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Molecular recognition features (MoRFs) in three
domains of life†

Jing Yan,a A. Keith Dunker,*bc Vladimir N. Uversky*def and Lukasz Kurgan*ag

Intrinsically disordered proteins and protein regions offer numerous advantages in the context of

protein–protein interactions when compared to the structured proteins and domains. These advantages

include ability to interact with multiple partners, to fold into different conformations when bound to

different partners, and to undergo disorder-to-order transitions concomitant with their functional

activity. Molecular recognition features (MoRFs) are widespread elements located in disordered regions

that undergo disorder-to-order transition upon binding to their protein partners. We characterize

abundance, composition, and functions of MoRFs and their association with the disordered regions

across 868 species spread across Eukaryota, Bacteria and Archaea. We found that although disorder is

substantially elevated in Eukaryota, MoRFs have similar abundance and amino acid composition across

the three domains of life. The abundance of MoRFs is highly correlated with the amount of intrinsic

disorder in Bacteria and Archaea but only modestly correlated in Eukaryota. Proteins with MoRFs have

significantly more disorder and MoRFs are present in many disordered regions, with Eukaryota having

more MoRF-free disordered regions. MoRF-containing proteins are enriched in the ribosome, nucleus,

nucleolus and microtubule and are involved in translation, protein transport, protein folding, and

interactions with DNAs. Our insights into the nature and function of MoRFs enhance our understanding

of the mechanisms underlying the disorder-to-order transition and protein–protein recognition and

interactions. The fMoRFpred method that we used to annotate MoRFs is available at http://biomine.ece.

ualberta.ca/fMoRFpred/.

Introduction

The protein structure–function paradigm, where a specific sequence
folds into a specific structure that is responsible for a unique
function, served as a cornerstone of protein science for more than

a century.1,2 Research of the past decade and a half has broadened
this view of a protein functionality by adding a new player,
the class of intrinsically disordered proteins (IDPs), members
of which fail to form rigid 3D structures under physiological
conditions, either along their entire lengths or in localized regions,
but still possess numerous important biological functions.3–9

Sequences of these IDPs and disordered parts of hybrid proteins
possessing ordered domains and intrinsically disordered regions
(IDRs) are characterized by a number of specific features that
distinguish them from those of ordered proteins and domains
and make these IDPs and IDRs predictable.3,5,6,10–12

Application of computational tools developed for sequence-
based intrinsic disorder prediction revealed the wide spread
occurrence of IDPs and hybrid proteins containing both struc-
tured regions and IDRs within all three domains of life.13–23

The lack of unique structure under physiological conditions
provides IDPs and IDRs with a remarkable set of advantages for
certain functions compared to the structured proteins, since
the resulting plasticity allows them to efficiently interact with
a variety of different targets.4–6,9 IDPs are typically involved in
pathways that carry out signaling, regulation, and/or control,8,24,25

which nicely complements the functional repertoire of ordered
proteins that have primarily evolved to carry out small molecule
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binding, transport and catalytic functions.11 Several illustrative
biological activities of IDPs and IDRs include various roles in
transcription and translation, regulation of cell division, signal
transduction, storage of small molecules, sites for protein phos-
phorylation and other posttranslational modifications, chaperone
action, and regulation of the self-assembly of large multi-protein
complexes such as the ribosome.4–7,9–11,24–40

IDPs and IDRs offer advantages in the context of protein–
protein interactions when compared to the structured proteins
and domains. One of these functional advantages is the ability
of many IDPs/IDRs to undergo disorder-to-order transitions
concomitant with their functional activity.4,6,8,24–28,31,38,41–45

Furthermore, the structural flexibility of a disordered protein
or region enables it to interact with numerous partners and to
fold into different conformations when bound to different
partners.3,43,46,47 Also, partner selection by IDRs can be modu-
lated by post-translational modifications (PTMs),47,48 and such
partner binding sites (with or without PTMs) can be added,
deleted, or modulated by alternative splicing (AS) of an IDR’s
pre-mRNA.49 Thus, tissue-specific PTMs50,51 and AS52,53 can
lead to the ‘‘rewiring’’ of protein–protein interaction networks
in different cell types.54,55 IDPs and their modulation by PTMs
and AS provide a robust mechanism that enables context-
dependent signaling32 that is likely of fundamental importance
for cellular differentiation.34–36,56 The plasticity of these inter-
actions provides additional functional advantages particularly
for signaling and regulation.

A further point is that protein–protein interaction (PPI)
networks include proteins, called ‘‘hubs,’’ that bind to large
numbers of partners while most proteins in the networks bind
to only a few.57,58 Other networks that have a similar architec-
ture arise because the hubs have special features that facilitate
their association with multiple partners and to new partners
that come along over time; that is, ‘‘the rich get richer’’.57 This
raised the question for PPI networks, what are these special
features?59 As pointed out above, IDPs and IDRs can readily
bind to multiple partners, so based on these observations, we
proposed that the special features that enabled the evolution
of complex networks containing hubs was IDPs and IDRs.25

This proposal has been supported by a number of subsequent
studies.47,60–65

Given the importance of IDPs and IDRs for signaling,
regulation, and control via PPI pathways and networks, as well
as via IDP and IDR involvement in gene pathways and networks,
computational methods have been developed to identify the
partner binding sites. One approach depends on the identifi-
cation of short sequence motifs,66 linear motifs,67 eukaryotic
linear motifs (ELMs)68 or short linear motifs (SLiMs).69 This
approach depends on identifying over-represented sequence
patterns found among a collection of different sequences that
bind to a common protein partner.47,66,68,69

