
Parallel Fuzzy Cognitive Maps as a Tool for
Modeling Software Development Projects

W. Stach L. Kurgan
Department of Electrical and Computer Engineering Department of Electrical and Computer Engineering

University of Alberta University of Alberta
Edmonton, Alberta T6G 2V4, Canada Edmonton, Alberta T6G 2V4, Canada

wstach@ece.ualberta.ca lkurgan@ece.ualberta.ca

W. Pedrycz

M. Reformat
Department of Electrical and Computer Engineering Department of Electrical and Computer Engineering

University of Alberta University of Alberta
Edmonton, Alberta T6G 2V4, Canada Edmonton, Alberta T6G 2V4, Canada

pedrycz@ee.ualberta.ca reform@ee.ualberta.ca

 Abstract - Fuzzy cognitive maps (FCM) are useful tool for
simulating and analyzing dynamic systems. The FCMs have a
very simple structure, and thus are very easy to comprehend and
use. Despite of the simplicity, they have been successfully adopted
in many different areas, such as electrical engineering, medicine,
political science, international relations, military science, history,
supervisory systems, etc.

Software development is a complex process, and there are many
factors that influence its progress. To effectively handle larger
development processes, they are usually divided into subtasks,
which are assigned to different teams of workers, and often are
performed in parallel. However, some constraints that impose
particular sequence of realization of these subtasks, i.e. some
tasks cannot be started before completing others, usually exist.
Proper division of a project into subtasks and establishing
relations between them are essential to correctly manage
software projects. Neglecting these constraints often leads to
problems that, in consequence, cause misestimating the overall
time and budget.

This paper introduces a new architecture of FCM, which
combines a number of simple FCM models that work
simultaneously into a novel parallel FCMs model. It uses a
special purpose coordinator module to synchronize simulation of
each FCM model. This approach extends application of FCMs to
complex systems, which contain multiple subtasks that run in
parallel, and thus must be simulated with multiple FCM models.
In addition, application of parallel FCMs to analyze and design
software development processes is presented. FCM models are
focused on simulating and analyzing factors, such as progress
and communication, and their relationships, which are based on
theoretical research studies and practical implementations. The
parallel FCM model is used to simulate complex projects where
multiple tasks exist. The paper is based on our previous work
where FCM models, which describe relationships between the
above factors for individual development tasks, were developed.
The newly proposed architecture allows for efficient analysis of
dependences between tasks performed in parallel.

KEYWORDS

Parallel Fuzzy Cognitive Maps, Management of Software
Project, Gantt Chart, Software Development Project

I. INTRODUCTION

 Fuzzy Cognitive Maps are a tool that is used for modeling
and simulation of dynamic systems. The FCMs have a very
simple structure, in terms of a graph that consists of nodes and
directed edges, and a very simple execution model that allows
for fast dynamic simulations. They have been applied in many
different areas, such as disease diagnosis [18], analysis of
electrical circuits [15], analysis of failure modes effects [13],
fault management in distributed network environment [12],
modeling and analysis of business performance indicators
[10], modeling of supervisors [16], modeling of software
development project [14], modeling of plant control [6],
modeling of political affairs in South Africa [11], and
modeling of virtual worlds [4].
 The approach using a single FCM model is suitable to
describe various dynamic systems, as presented in the
previous paragraph. However, some complex dynamic
systems cannot be simply modeled with a single FCM,
especially in case when the system consists of multiple,
parallel processes. In order to apply FCMs theory for such
systems, a special architecture, called parallel FCM, is
proposed. In this architecture, multiple FCMs communicate
with a coordinator module, which control overall simulation
and simulation of each model according to given constraints
and rules.
 This paper presents application of parallel FCMs in the
software engineering domain. Software projects are excellent
example of a system where multiple tasks are performed
simultaneously. Here, each task is described by a FCM model,
which shows relationships between factors that affect progress
of work. The design of individual FCM models is based on
theoretical research presented in [3] and extends model
introduced in [14]. The structure of parallel FCM allows
executing the individual models (software tasks) in parallel,
and in accordance with a given scenario.
 Software project management is the “process of planning,
organizing, staffing, monitoring, controlling and leading a
software project” [9]. Products of software projects have some
unique features, like invisibility, complexity and flexibility,

