
base contains approximately 2 millions proteins, and SWISS-PROT database [3], 
stores over 159K primers. The secondary and tertiary structure is known for relatively 
small number of proteins, i.e. the Protein Data Bank (PDB) [1], currently contains 
about 30K proteins, out of which only a small portion have correct secondary struc-
ture and tertiary structure information. At the same time research in protein interac-
tions and functions requires knowledge of tertiary structure. Experimental methods 
for discovery of secondary and tertiary structure such as X-ray crystallography and 
nuclear magnetic resonance spectroscopy are time consuming, labor expensive, and 
cannot be applied to some proteins [6]. Computational methods perform prediction of 
the tertiary structure with an intermediate step of predicting the secondary structure. 

Computational methods for prediction of secondary structure from the primary se-
quence aim to close the existing gap between the number of known primary se-
quences and higher structures. One of the important pieces of information to perform 
prediction of secondary structure is protein content. While the secondary structure 
prediction aims to predict one of the three groups for each AA in the primary se-
quence, the secondary content prediction methods aim to predict amount of helix and 
strand structures in the protein. The secondary structure content can be learned ex-
perimentally by using spectroscopic methods, such as circular dichroism spectroscopy 
in the UV absorption range [13], and IR Raman spectroscopy [2]. Unsatisfactory 
accuracy and inconvenience of the experimental methods in some cases makes the 
computational approaches worth pursuing [20]. Computational methods have long 
history, and usually used statistical methods and information about AA composition 
of proteins to perform prediction.  

This paper describes a novel approach that considers two aspects of content predic-
tion task: quality of primary sequence representation and design of a prediction 
method. The existing methods, one the other hand, applied different prediction meth-
ods, but concentrated only on one dominant AA sequence representation. Secondary 
content prediction consists of two steps. First, primary sequence is converted into 
feature space representation, and next the helix and strand content are predicted using 
the feature values. A typical feature space representation consists of composition 
vector, molecular weight, and structural class, which are explained later. The first 
content prediction effort was undertaken in 1973 and used Multiple Linear Regression 
(MLR) method to predict content based on the composition vector [8]. A number of 
approaches, which used some combination of the composition vector, molecular 
weight, and structural class representation and neural network [10], analytic vector 
decomposition technique [5], and MLR method [17] [18] [19] [20] to predict the 
content were developed. A novel method that uses both composition vector and com-
position moment vector and a neural network was recently developed [12]. 
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2   Proposed Prediction Method 

The main difference between proposed and existing methods lies in the feature space 
representation used for prediction. The new method considers a large and diverse set 
of features, and performs feature selection to find optimal, in terms of quality of pre-
diction and number of used features, representation. The existing methods consider 
very limited feature representation. After optimal representation is selected, the new 
method uses the most popular MLR for prediction of the content, see Figure 1. 

 

Fig. 1. Procedure for prediction of helix and strand content 

 

The prediction is usually performed with an intermediate step when primary se-
quence is converted into feature space representation. The existing content prediction 
methods use a limited set of features while other methods, such as for prediction of 
protein structure or function, use a more diverse and larger number of features. This 
paper investigates if a more diverse set of features would help in content prediction. 
The considered set of features is summarized in Table 1 and later explained in detail. 

Table 1. Features used to describe primary protein sequence and their applications 

Feature application type reference(s) 
Protein sequence length, avg molecular 
weight, avg isoelectric point 

protein content and function prediction 
 

[10] [14] 

Composition vector protein structure and content prediction [5] [8] [10] [12] [17] [18] [19] [20] 
1st order composition moment vector 
2nd order composition moment vector  

protein content prediction [12] 

R-groups protein structure and content prediction [11] 
Exchange groups protein family and structure prediction [15] [16] 
Hydrophobicity groups protein function prediction, structural and functional relationships [7] [9] [14] 
Electronic groups protein structure prediction [6] 
Chemical groups protein structure prediction [6] 
Other groups protein function prediction, structural and functional relationships [7] [14] 
Dipeptides protein function prediction [14] 