An alternative approach was provided by the discovery that
some disorder predictors identified localized regions having
increased structural propensity. These regions were initially
thought to be prediction errors, but instead many of these
regions were found to be binding sites for protein partners.70

Interestingly, this approach actually pre-dated the motif-based
methods for finding binding partners. The Protein Data Bank
(PDB) contains more than 10 000 complexes containing short
peptides bound to globular protein partners. Studies of
hundreds of these showed that a large number of these
peptides are located in IDPs or IDRs that are predicted to be
considerably longer than the segments found in the PDB.
Curiously, those that form a-helix or b-sheet upon complex
formation were often found to be associated with a local
region of predicted structure due to a localized increase in
hydrophobicity, whereas those that formed irregular or random
structure upon binding, rarely gave strong predictions of
localized structure. To indicate their specialized functions within
the longer IDRs, these binding segments were called molecular
recognition features (MoRFs).71

These partner-binding regions contain higher local concen-
trations of large hydrophobic side chains, especially aromatics,
as compared to the flanking IDRs. Furthermore, the PDB
structures showed these hydrophobic groups to be mostly
buried in the interfaces between the IDPs or IDRs and their
partners. Even though the random-structured MoRFs
(forming coils and/or turns upon binding), or g-MoRFs, show
weaker predictions of structure and reduced hydrophobicity
compared to the helix-forming, or a-MoRFs, and the sheet-
forming, or b-MoRFs, the g-MoRF hydrophobic side chains
are, if anything, more selectively buried in their respective
interfaces.47,72

Using collections of MoRFs from the PDB ranging from 5 to
25 residues in length, predictors of a-MoRFs were developed.47,73,74

This work focused initially on a-MoRFs because they typically give
strong predictions of local structure flanked by predictions of IDRs.
Binding regions longer than B30 residues arising from IDRs have
been called disordered binding domains;75 these often contain
subregions that are identified by MoRF predictors (unpublished
observations). Eventually, predictors that could recognize all types
of binding regions, including those that form irregular structure
upon binding, were developed. They include ANCHOR,76,77

DISOPRED3,78 MoRFCHiBi,79 MoRFpred,80 and fMoRFpred,
which was developed as part of this study with the aim to offer
accurate predictions in high throughput. These methods use
the PDB protein complexes for training.

While their details differ, these predictors identify binding
sites by their increased hydrophobicity and reduced propensity
for disorder compared to the flanking regions of disorder.
Although these feature-based algorithms and the motif-based
approach for finding partner binding sites are completely
different, both approaches typically identify binding sites that
are located in IDRs.67,81 In recognition of this, the MoRFpred
algorithm includes sequence similarity to any of the MoRFs in
its training set as one of the inputs. This input serves as a
surrogate for the use of motifs. Others have studied such
regions from a different perspective. Many proteins appear in
the PDB more than once with the structure determinations
carried out under (slightly) different conditions. Such proteins
often have regions that are structured under one set of condi-
tions but are disordered under the other. These ambiguous82 or
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dual-personality83 or semi-disordered84 regions exhibit disorder
predictions (and hydrophobicities) that are intermediate
between the extremes observed for structured and disordered
proteins.83,84

Experimentalists can use binding-site predictors to speed-up
the process of PPI discovery,85–87 and, indeed, MoRF predictions
have been used for this purpose.88–90 In ref. 90, the yeast-two
hybrid method91 was followed by mutational analysis to identify
both the partners of the MoRFs and the MoRF residues essential
for partner binding, suggesting we are now in a position to study
MoRF-partner interactions by high throughput methods. The
first step for such high throughput studies of disorder-based
PPIs is MoRF prediction (and/or binding motif identification) on
a large scale.

However, to date only a few studies have investigated properties
and abundance of a larger set of MoRFs. In 2006, Mohan and
colleagues performed analysis of secondary structure, amino acid
composition, aromaticity and charge, and a limited functional
analysis of a relatively small set of 372 MoRFs derived from PDB.71

In 2007, geometric and physiochemical properties of the surface of
the corresponding binding regions for 258 MoRFs collected from
the PDB were examined.72 A recent study investigated MoRFs in a
small set of 289 membrane proteins from PDB.92 There were only
two studies that analyzed MoRFs on genomic scale. The prevalence
of a-MoRFs generated by the a-MoRF predictor was estimated in
82 genomes from Eukaryota, Bacteria and Archaea and the authors
observed that a median eukaryotic genome has greater fraction
of proteins with a-MoRF propensities than median archaeal
and bacterial genomes.74 More recently, analysis of 736 com-
plete proteomes that took advantage of the ANCHOR method
was performed; however, it was limited to the characterization
of abundance and length of these binding regions.76 To this
end, herein we present our analysis of the 868 complete
proteomes from the three domains of life. We consider multi-
ple perspectives including (1) abundance of MoRFs and their
types; (2) relation between abundance of MoRFs and IDRs;
(3) enrichment of disorder in MoRF-containing proteins;
(4) compositions of MoRF, intrinsically disordered and struc-
tured regions; and (5) functions of MoRF-containing proteins.
Our analysis across different species and domains of life points
to interesting and distinct differences between MoRF and
generic IDRs. These data provide experimentalists with the
starting points for the high throughput analysis of MoRF-
based PPIs for any of these organisms.

Materials and methods

We analyze putative MoRFs and IDRs in the complete proteome
set from UniProt release of April 2013.93 This dataset includes
174 381 protein sequences from 72 species in Archaea, 2 025 100
sequences from 567 species in Bacteria and 3 645 837 sequences
from 229 species in Eukaryota (Table 1).