which cause difficulties in managing projects in accurate
manner [7]. There are, essentially, three project estimation
approaches: human-based, algorithmic, and machine learner-
based [2]. However, it is commonly known fact that
estimation of software project is very difficult. Surveys clearly
indicate that many project failed due to lack of time [5]. The
extent and impact of this problem is quite substantial.
According to a survey performed by the Standish Group in
mid 1990’s, which included over 8,000 software projects, an
average project exceeded its planned budget by 90% and its
schedule by 222% [16]. Also, more than 50% of the
completed projects implemented less than 50 percent of
original requirements [16].
 Origin of this phenomenon is connected with complexity
of factors that affect progress of work during development of
software projects. Some researchers estimate software project
progress based on very simple machine learning models,
which were used to find relationship between the sources lines
of code for each of the envisioned components in the end
product and a project programming effort [1]. This paper is
concentrated on analyzing issues that are associated with
communication among workers. We note that underestimating
this factor often leads to expensive project management errors.
The experiments performed in [14] confirmed that
communication effort is an essential part of software projects,
which has to be taken into consideration in order to accurately
manage projects.
 Software project is a collection of inter-related tasks. In
general, there are three approaches to identifying tasks that are
present in software project – activity-based approach,
product-based approach, and hybrid-approach [7]. With
respect to the start time constraints, tasks can be divided into
two types. The first group includes tasks that can be begun
without any starting conditions, whereas tasks belonging to the
second group require that others have to be completed before
they can begin (it is commonly known as precedence
requirements). In order to properly manage a project it is
essential to have a plan, which must include the start and
completion times for each task [7].
 What adds to the complexity of the management of
software projects is the fact that there are several different
types of software development tasks, depending on their
nature. Brooks lists four tasks types, i.e. perfectly partitionable
task, unpartitionable task, partitionable task requiring
communication, and task with complex interrelationships [3].
Many software project managers act on the basis of
assumption that all tasks belong to the first category, which
would allow them to control project progress by number of
involved people. Unfortunately, this group of tasks practically
does not exist in real projects. This implies that progress
cannot be expressed just in the man-month unit of effort. The
length of a project is connected with its sequential constraints,
and the maximum number of workers depends on independent
subtasks [3]. This paper extends approach described in [14] by
introducing new FCM-based models that describe each of the
above task types.

 As progress of software project development goes on, it is
important to collect and present the data about this process.
One of the methods, which are used to track project progress,
is the Gantt chart [7]. This is a task bar chart that indicates
scheduled task dates and durations. Gantt chart is constructed
with a horizontal axis that represents the total span of the
project and a vertical one that represents the tasks that
constitute the project. The Gantt chart also includes progress
indicators (e.g. as shaded tasks bars) and a ‘today cursor’. All
these items allow assessing which tasks are ahead or behind
the schedule.

II. FUZZY COGNITIVE MAPS MODELS

 The paper exploits and extends a FCM model that
consists of three concept nodes that show relationships during
software project development [14]. However, several
important changes, which concern both concepts
understanding and relationships strength, were introduced.
The new base model is shown in Fig. 1.

Fig. 1 FCM describing software development project

The nodes represent the following concepts:
- people base (N1) – degree of exploitation of people

involved in project with respect to the initial human
resources, which includes both designers and
implementers, i.e. effectiveness of their work;

- communication (N2) – communication effort, which
reflects effort connected with cooperation among people
working on project;

- progress (N3) – development abilities, which can be
interpreted as a factor, which describes rapidity of the
development of the project.

 Following, the interpretation of causal relationships
between nodes is explained. Increase in people’s effectiveness
has positive effect on progress (+0.5 directed edge between N1
and N3). However, it forces higher level of communication
among workers (+0.25 directed edge between N1 and N2),
which is critical to ensure cohesion of their work. Moreover
this has negative impact on the progress (-0.25 directed edge
between N2 and N3). On the other hand, increase in progress
can have a positive impact on effectiveness through factors,
such as motivation (+0.25 directed edge between N3 and N1).
What is more, higher value of progress requires higher level of
communication (+0.25 directed edge between N3 and N2).
This, in consequence, increased progress can cause decrease in
effectiveness of work (-0.25 directed edge between N2 and
N1). The strength of the relationships was established in the
following way. First, the influence of a concept on another
between each pair of concepts was determined as “negative”