The properties include length, weight, and average isoelectric point. Protein length 
is defined as the number of AAs. To compute the molecular weight, the residue aver-
age weight values are summed and a water molecule mass is added. Average isoelec-
tric point is computed using average isoelectric point values of all AAs in the primer; 
values are available at www.ionsource.com/virtit/VirtualIT/aainfo.htm. These features 
were used for protein content and function prediction [10] [14]. Composition vector is 
defined as composition percentage of each AA in the primary sequence. Composition 
moment vector takes into account position of each AA in the primary sequence [12]: 

% helix 
feature space representation 
using selected feature subset

MLR model for helix content 

MLR model for strand content % strand 

primary 
sequence 
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where nij and xi represent the jth position of the ith AA, and the composition of the ith 
AA in the sequence, respectively; k is the order of the composition moment vector.  

The 1st and 2nd orders were used, while the 0th order reduces to the composition 
vector. Composition vector was used extensively for both protein structure and con-
tent prediction [5] [8] [10] [12] [17] [18] [19] [20], while composition moment vector 
was recently proposed for protein content prediction [12]. The property groups divide 
the AA into groups related to specific properties of individual AAs or entire protein 
molecule. Several different properties, such as hydrobhobicity, pI, electric charge, 
chemical composition, etc., that are summarized in Tables 2 and 3 are considered. 

Table 2. Property based AA groups 

Groups Subgroups AAs  Groups Subgroups AAs 
Nonpolar aliphatic AVLIMG  Hydrophobic VLIMAFPWYCG 
Polar uncharged SPTCNQ  Hydrophilic basic  KHR 
Positively charged KHR  Hydrophilic acidic DE 
Negative DE  

R-group 

Aromatic FYW  

Hydropho-
bicity group

Hydrophilic polar with 
uncharged side chain 

STNQ 

(A) C  Electron donor DEPA 
(C) AGPST  Weak electron donor VLI 
(D) DENQ   Electron acceptor KNR 
(E) KHR   Weak electron acceptor FYMTQ 
(F) ILMV  Neutral GHWS 

Exchange 
group 

(G) FYW  

Electronic 
group 

Special AA  C 
Charged DEKHRVLI  Tiny  AG 
Polar  DEKHRNTQSYW  Bulky  FHWYR 
Aromatic FHWY  

Other 
group 

Small AGST  

Other group

Polar uncharged NQ 

R-group combine hydropathy index, molecular 
weight and pI value together [11]. Exchange group 
represent conservative replacements through evolu-
tion. Hydrophobicity groups divide AAs into hydro-
phobic, which are insoluble or slightly soluble in 
water, in contrast with hydrophilic, which are water-
soluble. Electronic group divides AAs based on their 
electronic properties, i.e. if they are neutral, electron 
donor or electron acceptor. Chemical group is associated with individual AAs. There 
are 19 chemical groups of which AAs are composed. Some of them are listed in Table 
3. Other group considers the following mixed classes: charged, polar, aromatic, small, 
tiny, bulky, and polar uncharged. For each of the groups, the composition percentage 
of each subgroup in a protein sequence is computed. We note that these groups were 
extensively used for protein family, structure, function, prediction and to discover 
structural and functional relationships between proteins [6] [7] [14] [15] [16]. Finally, 
dipeptides are simply pairs of adjacent AAs in the primary sequence. The composition 

Table 3. Chemical groups for 
AAs 

 

AA associated chemical groups 
A CH CO NH CH3 
C CH CO NH CH2 SH 
D CH CO NH CH2 CO COO- 
E CH CO NH CH2 CH2 CO COO- 
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percentage of each pair is computed. They were previously used for protein function 
prediction[14]. 