Only high-throughput methods that find putative MoRF and
IDRs could be used given the size of the UniProt dataset. We
apply fMoRFpred predictor to find putative MoRFs; the design
and predictive performance of this method are discussed in
the ESI.† fMoRFpred uses a similar design to the popular
MoRFpred method (see ESI†).80 In short, each residue in the
input protein sequence is represented by 20 features that are
derived from structural, physicochemical and biochemical
properties of this and its neighboring residues; these features
were empirically selected as the most predictive from a compre-
hensive group of over 7000 features. The predictive properties
include putative annotation of intrinsic disorder and secondary
structure, estimated B-factor, structural stability, and unfolding
energy. They allow identifying MoRF regions since these regions
are enclosed inside of longer disordered regions, may fold into
secondary structures upon binding, and are characterized by a
relatively high flexibility (B-factor) and lower structural stability as
compared to the structured regions. The prediction is performed
with a support vector machine model that uses the features as
inputs and which was trained using a large dataset with annotated
MoRFs to optimize separation of its output values between MoRF
and non-MoRF residues. fMoRFpred is shown to provide accurate
estimates of abundance of MoRFs via comprehensive tests that
utilize several benchmarking datasets, which include chains with
low similarity to the training proteins. This means that it can be
used to accurately predict MoRFs on the whole proteome scale. It
is also characterized by a relatively low runtime, which allows for
the genome-scale predictions on a single desktop computer. The
predictive quality of MoRF predictors was also validated against
experimental results in a few applications,90,94 supporting the
claim that they provide accurate results. A webserver-based imple-
mentation of fMoRFpred is available at http://biomine.ece.ual
berta.ca/fMoRFpred/.

IDRs were predicted using a consensus of five high-throughput
predictors: two versions of IUPred95 designed to find long and
short IDRs and three version of Espritz96 that predict intrinsic dis-
order annotated based on X-ray crystal structures, the NRM-derived

Table 1 Abundance of MoRF and intrinsically disordered regions in Archaea, Bacteria and Eukaryota. +(=) Indicates that content of MoRF or disordered
residues for a domain of life in a given row is (is not) significantly higher compared to the domain in a given column (t-test (all data were normal); degrees
of freedom = 9; p-value o0.01). The last column lists Pearson correlation coefficient (PCC) between the per species content of MoRF and intrinsically
disordered residues in a given domain of life

Domain of life # Species # Proteins

MoRFs residues Disordered residues

PCCContent [%]

Significance

Content [%]

Significance

Archaea Bacteria Archaea Bacteria

Archaea 72 174 381 1.0 6.8 0.98
Bacteria 567 2 025 100 0.9 = 5.8 + 0.89
Eukaryota 229 3 645 837 1.0 = = 19.1 + + 0.43
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structures, and the Disprot database. Thus, the consensus considers
two types of IDRs (short regions and longer domains) and three
dominant types of annotations. These methods were shown to
provide good predictive performance in a recent large-scale assess-
ment.97 A given residue is predicted as disordered if at least three of
the five methods predict so; otherwise it is predicted as structured
(ordered). The same consensus was recently used in related
work.23,98 Use of the consensus is an improvement over some prior
studies where only one or at most two methods were used.14,16,99

MoRF and disorder predictions were filtered by removing segments
with less than 4 consecutive residues, which is in agreement with
other studies.23,80,100 The secondary structure, which is used to
define different types of MoRFs, was predicted using the fast version
of the PSIPRED method.101

We characterize abundance of MoRF and disordered residues
and regions and aggregate this information by species and by
domains of life. We compute content of MoRF and disordered
residues which is defined as the number of MoRF or disordered
residues in a given sequence, species or domain of life divided
by the total number of residues. We analyze normalized
number and size of MoRFs and IDRs. The number of regions
was normalized per sequence (the count was divided by the
total number of proteins in a given dataset) while the size of the
regions was normalized by dividing their length by the length of
the corresponding proteins. We also investigate MoRFs at the
whole protein level. We compute the disorder content and
fraction of fully disordered protein (proteins composed of only
disordered residues) in proteins that contain MoRFs, that
contain IDRs, and in all proteins in a given species or domain
of life. Finally, we calculate content of amino acid defined as
the count of residues for a given amino acid type divided by the
total number of residues. These content values were compared
between MoRFs, IDRs, structured (ordered) regions, and a
generic (drawn at random from protein sequences) set of
regions.

We assess statistical significance of differences between
content values or normalized counts between two protein sets.
We select at random 1000 samples (proteins or residues) from a
given set of proteins (e.g., eukaryotic proteins with MoRFs),
calculate a given characteristic (content or count) and repeat
that 10 times. The resulting vector of 10 values is compared
with the corresponding vector of 10 values computed from the
second proteins set (e.g., eukaryotic proteins with IDRs). We
determine normality of these values with the Anderson–Darling
test at the 0.05 significance. We use the t-test for normal
distributions; otherwise we use the Wilcoxon rank-sum test. We
assume that the difference is significant if the p-value o0.01. We
also report average and standard deviation over the 10 repetitions
if data are normal, and median with 25th and 75th centiles
otherwise.