-0.25

0.25

0.25

-0.25

N1
people
base

N2
commu-
nication

N3
progress

0.25

0.5

or “positive”. Then, these relationships were expressed in
fuzzy terms, i.e. weak, medium, strong and very strong by
taking into consideration the common perception of their
strength. Finally, these terms were replaced by the numerical
values 0.25, 0.5, 0.75 and 1, respectively.
 In this paper, an extension of the above model is
presented. Three models, that include the same concepts, but
describing different types of tasks, as defined in [3], are
proposed. Below, a brief description of each task type is
shown along the proposed FCM model. A plot that is a result
of the model simulation, and shows number of iterations,
which are necessary to complete task of given complexity (it
was arbitrarily set at 100) as a function of initial people base
node value, is also shown.
A. Unpartitionable task – this task cannot be partitioned

because of sequential constraints. As a result adding more
manpower has no effect on the schedule, see Fig. 2 and
Fig. 3.

Fig. 2 FCM model of an unpartitionable task

0
20
40
60
80

100
120
140
160
180
200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

man power

tim
e

Fig. 3 Time versus number of workers - unpartitionable task

B. Partitionable task requiring communication – this kind of
tasks can be partitioned. However, this process requires
communications among people and the effort of
communication must be added to the amount of work to
be done.

Fig. 4 FCM model of a partitionable task requiring communication

 In order to control the progress rate by number of people
involved in it, one of the edge values of model, presented in

Fig. 4, is parameterized. The variable x reflects the impact on
progress by effectiveness of work. This value is fixed before
starting simulation with an initial value of people base node.
The model represents the situation where the more workers are
assigned to the task the higher is the progress, but with the
dumping effect represented by the communication node, see
Fig. 5.

0

50

100

150

200

250

300

350

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

man power

tim
e

Fig. 5 Time versus number of workers - partitionable task requiring

communication

C. Task with complex interrelationships – in some cases, the
communication effort may fully counteract the progress
of the work when too many people are added. This
problem occurs when each part of task must be separately
coordinated with each other part.

Fig. 6 FCM model of a task with complex interrelationships

0

50

100

150

200

250

300

350

400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

man power

tim
e

Fig. 7 Time versus number of workers - task with complex relationships

The FCM structure, see Fig. 6, is identical to the structure
shown in Fig. 4. However, this time the modified edge value is
given as a function of initial value of people base node. The
function type was selected experimentally to obtain model that
fit the behavior of this type of task.

5.05.0)(+−−= xxf
where x is the initial people base node value.
 Value of this function is established prior to start the
simulation and given as a weight of directed edge between N1
and N3. Therefore all model weights values are fixed before
starting simulation, and do not change during its execution.

-0.25

0.25

0.25

-0.25

N1
people
base

N2
commu-
nication

N3
progress

0.25

f(x)

-0.25

0.25

0.25

-0.25

N1
people
base

N2
commu-
nication

N3
progress

0.25

0.5

-0.25

0.25

0.25

-0.25

N1
people
base

N2
commu-
nication

N3
progress

0.25

x

III. PARALLEL FUZZY COGNITIVE MAPS

 The paper introduces a novel parallel FCM architecture.
The architecture coordinates multiple FCMs into a single
model that is able to simulate and coordinate the individual
FCM models that are executed in parallel, and produce the
overall simulation results. The architecture is shown in Fig. 8.

Fig. 8 Parallel Fuzzy Cognitive Maps – architecture of the system

 The coordinator module is responsible for triggering
FCMs that are included in the system, coordinating the
individual FCMs, as well as checking when the simulation
should stop. The I/O enables to send information between
individual FCMs and the coordinator module. The system can
trigger, stop, or change parameters of the individual FCMs
through the I/O. Each individual FCM sends values of its all
concept nodes to the coordinator module in each iteration of
the execution. The coordinator module is able to simulate the
parallel FCM by analyzing and coordinating current state of
each individual FCM, and setting their initial parameters.