2.1   Feature Selection for Protein Secondary Content Prediction 

The above features were considered for prediction of protein secondary content. Ini-
tially correlation between features was investigated to find out if they are independ-
ent. The correlated features must be removed since they cannot be used with MLR 
model. Several correlated features were discovered. For example, some chemical 
subgroups were correlated with other features, such as composition vector, R-group, 
and other subgroups in the chemical group. The reason is that some chemical groups 
 

appear only in one AA or a group
of AAs for which the composi-
tion percentage is computed in
another feature. For example,
COO– is found only in AAs D
and E, which is identical to nega-
tive R-group, while some chemi-
cal groups always appear in the
same AAs, such as C and NH2. 
Table 4 shows final set of 495
features after removing overlap-
ping and correlated features and
provides abbreviation and indices
that are used in the paper. 

Table 4. List of features considered for feature selection 

Feature Abbr. Indices 
Protein sequence length SL 1 

Average molecular weight MW 2 
Average isoelectric point IP 3 

Composition vector (in alphabetical order) CV 4-23 
1st order composition moment vector (alphabetically) MV1 24-43 

2nd order Composition moment vector (alphabetically) MV2 44-63 
R-groups (AVLIMG, SPTCNQ, KHR, DE, FYW) RG 64-68 

Exchange groups (AGPST, DENQ, ILM) XG 69-71 
Hydrophobicity groups (VLIMAFPWYCG, STNQ) HG 72-73 

Electronic groups (DEPA, LIV, KNR, FYMTQ, GHWS) EG 74-78 
Chemical groups (C, CAROM, CH, CH2,, CH2RING, 

CH3,, CHAROM, CO, NH, OH) 
CG 79-88 

Other groups (DEKHRVLI, DEKHRNTQSYW, FHWY, 
AGST, AG, FHWYR NQ) 

OG 89-95 

Dipeptides (alphabetically) DP 96-495  

 

Fig. 2. Results of correlation test for the set of 495 features 

  SL 
MW             CV                      MV1                     MV2          RG     XG         CG        OG 
  IP                        HG   EG                        DP 
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Naïve Correlation Based Feature Selection. The simplest feature selection involves 
computing correlation between a given and the predicted feature and selection of a 
given number of features with highest correlations. Correlation values of 495 features 
and the helix and strand content were computed and are summarized in Figure 2.  

Analysis of the figure shows that there are no strong correlations that can be used 
to select a suitable subset of features for content prediction. The strongest correlation 
values were in 0.3-0.4 range. None of the feature sets, i.e. physical properties, compo-
sition and composition moment vectors, property groups and dipeptides, can be 
evaluated as better or best correlated. The strongest correlated features, using correla-
tion thresholds of 0.229 and -0.229, shown in Figure 2, are given in Table 5. 

Table 5. The best correlated feature 

struc-
ture 

corre-
lation 

feature /values 

RG2 CG10 EG5 CVP  CG5 CVS HG2 XG1 CVT MV2S MV1S DPSG CVG DPSS DPGS nega-
tive  0.47 0.42 0.37 0.32 0.32 0.32 0.32 0.31 0.29 0.28 0.27 0.27 0.25 0.24 0.22 

CVL OG1 CVA CG6 RG1 XG3 CG3 DPAA DPAL DPAK CG9 EG2 DPEA MV1L CG4 

0.39 0.38 0.34 0.31 0.31 0.30 0.29 0.28 0.27 0.26 0.26 0.25 0.25 0.25 0.25 
DPLA MV2L DPLR DPML MV2A MV1A DPLK CVM DPDA DPEL      

helix 

posi-
tive 

0.25 0.24 0.24 0.24 0.24 0.24 0.23 0.23 0.23 0.23      
CVL CVA CG4 OG1  RG3            nega-

tive  0.26 0.25 0.24 0.24 0.23           

CG10 CVT HG2 MV2S MV1S RG2 DPTY EG5 CVS DPVT XG1 MV1T MV2T DPSG  

strand 

posi-
tive 0.39 0.32 0.29 0.28 0.28 0.28 0.28 0.27 0.27 0.27 0.25 0.24 0.24 0.23  

Correlation accommodates only for correlation between individual features and the 
predicted values, while more complex correlation that include multiple features to-
gether exits. Therefore regression based correlation feature selection was performed. 