We carried analysis of functional annotations of proteins
that have MoRFs based on the Gene Ontology (GO) terms
collected from the UniProt resource. We utilize statistical test
to find annotations that are significantly enriched in these
proteins when compared with a generic set of proteins from
the same domain of life. We consider annotations of biological

processes and cellular components that indicate cellular loca-
lization of the MoRF-including proteins. We compute signifi-
cance of enrichment for each annotation that occurs at least
20 times in the proteins with MoRFs (to assure statistically
sound estimates) and which has the rate of occurrence (defined
as number of occurrences divided by the number of proteins)
that is higher than the rate in the whole domain of life.
We select 50% of the MoRF-including proteins at random ten
times and compute the rates of occurrence for these 10 sets
of proteins. Next, we select 10 times the same number of
proteins with matching chain sizes (with tolerance of 10%)
at random from the entire domain of life and calculate
the corresponding rates. The matching is motivated by a bias
in disorder content related to chain sizes,98 which in turn
influences abundance of MoRFs. We compare the two sets of
10 rates of occurrence using either the t-test or the Wilcoxon
rank-sum test, depending on the normality of these samples.
A given GO term is assumed to be enriched in proteins that
have MoRFs if the rate of occurrence in these proteins is higher
by at least 20% compared with the proteins drawn at random
and the p-value o0.01.

Results and discussion
Overall disorder status of proteins in three domains of life

In order to provide background needed for the subsequent
analysis, we analyzed the peculiarities of the distributions of
protein length and correlation between the disorder content
and protein length for the considered close to 6 million
proteins of the 868 species from Archaea, Bacteria and Eukaryota.
Results of these analyses are shown in Fig. 1A and B, respectively,
and they demonstrate that eukaryotic proteins are different
from bacterial and archaean proteins, being typically longer
and noticeably more disordered. These observations are in
agreement with the results of previous studies.13–23 We empha-
size the peculiar shape of the disorder content versus protein
length plot for the eukaryotic proteins. While short proteins in
three domains of life are consistently predicted to have signi-
ficant amount of disorder, longer eukaryotic proteins have a
much different profile of disorder content when compared to
the almost coinciding plots for the bacterial and archaean
proteins (see Fig. 1B). The amount of predicted disorder in
the bacterial and archaean proteins decreases as protein length
increases and reaches a plateau for proteins longer than about
300 residues. However, in eukaryotes the disorder content
reaches a minimum for proteins with the length range between
250 and 500 residues and then it substantially increases and
reaches a plateau for proteins with length at about 1000 or
more residues. This peculiar shape of the disorder content
versus length of eukaryotic proteins has been described earlier
in a study that used smaller dataset (110 complete eukaryotic
proteomes).98 In other words, this analysis revealed that medium
sized eukaryotic proteins (length between 250 and 500 residues)
possess smaller amount of predicted disorder than shorter and
longer proteins.
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Abundance of MoRF and intrinsically disordered regions in the
three domains of life

We estimate the abundance of putative MoRFs and IDRs across
the 868 species from Archaea, Bacteria and Eukaryota. The
abundance is based on content of residues located in the IDRs
and in the MoRFs; i.e., fraction of disordered and MoRF
residues among all residues in a given species or domain of
life. The results shown in Table 1 suggest that MoRF residues
have similar content of about 1% across all three domains of
life. This is in contrast to the content of the disordered residues
that vary widely with lowest values in Bacteria and substantially
higher values in Eukaryota (Fig. 1B), which was also shown in
other studies.14,16,23

Statistical tests reveal that the differences in the per species
disorder content between different domains of life are signifi-
cant (t-test; degrees of freedom = 9; p-value o0.01); i.e.,
eukaryotic organisms have significantly larger disorder content
than species in Archaea, which in turn have significantly larger
content values than species in Bacteria. The disorder content in
Archaea is bimodal (see Fig. 2A, blue triangles), with some
species at the low end and others above the high end of the
bacterial range. The Archaea with high predicted disorder are
mostly halophiles21 that live in saturated salt and have high
internal salt concentrations. To accommodate these high salt
concentrations, the non-membrane proteins develop an excess
of negative charges on their surfaces, leading to a stabilizing

shell of cations, and a reduced amount of hydrophobic residues.102

This leads to high prediction of disorder40 even though they are
structured in their high salt environment. Indeed, many enzymes
and other proteins from halophiles become disordered if they are
transferred from high salt to the typical ‘‘physiological’’ range.102

The content of MoRF residues is not significantly different
between the species from three domains of life. Interestingly,
we found that the content of disordered residues and content of
MoRF residues are strongly correlated in Bacteria and Archaea.
The corresponding Pearson correlation coefficients (PCCs)
equal 0.89 and 0.98, respectively. However, the abundance of
disorder and MoRFs in Eukaryotes is characterized by only
modest correlation of 0.43.

A plot of content of intrinsically disordered residues vs.
MoRF residues for the considered species is shown in Fig. 2A.
The disorder content in Bacteria and Archaea is constrained to
a relatively narrow range of up to about 15% with the MoRF
content ranging between 0.5 and 2%. A linear trend where more
disorder implies proportionally more MoRFs is evident for
species from these two domains. In Eukaryotes, the disorder

Fig. 1 (A) Distribution of protein length for 5 845 314 proteins of the 868
species from Archaea, Bacteria and Eukaryota. (B) Disorder content versus
protein length plots for proteins in the three domains of life. The proteins
were sorted by length of their polypeptide chain and binned by every 5% of
the sorted proteins. Each plot represents disorder content over all proteins
in a given bin and given domain of life versus median length in the bin.