 The execution model of the parallel FCM in given in the
form of the following pseudo-code:
A. Initialize the parallel FCM:

1. Create individual FCMi, i=1, 2, …n;
Each FCMi is initialized with predefined structure and
weights values. Each FCMi had defined a stopping
condition that is used to terminate its execution.

2. Initialize the list of all individual FCMi.
AllFCM={FCM1, FCM2, …, FCMn};

3. Initialize the FCM-start schedule.
The schedule lists the start time for each FCMi in terms
of a fixed time (iteration) or dependency on finishing
set of preceding other individual FCMs {FCMj}, where
each FCMj starts before FCMi, and j≠i;

4. Initialize the list of active individual FCMi.
ActiveFCM={};

B. At each iteration of the parallel FCM:
1. Check which tasks can be started according to the

FCM-start schedule, and add them into the
ActiveFCM;

2. Perform one iteration for each FCM from ActiveFCM;
3. Check which tasks from ActiveFCM are finished and

remove them from AllFCM;
4. If AllFCM={} then TERMINATE, otherwise go to B.1.

 Each individual FCM model is described by set of
parameters (weights and structure) that are used by the
coordinator module to perform the simulation. Each individual
FCM has also defined a stopping condition that terminates its

execution according to a predefined criterion, e.g. achieving
stable state, max number of iterations, etc. These parameters
are established in step A.1. The individual FCM models are
executed in parallel according to a schedule given by the user,
which is initialized in step A.3.

 In case of the application of the parallel FCM to analysis
of software development projects, each individual FCM
represents a given development task. The tasks are combined
using schedule, which is usually represented by a Gantt chart.
The simulation of the parallel FCM model enables to analyze
relationships between specific tasks, and their impact on the
overall schedule. The initialization parameters are computed
by analyzing project description and Gantt chart:
A. Structure and weights of each individual FCMi are

defined by selecting one of three types of FCM model,
which are described in section II. The selection is
performed based on the work type associated with a given
development task.

B. Each individual FCMi has defined a stopping criterion
that is used to stop its simulation. This criterion is defined
in terms of total amount of work that needs to be
performed in the task modelled by a given FCMi. The
value is derived from the length of the task defined in the
Gantt chart.

C. Schedule is derived from the Gantt chart. Each individual
FCMi will be started either in a specified time (iteration),
or must wait until others FCMi are completed, as given in
the chart.

IV. EXPERIMENTS

 The objective of these experiments is to assess suitability
of proposed parallel FCM structure to simulate scheduling of
software project. The goal of the simulations is to allow
examining the influence of different initial conditions on the
anticipated schedule, as defined by the Gantt chart.

Fig. 9 Original Gantt chart

 The proposed parallel FCM tool was applied to simulate a
real project related to schedule of time and resources in the
web design, which is described in [8]. The guidelines for
project and a Gantt chart, which is shown in Fig. 9, are
borrowed from [8]. The Gantt chart describes an autonomous

I/O

I/O

I/O

FCM
1

FCM
2

FCM
n

Coordinator
Module

- FCMs-start schedule
- current iteration number
- parameters for each FCMs
- list of all FCMs
- list of currently active

FCMs

part of whole project, and is used to perform experiments with
the parallel FCM tool.
 The descriptions of all tasks along with their duration and
start time are specified in Table I. Comparing to the origin
schedule, some dates were changed by considering the
weekends as work days, whereas they were treated originally
as holidays.

TABLE I
LIST OF TASKS

Task
number Description Duration

(days)
Start
time Typea

1 Write design brief, communicate
to staff 1 Feb 26 B

2 Writing: first draft complete 10 Feb 27 B
3 Writing: editorial review of draft 5 Mar 9 B
4 Writing: final draft complete 4 Mar 14 A

5 Define navigation and site
structure 4 Feb 27 C

6 Complete sketches for graphic
elements and placement of media 3 Mar 3 C

7 Complete sketches for interface
design 3 Mar 3 B

8 Review sketches and site
structure 1 Mar 6 A

9 Create low-fidelity prototype of
interaction and navigation 3 Mar 7 A

10 Test prototype with users 3 Mar 10 B

11 Visual and media elements
complete (first iteration) 5 Mar 13 B

12 Create high-fidelity prototype
including content 5 Mar 18 C

a A – unpartitionable task
B – partitionable task requiring communication
C – task with complex interrelationships

 The type of tasks was selected based on characteristics of
particular tasks, which were derived from their description.
Each task is also described by a number that expresses its
complexity, and which represents the amount of work that has
to be done in order to complete it. It corresponds to the
number of days depicted on the Gantt chart. Complexity of
each task (amount of work to complete the task) is equal to
half of its duration expressed in days. This relationship was
reported in [3].