Regression-Correlation Based Feature Selection. The feature selection was per-
formed according to the procedure shown in Figure 3. 

 

 

Fig. 3. Feature selection procedure performed independently for helix and strand content 

Feature selection is performed independently for helix and strand content predic-
tion. It uses dataset of about 6000 proteins extracted from PDB (described later) to 
investigate two selection procedures. Each of the 6000 primers is first converted into 
495 features representation. Next, the dataset is split in the 10-fold cross validation 
(10CV) manner, and MLR model is computed for each fold. The model is tested with 
the test set and average quality over 10 folds is reported. Next, five worst features are 

495 features for 
~6000 primers 

~6000 
primers

ith train set 

ith test 
set 

ith train 
set 

feature representation 

design set of sequences 

10 fold cross validation 
i=1, 2, …, 10 

MLR model 

test to predict content of helix 
and strand

regression 
coefficients

feature-content correlation coefficients 

report average quality 
for all 10 folds

5 worst features 
are removed 
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selected and removed, and remaining 490 features are used again to perform MLR. 
The process repeats until 5 features are left. In each iteration the worst 5 features are 
selected according to two independent criterions: 1) smallest values of corresponding 
regression coefficients, 2) smallest values of correlation coefficients between a given 
feature and the helix/strand content. Both sets of coefficients are recomputed and 
averaged for each cross-validation fold. The regression coefficients are constants of 
the MLR model. We assume that the lower the coefficient value the lesser the corre-
sponding feature’s impact on the predicted helix or strand content, and therefore the 
less useful it is for prediction. Similarly correlation coefficients express correlation 
between a given feature and the predicted helix or strand values. Again, the lower the 
correlation values the less useful the feature is. The main difference between the coef-
ficient sets is that the MLR considers all features together while the correlation con-
siders each feature independently. The results are discussed in the next section. 

3   Experiments 

Experiments apply 3 datasets, one for feature selection and two for validation of the 
developed method and comparison with other prediction methods. The feature selec-
tion dataset was extracted from PDB (release as of August 12th 2004) to cover wide 
range of known proteins. For proteins that have isotopes, the last one was selected. 
The proteins were filtered according to a set of rules shown in Table 6 to eliminate 
errors and inconsistent data. Also, sequences with identical primer and different seco-  
ndary sequences were elimi-
nated. Lastly, sequences with
ambiguous AAs in the primer, 
i.e. B or Z, were removed re-
sulting in a dataset with  5834 
sequences that include homo-
logous sequences. The length
of the shortest sequence is 6
and  of  the  longest sequence is 

Table 6. Filters used to derive feature selection dataset 

Type of the Problem # seq Type of the Problem # seq 
Sequence length < 4 455 Helix indexed out of sequence 10038 
Illegal AA 11540 Strand indexed out of  sequence 8023 
residue called UKN 25 Coil indexed out of sequence 219 

Overlap of  helix and strand 782 More/less residues than 
the sequence length 

9
Overlap of helix and coil 1342 

Helix of length < 3 1291 No secondary structure 9972 
Strand of length < 2 19022 No primary structure 13  

1295. The test datasets include: 

- 210 non-homologous proteins set described in [20]. Although these proteins 
satisfy criteria defined in Table 6, 11 proteins were excluded from experiments, 
since they include unknown AA X in their primer in the newest PDB release. 
Therefore 199 proteins were used. The excluded proteins are: 1MBA_, 1MDC_, 
1OPAA, 4SBVA, 1FBAA, 1ETU_, 1GP1A, 3ADK_, 1CSEI, 1ONC_, 1FUS_. 