Fig. 2 (A) Relation between content of MoRFs and intrinsically disordered
residues for species in the three domains of life. Markers represent
individual species and lines show linear fit between content of disordered
residues and content of MoRF residues in a given domain of life.
(B) Histogram of the fraction of proteins (corresponding numbers of
proteins are shown above the bars) versus number of MoRFs per protein
in the three domains of life.
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content is on average higher and varies more widely between
about 5 and 30%, which is agreement with prior results.14,23,103

Surprisingly, the content of MoRF residues is constrained to the
range that is similar to the range in Bacteria and Archaea and
its linear relation with the disorder content is weaker. Overall,
Fig. 2A reveals that content of MoRF residues is similar across
the species from each of the three domains of life. On the other
hand, Fig. 2B represents a histogram of the fraction of proteins
containing different number of MoRFs per protein and shows
that, on average, eukaryotic proteomes have substantially more
multi-MoRF proteins.

Fig. 3 shows differences in the relation between the abun-
dance of MoRFs and protein length in the three domains of life.
Fig. 3A illustrates that the relations for the bacterial and
archaean proteins have very similar shapes, where short pro-
teins have more MoRFs per protein than long proteins. In these
two domains of life, the smallest per-protein counts of MoRFs
(B0.4 MoRF per protein) are found for the medium-length
proteins (200–400 residues), whereas these numbers slightly
increase to B0.5 for the longer proteins. The corresponding
relation for the eukaryotic proteins is very different. Although
short eukaryotic proteins have more MoRFs (0.7 MoRFs per

protein) and although this number decreases to B0.55 for the
medium-length proteins (B200 residues), the number of
MoRFs per protein increases steadily for proteins longer than
200 residues. Moreover, the long eukaryotic proteins which are
abundant in this domain of life (Fig. 1A) clearly contain more
MoRFs than short ones (Fig. 3A). One average, proteins that are
1000 or more residues long have one MoRF region, which
means that one of their protein domains is involved in protein–
protein interactions via intrinsic disorder. Although the number
of MoRFs per proteins is higher for the large proteins, the content
of MoRF residues decreases as the protein size grows. Fig. 3B
visualizes the corresponding relation between the number of
MoRFs versus protein length plots calculated on the per-residue
basis. This trend is very different from the trend of disorder
content for Eukaryotes (Fig. 1B). Although the disorder content in
eukaryotic proteins is higher for long proteins, the content of
MoRF residues is lower. This analysis supports the idea that
proteins in all domains of life are characterized by similar
abundance of MoRFs.

Fig. 4 shows distribution of the per-species MoRF and
disorder content values grouped by the second level in taxonomy
that corresponds to kingdoms or phyla. Boxplots, which show
spread of content values in species from a given kingdom/
phylum, are grouped and colored by the corresponding domain
of life and sorted in the descending order by the median content
of MoRFs. We observe a clear trend in Archaea and Bacteria
where the median disorder content in a given kingdom/phylum
follows the median MoRF content. This is not the case in
Eukaryotes, where additionally the content of MoRFs is substan-
tially lower than the content of disordered residues.

Abundance of different types of MoRFs in the three domains
of life

The abundance of different types of MoRFs including a-MoRFs,
b-MoRFs, g-MoRFs, and complex-MoRFs (which fold into a
mixture of helices and strands upon binding) in the three
domains of life is summarized in Fig. 5. We show that MoRFs
fold into secondary structures with similar proportions irres-
pective of the taxonomic classification. The largest fraction of
MoRFs become structured as coils (71% to 79% of MoRFs
depending on the domain of life). Between 16% and 21% of
MoRFs establish a-helix conformation upon binding. The
higher proportion of a-MoRFs in Eukaryota compared to
Archaea and Bacteria is consistent with prior observations.73,74

We note that the overall content of a-MoRF residues in Eukaryota
which we estimate to be 0.22% is similar the estimate of 0.28%
from the contribution that analyzed these types of MoRFs.73,74

Fig. 5 also reveals that b- and complex-MoRFs account for a
relatively low fraction of 6 to 8% of MoRFs.

Relation between MoRF and intrinsically disordered regions
in the three domains of life

We analyze abundance, size and localization in the sequence
of the IDRs and divide them into those that include one or
multiple MoRFs and those that are free of MoRFs. Fig. 6A and B
show the number of IDRs per protein and fraction of IDRs that

Fig. 3 Frequencies of MoRFs in proteins from the three domains of life.
Plot (A). Number of MoRFs per protein versus protein length. The proteins
were sorted by length of their polypeptide chain and binned by every 5% of
the sorted proteins. We plot the average number of MoRFs per protein
over all proteins in a given bin (total number of MoRFs divided by the
number of proteins in a given bin) versus median length in the bin. Plot (B).
Number of MoRFs per residue versus protein length. The proteins were
sorted by length of their polypeptide chain and binned by every 5% of the
sorted proteins. We plot the number of MoRFs per residue over all proteins
in a given bin (total number of MoRFs divided by the number of residues in
a given bin) and median value of length in the bin.
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have one, multiple, and no embedded MoRFs for each domain
of life. These characteristics are similar in Archaea and Bacteria
with on average approximately one IDR without MoRFs per
protein, one MoRF region in every other protein, and 30% of
the IDRs having MoRFs. However, eukaryotic proteins are
different and have substantially more intrinsically disordered
regions without MoRFs (close to 2.5 per protein) and a similar
number of regions with MoRFs. Moreover, nearly 80% of IDRs
in Eukaryota have no MoRFs. This shows that eukaryotic
species have evolved to introduce additional, MoRF-free dis-
ordered regions when compared with the other two domains of
life. Fig. 6C compares sizes of IDRs that are normalized by the
size of the corresponding proteins. We observe that these
values are similar between the three domains of life, which
suggests that the difference in the number of disordered
regions without MoRFs is not driven by the difference in the

size of the disordered regions. Also, IDRs that have MoRFs are
longer (Fig. 6C) and this is particularly true for the small
fraction of regions that ranges between 0.3% (in Bacteria)
and 1.2% (in Eukaryota) (Fig. 6B) that include multiple
MoRFs. Fig. 6D summarizes localization of IDRs in the protein
sequences. While most IDRs in Archaea and Bacteria are
localized at the termini of the sequence, this bias is reversed
in Eukaryota where 60% of the disordered regions are inside
the chain. The IDRs that include MoRFs are located almost
exclusively at the termini in Archaea and Bacteria and similarly
in Eukaryota only about 10% of these regions are located inside
the protein sequence.