 The above project was simulated using the parallel FCMs
architecture. Each simulation considered different set of initial
conditions, which correspond to different assignment of
workers to particular tasks.
 First simulation was performed by assigning workers
without considering the task type. In this case the available
manpower was evenly assigned to the tasks. For example, if
upon completion of a given task the workers would be divided
into two new tasks, then each new task would be assigned half
of the workers. To enable modelling projects with an arbitrary
number of workers, the total number of workers was
normalized to 1. Considering these assumptions, the initial
values of people base nodes, which represent the amount of
workers assigned to each task, for the first experiment are
shown in Table II.

TABLE II
INITIAL VALUE OF PEOPLE BASE NODE FOR EACH TASK IN SIMULATION 1
Task 1 2 3 4 5 6 7 8 9 10 11 12

Initial value 1 0.5 0.5 0.5 0.5 0.25 0.25 0.5 0.5 0.5 0.5 1

 Result of this simulation, i.e. Gantt chart, is presented in
Fig. 10. The grey chart shows the original schedule, while the
black one shows the simulated schedule. The ending points of
grey (Original Task 12) and black chart (Task 12) correspond
to original and simulated project end date, respectively.

 Fig. 10 Gantt chart obtained from simulation 1

 As can be seen from this chart, the simulated schedule is
worse than planned by three days, which is caused by the
simplistic assignment of workers to tasks. Several others
simulations were performed with different initial conditions.
These conditions were chosen on the basis of the following
heuristics:
A. For A-type tasks the initial value of people base has no

significant impact on progress, and thus it can be set at a
low level.

B. For B-type tasks increasing in number of people is
justified, so the amount of assigned workers should be
maximized.

C. For C-type tasks there exists a limitation above which
increasing people base value has negative impact on task
duration, so amount of assigned workers should be high,
but not exceeding the limit.

 By applying above heuristics, the simulated schedule was
significantly improved, when compared with the results of the
first simulation. The parameters and Gantt chart that describes
the simulations with the shortest resulting schedule are
presented in Table III and Fig. 11, respectively. The improved
assignment of workers resulted in the simulated schedule that
is shorter than the original schedule.

TABLE III
INITIAL VALUE OF PEOPLE BASE NODE FOR EACH TASK IN SIMULATION 2
Task 1 2 3 4 5 6 7 8 9 10 11 12

Initial value 1 0.4 0.5 0.4 0.5 0.3 0.3 0.4 0.4 0.5 0.5 0.5

 Fig. 11 Gantt chart obtained from simulation 2

 Comparison the results of the first and the final simulation
shows that it is important to identify type of each task before
starting software project. It is also essential to recognize that
adding more people can boost only some of the tasks. We note
that based on these observations, it is possible to perform
optimization of worker assignment, which will results in
decreasing the overall length of the project. On the other hand,
neglecting these observations may lead to mismanagement of
human resources. This, in consequence, may lead to project
completion delays. To show the impact of incorrect worker
assignment decisions another experiment was performed. The
Table IV shows initial conditions that are chosen against the
presented above heuristics. Corresponding simulation, which
is presented in Fig. 12, shows the resulting one week delay of
the project.

TABLE IV
INITIAL VALUE OF PEOPLE BASE NODE FOR EACH TASK IN SIMULATION 3
Task 1 2 3 4 5 6 7 8 9 10 11 12

Initial value 1 0.2 0.2 0.2 0.8 0.4 0.4 0.8 0.8 0.8 0.8 1

 Fig. 12 Gantt chart obtained from simulation 3

V. CONCLUSIONS AND FUTURE WORK

 The paper proposes a novel parallel Fuzzy Cognitive
Maps (FCM) architecture. The architecture is suitable to
simulate dynamic systems, which include a number of sub-
systems that run in parallel, and are represented by individual
FCM models. The proposed architecture allows analysis of the
behavior of both entire system and each FCM individually.