- 262 non-homologous proteins set described in [5]. Among the original set only 
52 proteins were found in newest PDB release and satisfied criteria from Table 6. 

Feature selection was performed using two approaches to select worst performing 
features for deletion, one based on correlation and the other based on regression coef-
ficients. The content prediction quality was evaluated using two measures [20]: 
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where e is an average error, σ is standard deviation, FK is the predicted helix or strand 
content, DK is the known content, and N is number of predicted proteins. 

Results are shown in Figure 4. Each experiment involves 10CV. Feature selection 
results are based on computation of about 4000 MLR models. The optimal, in terms 
of trade-off between error e and number of features, subsets are shown by dashed 
lines. For both prediction of strand and helix content 4 subsets were selected: for the 
lowest error value (L), for the last five features (F), for a feature subset of small size 
(S), and for the best relative ratio between error and feature subset size (M). 

The results for selected 4 datasets for both correlation and regression coefficient 
based approaches and helix and strand prediction are given in Table 7. It shows that 
minimum error for helix and strand content prediction is 11.28% and 8.67% respec-
tively, and was achieved for regression based selection for dataset L.  The maximum 
error when using just last 5 features is 15.16% and 11.48% for helix and strand  
 

a) helix content prediction; regression coefficients b) strand content prediction; regression coefficients 

c) helix content prediction; correlation coefficients d) strand content prediction; correlation coefficients 

Fig. 4. Results for feature selection experiments using regression and correlation coefficients 

prediction respectively, and was achieved for correlation based selection. Therefore 
25% error reduction is achieved by using dataset L instead of F. Datasets S and M 
give relatively good tradeoff between prediction error and number of features. Dataset 
S with just 25 features for helix prediction gives 12.91% error, while for strand it 
gives 10% error. Similarly for M dataset, 125 features are used to predict helix con-
tent with 11.81% error while 135 features to predict strand content with 8.99% error. 
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The regression coefficients based selection gives better results for M and L datasets, 
while correlation coefficients based selection is better for small subsets. This results 
agrees with our expectations, since regression method benefits from relationships 
between features, while correlation based method considers each feature  
independently. 

Table 7. Summary of feature selection results (best and worst results are shown in bold; base-
line results achived when composition vector is used are shown in italics) 

dataset name 5Features (F) Small (S) Medium (M) Large (L) 
# features 5 25 125 365 helix 

prediction e(σ) 0.1917 (.0171) 0.1315 (.0116) 0.1181 (.0106) 0.1128 (.0102) 
# features 5 25 135 320 

regression 
coeff. 
selection strand 

prediction e(σ) 0.1203 (.0080) 0.1000 (.0067) 0.0899 (.0059) 0.0867 (.0057) 
# features 5 40 175 490 helix 

prediction e(σ) 0.1516 (.0139) 0.1291 (.0117) 0.1232 (.0111) 0.1158 (.0115) 
# features 5 25 180 475 

correlation 
coeff. 
selection strand  

prediction e(σ) 0.1148 (.0074) 0.0994 (.0067) 0.0926 (.0063) 0.0892 (.0063) 
# features 20 # features 20 composition 

vector 
helix 
prediction e(σ) 0.1329 (.0117) 

strand 
prediction e(σ) 0.1011 (.0067) 

Another experiment, which involves 10CV prediction using 20 features composi-
tion vector to predict the content, was performed, see Table 8. Since composition 
vector is the most utilized feature set for prediction (all published results use it for 
prediction [5] [8] [10] [12] [17] [18] [19] [20]) this results gives a baseline to verify 
that feature selection procedure improves the existing prediction approaches. For the 
helix prediction a slight improvement of about 0.5% (which translates into 3% error 
rate reduction) was achieved by using S subsets consisting of 40 features. The 2% 
error rate improvement (which translates into 15% error rate reduction) was achieved 
 

Table 8. Comparision of error rates for prediction of secondary structure content for different 
methods and for different considered feature subsets (best results shown in bold; baseline 
results shown in italics) 