To sum up, our analysis reveals that the intrinsically dis-
ordered regions that have MoRFs have similar characteristics
across the three domains of life, while the enrichment in
disorder in Eukaryotes is driven by inclusion of MoRF-free
disordered regions which are biased to be localized inside the
protein chains.

Proteins with MoRFs are significantly enriched in disorder

Fig. 7 shows distribution of disorder content among proteins
that include MoRFs (solid lines), intrinsically disordered region(s)
(dashed lines) and all proteins (dotted lines) partitioned according
to their taxonomic domain (denoted by colors). Comparison of
distributions for the proteins with MoRFs and with IDRs (solid vs
dashed lined of the same color in Fig. 7) reveals that the former are
depleted for chains with low disorder content (o0.1) and enriched
in chains with higher disorder content (40.1). This enrichment is
higher (relative to the value for the proteins with IDRs) as the
amount of disorder increases.

Overall, the MoRF-including proteins are characterized by a
substantially higher amount of disorder compared to proteins
with IDRs and all proteins universally across the three domains

Fig. 4 Content of MoRF and intrinsically disordered residues (y-axis in logarithmic scale) across species grouped into kingdoms/phyla (x-axis) in the
three domains of life. The box plots for each kingdom show the minimal, 25th centile, median, 75th centile and maximal MoRF (lower box-plots shown
using black lines) and disorder (upper box-plots shown using gray lines) content over species in a given kingdom. Solid horizontal lines represent the
content of MoRF (in black) and disordered (in gray) residues in the entire domain of life. The kingdoms are sorted in the descending order by their median
content of MoRFs.

Fig. 5 Content of the four types of MoRFs in the three domains of life.
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of life. This result is consistent with Fig. 6C that shows that
IDRs that include MoRFs are longer compared with the regions
that do not. We analyze statistical significance of the differ-
ences in the disorder content and in the fraction of fully
disordered proteins (i.e., proteins composed entirely of dis-
ordered residues) between the three sets of proteins. For each
domain, we compare the disorder content and the fraction of
fully disordered proteins that is calculated 10 times, each time
using 1000 randomly chosen proteins from the set of all
proteins, proteins with MoRFs, and proteins with IDRs. Fig. 8
shows the average and standard deviation of these 10 measure-
ments for the disorder content (panel A) and for the fraction of

the fully disordered proteins (panel B) and the p-values asso-
ciated with the differences between proteins with MoRFs, with
IDRs and all proteins. The enrichment of the disorder in the
MoRF-containing proteins is significant when compared with
all proteins and with proteins with the IDRs. Moreover, the
fraction of fully disordered proteins among proteins that has
MoRFs, which is between 1% in Archaea and Bacteria and close
to 2% in Eukaryota, is also significantly higher. The differences
in the disorder content and in the fraction of fully disordered
proteins are significant in all three domains of life.

Amino acid composition of MoRF and disordered regions

Biases in the amino acid composition in MoRFs and two of
their types: a-MoRFs and b-MoRFs, in IDRs and in structured
regions are summarized in Fig. 9. The amino acids are sorted
by the average (over the three domains of life) differences in
composition between the MoRF residues and a generic set of
residues selected at random; note that similar prior plots for
IDRs/IDPs were sorted by the flexibility index.104,105 Fig. 9
shows the averages and standard deviations of the differences
between composition of MoRF/disordered/structured residues and
the composition of the generic residues over the 10 repetitions of
measurements of content for each of the 20 amino acid types;
details are provided in Materials and methods section. Solid bars
indicate amino acids that have significantly different (enriched or
depleted) composition for a given set of residues. The patterns of
the enrichment and depletion of amino acids in the MoRFs
(Fig. 9C) and in the IDRs (Fig. 9D) are consistent across different

Fig. 6 Analysis of intrinsically disordered regions (IDRs) in the three domains of life. We categorize IDRs into those that include no MoRFs, one and
multiple MoRFs. Panels (A and B) shows the number of IDRs per proteins and fraction of the IDRs, respectively. Panel (C) gives boxplots (25th centile,
median, and 75 centile) of the normalized size of the IDRs. Panel (D) summarizes fraction of IDRs that are localized at the sequence terminus vs. inside the
sequence for all IDRs and IDRs that include at least one MoRF region.

Fig. 7 Distribution of disorder content values for proteins that include
MoRFs, proteins that include intrinsically disordered regions, and all
proteins in the three domains of life. The overall range of disorder content
was divided into 10 intervals shown on the x-axis. The left-most point
where the disorder content is 0 corresponds to fully structured proteins.
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domains of life. The correlation coefficients between these differ-
ence values are relatively high and equal 0.82, 0.81, and 0.72 for
Archaea, Bacteria and Eukaryota, respectively. Several amino acids
are enriched (proline and glutamine) and depleted (cysteine,
phenylalanine, isoleucine, leucine, and valine) in both IDRs and
MoRFs in each of the three domains. However, we also found that
methionine and threonine that are enriched in IDRs are no longer
enriched in the MoRFs.