The simulation of the proposed parallel FCM model allows for
exploratory analysis of the simulated system.

 The paper also presents successful application of the
newly proposed model to simulate scheduling of software
projects. Three individual FCMs that describe different
software task types were developed. The software project is
represented using a Gantt chart that shows relationship
between all atomic tasks that constitute the project. The
experiments that aimed to simulate the anticipated schedule
for different assignment of workers for the atomic tasks
showed that parallel FCM is a helpful tool to simulate such
complex dynamic systems. Analysis of different simulated
schedule scenarios provides valuable support that helps to
determine and minimize length of the schedule based on the
worker assignment.

REFERENCES
[1] G.D. Boetticher, "Using Machine Learning to Predict Project Effort:

Empirical Case Studies in Data-Starved Domains", Model Based
Requirements Workshop, San Diego, CA, pp. 17 – 24, 2001

[2] G.D. Boetticher, “When Will It Be Done? Machine Learners Answer
the 300-billion-dollar Question”, IEEE Intelligent Systems, pp.2-4, June
2003

[3] F.P. Brooks, JR., “The Mythical Man-Month”, Addison-Wesley, 2001
[4] J. Dickerson, and B. Kosko, “Fuzzy Virtual Worlds”, Artificial

Intelligence Expert, vol. 7, pp.25-31, 1994
[5] S. Flower, “Software Failure, Management Failure”, Wiley & Sons,

1996
[6] K. Gotoh, J. Murakami, T. Yamaguchi and Y. Yamanaka, “Application

of Fuzzy Cognitive Maps to Supporting for Plant Control”, Proc. of the
SICE Joint Symposium of Fifteenth Systems Symposium and Tenth
Knowledge Engineering Symposium, pp.99-104, 1989

[7] B. Hughes, and M. Cotterell, “Software Project Management”,
McGraw-Hill, 1999

[8] IBM, Schedule of Time and Resources for Web Design Task, available
at http://www-3.ibm.com/ibm/easy/eou_ext.nsf/Publish/599

[9] IEEE Standard for Software Project Management Plans, ANSI/IEEE
Std 1058.1-1987

[10] D. Kardaras, and G. Mentzas, “Using Fuzzy Cognitive Maps to Model
and Analyze Business Performance Assessment”, In Advances in
Industrial Engineering Applications and Practice II, J. Chen, and A.
Mital, (Eds), pp. 63-68, 1997

[11] B. Kosko, “Neural Networks and Fuzzy Systems”, Prentice-Hall, 1992.
[12] T. Ndousse, and T. Okuda, “Computational Intelligence for Distributed

Fault Management in Networks Using Fuzzy Cognitive Maps”, Proc.
of the IEEE International Conference on Communications Converging
Technologies for Tomorrow’s Application, pp.1558-1562, 1996

[13] C.E. Pelaez, and J.B. Bowles. “Applying Fuzzy Cognitive Maps
Knowledge Representation to Failure Modes Effects Analysis”, Proc.
of the IEEE Annual Symposium on Reliability and Maintainability,
pp.450-456, 1995

[14] W. Stach, and L. Kurgan, “Modeling Software Development Project
using Fuzzy Cognitive Maps” Proc. of the 4th ASERC Workshop on
Quantitative and Soft Software Engineering (QSSE'04), pp.55-60,
Banff, AB, 2004

[15] M. Styblinski, and B. Meyer, “Signal Flow Graphs versus Fuzzy
Cognitive Maps in Application to Qualitative Circuit Analysis”,
International Journal of Man-Machine Studies, 35, pp.175-186, 1991

[16] The Standish Group, CHAOS Chronicles, Standish Group Internal
Report, 1995

[17] C. Stylios, and P. Groumpos, “The Challenge of Modeling Supervisory
Systems using Fuzzy Cognitive Maps”, Journal of Intelligent
Manufacturing, vol. 9, no. 4, pp.339-345, 1998

[18] R. Taber, “Knowledge Processing with Fuzzy Cognitive Maps”, Expert
Systems with Applications, vol. 2, pp.83-87, 1991