Resubstitution e(σ) Jackknife e(σ) method test dataset (reference) feature 
subset helix strand helix strand 
Freg 0.176 (.017) 0.125 (.007) 0.181 (.018) 0.128 (.008) 
Sreg 0.143 (.013) 0.106 (.006) 0.166 (.018) 0.123 (.008) 
Mreg 0.092 (.005) 0.052 (.001) 0.263 (.044) 0.178 (.020) 
Fcorr 0.171 (.016) 0.126 (.007) 0.176 (.017) 0.130 (.007) 
Scorr 0.144 (.012) 0.103 (.006) 0.185 (.021) 0.119 (.008) 
Mcorr 0.051 (.001) 0.030 (.000) 0.514 (.167) 0.354 (.065) 

this paper 
MLR 

199 out of 210 [20] 

CV 0.148 (.014) 0.110 (.005) 0.167 (.018)  0.123 (.007) 
Freg 0.164 (.001) 0.156 (.016) 0.190 (.024) 0.179 (.023) 
Sreg 0.115 (.006) 0.098 (.004) 0.240 (.029) 0.208 (.024) 
Fcorr 0.164 (.014) 0.154 (.012) 0.189 (.021) 0.175 (.017) 
Scorr 0.085 (.004) 0.095 (.005) 0.448 (.126) 0.193 (.022) 

this paper 
MLR 

52 out of 262 [5] 

CV 0.118 (.005) 0.109 (.005) 0.211 (.022) 0.194 (.021) 
AVDM-1 CV 0.144 (.117) 0.118 (.096) 0.145 (.017) 0.120 (.097) 
AVDM-2 

262 [5] 
CV 0.132 (.109) 0.114 (.096) 0.142 (.115) 0.124 (.105) 

MLR 210 [20] CV 0.122 (.089) 0.108 (.082) 0.135 (.103) 0.120 (.097) 
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by using L subset consisting of 265 features. For the strand prediction, the 0.2% error 
rate improvement was achieved for the 25 features subset, while 1.4% improvement 
(14% error rate reduction) was achieved when 365 features were used. Although the 
achieved improvement seem small, the 15% and 14% error rate reduction in medi-
cally related field should be perceived as a significant result, especially that it is 
backed up by a study that considers a large and comprehensive set of proteins. 

Prediction tests were performed to test selected feature subsets. Subsets Freg, Sreg, and 
Mreg for regression coefficients and Fcorr, Scorr, and Mcorr for correlation coefficients 
based selection were used to perform independent test on the test datasets. Prediction 
of the secondary content was performed using MLR method. In case of regression 
number of data points (proteins in the dataset) should be larger than number of fea-
tures. Therefore for 52 protein dataset only F and S subsets were considered. 

Test consists of resubstitution and jackknife procedures [20] The fist procedure 
trains and test on the same dataset, while the other is a leave-one-out test. Test results 
are summarized and compared with other methods in Table 8. The table also includes 
results for MLR based prediction when the standard composition vector (CV) feature 
set is used. Since resubstitution test trains and test on the same data, it is prone to 
overfitting. Thus analysis concentrates on jackknife test results. Baseline results that 
apply composition vector are always worse that the best results achieved by the gen-
erated feature subsets. Subset Sreg generates slightly better results for helix prediction, 
while subset Scorr is better in case of strand prediction for the set of 199 proteins. 
Similarly models generated using subset Fcorr reduce error rates for both helix and 
strand prediction by over 10% in case of the 52 protein set (18.9% error rate was 
achieved for Fcorr while 21.1% was achieved for composition vector for helix predic-
tion, while 17.5% and 19.4% error rates were achieved for strand prediction respec-
tively). Subsets F that contain only 5 features achieve better results that prediction 
using 20 features composition vector. The results justify feature selection as a useful 
method not only to improve prediction results, but also to possibly reduce the number 
of features necessary for the secondary content prediction. The selected subsets F and 
S for both correlation and regression based feature selection are listed in Table 9. 