The observed biases in the amino acid composition in the
MoRFs in comparison with structured regions are in line with
the notion that the majority of MoRFs are g-MoRFs (Fig. 5). This
MoRF type should not be too different from ‘‘general’’ IDRs
which also often lack propensity to form secondary structures.
This is supported by the fact that according to our analysis both
IDRs and MoRFs are enriched in a couple of major disorder-
promoting residues (proline and glutamine), typically contain
in abundance some other disorder-promoting residues (glutamic
acid and serine), and are depleted in major order-promoting
residues (cysteine, phenylalanine, isoleucine, leucine, and
valine). However, analysis of the a- and b-MoRFs reveals a more
substantial difference from IDRs (Fig. 9A). The a-MoRFs are
significantly enriched in arginine, glutamate, lysine, and glu-
tamine which are enriched to a lesser extend in IDRs and have a
relatively high propensity to form helical conformations. The
b-MoRFs are enriched in valine, isoleucine and methionine.
The former two are depleted in IDRs and all three amino acid
types have a relatively high propensity for formation of strands.
Both, the a- and b-MoRFs are depleted in proline and glycine,
which are considered as disorder-promoting residues,10,106 are
known as major structure breaker residues and are commonly
found at the ends of regular secondary structure elements.107

For example, since proline peptide bonds exhibit structural
features that differ substantially from those of other residues,
also because they do not contain backbone amide hydrogen
atoms at physiological pH, they do not form stabilizing hydrogen
bonds in a-helices or b-sheets.108,109 Curiously, eukaryotic b-MoRFs
are moderately enriched in tryptophan, tyrosine, and phenyl-
alanine; i.e., residues known to be commonly involved in specific
interactions.110 Also, aromatic residues are crucial for folding and

stability of proteins, and tryptophan–tryptophan pairs were, for
example, shown to contribute more than any other hydrophobic
interaction to the stability of b-hairpins.111 These results suggests
that b-MoRFs might use aromatic residues to be specifically zipped
to their binding partners.

The residues in the structured regions (Fig. 9E) are charac-
terized by lack of significant differences, which could be
explained by the fact that majority of residues (at least 80%
as shown in Table 1) are structured. Moreover, the biases are
consistent between different domains of life. The correlation
coefficients between the differences for the same group of
residues between Eukaryota, Bacteria, and Archaea are high
and range between 0.76 and 0.96.

Functional analysis of proteins with MoRFs

Using Gene Ontology (GO) annotations associated with proteins
that have MoRFs we extracted cellular component and biological
process that are significantly enriched (t-test or Wilcoxon test (see
Fig. 10); degrees of freedom = 9; p-value o0.01) in these proteins.
This analysis was performed separately for each domain of life
(Fig. 10). We compared rate of occurrence of a given annotation
(defined as number of occurrences divided by the number of
proteins) between proteins with MoRFs and proteins selected at
random from the same domain of life; details are given in
Materials and methods section. We only consider annotations
with a large rate of occurrence in the MoRF-containing proteins
(40.25%) for which the relative increase when compared with
the rate in the random protein is at least 20%.

The results reveal that the ribosomes in all three domains of
life are enriched in proteins with MoRFs. Furthermore, these
proteins are also very common in the nucleus, nucleolus and
microtubule in the Eukaryota. This is consistent with the
results that were obtained for a-MoRFs in the human genome,
which were found to be enriched in the ribosome and cyto-
skeleton.74 Analysis of biological processes shows that MoRF-
containing proteins are involved in translation, protein transport,
protein folding, and interactions with DNAs. They are also
enriched among eukaryotic proteins that are associated with
the regulation of transcription. This is in line with the results

Fig. 8 Average disorder content (panel A) and fraction of fully disordered proteins (panel B) computed for the proteins with the MoRFs (dark gray bars),
with the intrinsically disordered regions (white bars) and for all proteins (light gray bars) in the three domains of life. Since all data were normal, the bars
and the error bars show the average and the corresponding standard deviations based on 10 measurements that utilize 1000 randomly chosen proteins.
* Indicates that the difference is significant (t-test; degrees of freedom = 9; p-value o0.01; see Materials and methods for details).
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of a smaller study that considered about 200 proteins with
MoRFs and pointed to their enrichment in DNA binding and
regulation of transcription.71 Importantly, we found that
similar GO terms are enriched across the three domains of
life, which is consistent with our other finding related to the
similar levels of abundance of MoRFs in nature.