Table 9. Selected subsets of features  

Data Struct. Features 
Freg helix CV12  CV14 CV20  OG3  OG7 
 strand CV1 CV11 CV12 CV14 OG7 
Sreg helix CV2 CV5÷CV12 CV14 CV17 CV18 CV19 CV20 RG1 XG2 XG3 EG1 EG2 EG3 CG6 OG2 OG3 OG6 OG7 
 strand CV1÷CV20 RG1 RG2 RG4 RG5 XG1 XG2 XG3 HG1 HG2 EG1÷EG5 CG1÷CG10  OG1÷OG7 DP13 DP20 DP22 

DP29 DP30 DP31 DP32 DP34 DP35 DP38 DP46 DP58 DP66  DP67 DP71 DP73 DP78 DP81 DP82 DP87 DP89  DP92 DP93 

DP95 DP97 DP99 DP100 DP108 DP114 DP122 DP132 DP135 DP139 DP162  DP170 DP173 DP178 DP179 DP193 DP214 DP226 

DP238 DP244 DP256 DP257 DP266  DP267 DP270 DP273 DP277 DP278 DP279 DP285 DP286 DP290 DP293 DP298 DP304  

DP308 DP321 DP326 DP327 DP330 DP331 DP334 DP338 DP339 DP352  DP353 DP362  DP364 DP368 DP369 DP372 DP374 

DP375 DP376 DP378 DP379  DP380 DP384 DP391  DP398 DP399 
Fcorr helix CV10 RG3 EG5 CG10 OG1 
 strand CV17 MV116 MV216    HG2 CG10 
Scorr helix CV1 CV5 CV10 CV11 CV13 CV16 CV17 MV11 MV110 MV116 MV21 MV210 MV216 RG1 RG3 XG1 XG3 HG2 EG2 

EG5 CG3 CG4 CG5 CG6 CG9 CG10 OG1 DP1 DP9 DP10 DP41 DP61 DP70  DP116 DP181 DP189 DP195 DP210 DP306 

DP316 
 strand CV1 CV10 CV16 CV17 CV18 MV116 MV117 MV216 MV217 RG3 RG4 XG1 HG2 EG5 CG4 CG10 OG1 OG4 DP9 

DP10   DP306   DP316   DP318   DP338   DP357 
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Results achieved for subset Scorr for strand prediction are better than results of both 
AVDM and MLR methods, while the existing methods are better in case of helix 
content prediction, see Table 9. The AVDM method uses more advanced predictive 
model called analytic vector decomposition technique [5]. The MLR method uses 
MLR method, as in [8], but tests on the set of all 210 proteins. We anticipate that 
using more advanced prediction model in combination with feature selection per-
formed in this paper would results in system that surpasses the existing approaches. 

4   Summary and Future Work 

The paper presents a novel method for prediction of protein secondary structure con-
tent. The method is the first to consider alternative feature representation of primary 
protein sequences. It performs feature selection task to generate optimal, in terms of 
trade-of between prediction error rates and number of feature, feature representation 
and performs MLR based prediction of the helix and strand protein content. The re-
sults based on the leave-one-out test for non-homologous protein sets show that not 
only 5-25 features set can be used to predict the secondary content values, but that the 
representation based only on 5 features can reduce error rates by 10% when compared 
to standard 20 features representation based on composition vector. The results for a 
comprehensive set of 6000 mixed homologous and non-homologous proteins also 
show that error rate reduction of 14-15% can be achieved when the proposed feature 
representation is used instead of standard composition vector based representation. 

Future work will design 2-layer prediction system. First, protein structural class  
(α, β, and αβ) will be predicted and next specialized prediction models for each class 
and predicted structure will be used. Design is similar to [17] [18] [19] [20], but con-
siders that structural class will be predicted, not assumed, and utilizes feature  
sselection. 
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