Conclusions

Protein–protein interactions are crucial for many biological
processes which rely on protein-centric recognition, regulation

and signaling interactions. Therefore, understanding molecular
mechanisms underlying such interactions is directly linked to
gaining critical insights into signaling and regulation within
biological systems. Furthermore, on the practical side, better
understanding of the molecular mechanisms defining these
interactions might enable the development of small molecule
therapies that could be used to modulate protein–protein inter-
actions and thereby target various human diseases.112–116

IDPs/IDRs are known to be promiscuous binders that play
different roles in regulation of the function of their binding
partners and in promotion of the assembly of supra-molecular
complexes.45 The conformational plasticity associated with

Fig. 9 Differences in the amino acid composition between residues in the a-MoRF (panel A), b-MoRF (panel B), all MoRFs (panel C), intrinsically
disordered regions (panel D), structured regions (panel E) and generic (randomly selected) residues in the three domains of life. The bars and the error
bars show the median and the corresponding 25th and 75th centiles based on 10 measurements with 1000 randomly chosen the a-MoRF/b-MoRF/
MoRF/disordered/structured residues. Solid (hollow) bars indicate that the differences in the composition is (is not) statistically significant (t-test or
Wilcoxon test; degrees of freedom = 9; p-value o0.01; see Materials and methods for details). Data for which Wilcoxon test was used are annotated with
w next to the error bar; lack of annotation indicates that data were normal.
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intrinsic disorder provides IDPs/IDRs with a wide spectrum of
exceptional functional advantages over the functional modes of
ordered proteins and domains.4,6,9,25,27,28,31,32,37,38,43,46 Many
IDPs/IDRs are known to contain specific identification regions
via which they are involved in various regulation, recognition,
signaling and control pathways.25,31 IDPs/IDRs can form highly
stable complexes, and can be involved in signaling interactions
where they constantly cycle between bound and unbound
forms, thus acting as dynamic and sensitive ‘‘on–off’’ switches.
The ability of these proteins to return to the highly flexible
conformations after the completion of a particular function,
and their predisposition to gain different conformations
depending on the environmental peculiarities, are unique
physiological properties of IDPs which allow them to exert
different functions in different cellular contests according to
a specific conformational state.9,117 The action of IDPs is
further modulated by extensive posttranslational modifications6,48

and by alternative splicing.49 IDPs/IDRs are commonly involved in
various human diseases where they often play central roles.10 As a
result, IDPs and hybrid proteins possessing ordered domains and
IDRs represent attractive but very difficult drug targets.118–122

An important first step in developing new drugs targeting
protein–protein interactions is the ability to predict such inter-
actions from sequence and structure. For ordered proteins,
combination of structural knowledge with evolutionary infor-
mation provides means for the successful predictions of both
binding regions and binding partners from known protein
structure.123–126 The situation is more complicated with IDPs/
IDRs, since they do not have unique structures suitable for
structure-based rational drug design. However, the known ability
of many IDPs/IDRs to undergo a disorder-to-order transition
upon binding to their partners4,6,8,24–28,31,38,41–44 combined with
the fact this disorder-to-order-transition-based recognition is
commonly mediated by short specific MoRF elements,71–74

simplifies the task of finding such disorder-based binding
regions from sequence alone.

In this work, we developed a novel accurate and fast
computational tool, fMoRFpred, for finding all types of MoRFs.
This tool and the consensus of five high-throughput predictors
of intrinsic disorder were applied to analyze putative MoRFs
and MoRF-free IDRs in over 800 species. Various sequence
features of these regions in the three domains of life were
compared. Functions of MoRF-containing proteins were also
analyzed based on the Gene Ontology (GO) terms collected
from the UniProt resource.

Our work demonstrates that MoRFs are similarly abundant
across the three domains of life and are enriched in the same
amino acid types. In fact B21% of IDRs in Eukaryota and
B29% in Bacteria and Archaea have MoRFs and these MoRF-
containing regions are substantially longer than the MoRF-free
disordered regions. In Bacteria and Archaea, there is a strong
correlation between the abundance of MoRFs and the amount
of intrinsic disorder in corresponding proteomes. This correla-
tion is much less pronounced in eukaryotic proteins that have
twice as many MoRF-free IDRs compared to Archaea and
Bacteria. This observation can be explained by the fact that
eukaryotic proteins are noticeably more disordered than bacterial
and archaean proteins suggesting that the enrichment in disorder
in Eukaryotes is driven by inclusion of MoRF-free disordered
regions which have a bias to be localized inside the protein
chains. One possibility that might explain the higher incidence
of MoRF-free IDRs in Eukaryotes is that eukaryotic IDRs have
many additional protein interaction sites that are different from
MoRFs. They could be found via alternative approaches that rely
on short conserved regions that were identified by their binding to
the same partner. These have been called eukaryotic linear motifs
(ELMs)68 or short linear motifs (SLiMs),127 both of which are
typically found in IDRs.128

Importantly, our analysis enriches current knowledge of the
PPI networks which treat proteins as whole entities. We show
that these interactions are relatively often driven by disordered
regions that fold upon binding; that some proteins, particularly
in Eukaryota (Fig. 2B), have multiple such MoRF regions; and
that one average every long eukaryotic protein has at least one
MoRF (Fig. 3A).

Moreover, our functional analysis reveals that, in all three
domains of life, MoRF-containing proteins are commonly

Fig. 10 Cellular component and biological process GO terms that are
significantly enriched in MoRF proteins (t-test or Wilcoxon test; degrees of
freedom = 9; p-value o0.01). The y-axis gives the enriched GO terms. The
x-axis shows the relative difference between rates of occurrence of a
given term in MoRF-containing proteins and a random set of proteins from
the same domain of life. Colored bars are used to denote the same GO
terms that appear in different domains of life. Data for which t-test and
Wilcoxon test was used are annotated with t and w next to the bars,
respectively.
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found in ribosomes and are involved in translation, protein
transport, protein folding, and interactions with DNA. Eukaryotic
MoRF-containing proteins can also be found in the nucleus,
nucleolus, and microtubule and can be related to the regulation
of transcription. Our large scale analysis of the abundance and
peculiarities of MoRFs provides new insights into the nature and
function of MoRFs and enhances our knowledge of the mecha-
nisms underlying the disorder-to-order transition related to the
protein–protein recognition and interaction.
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