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 Abstract - Fuzzy cognitive maps (FCM) are useful tool for 
simulating and analyzing dynamic systems.  The FCMs have a 
very simple structure, and thus are very easy to comprehend and 
use. Despite of the simplicity, they have been successfully adopted 
in many different areas, such as electrical engineering, medicine, 
political science, international relations, military science, history, 
supervisory systems, etc. 
 
Software development is a complex process, and there are many 
factors that influence its progress. To effectively handle larger 
development processes, they are usually divided into subtasks, 
which are assigned to different teams of workers, and often are 
performed in parallel. However, some constraints that impose 
particular sequence of realization of these subtasks, i.e. some 
tasks cannot be started before completing others, usually exist. 
Proper division of a project into subtasks and establishing 
relations between them are essential to correctly manage 
software projects. Neglecting these constraints often leads to 
problems that, in consequence, cause misestimating the overall 
time and budget. 
 
This paper introduces a new architecture of FCM, which 
combines a number of simple FCM models that work 
simultaneously into a novel parallel FCMs model. It uses a 
special purpose coordinator module to synchronize simulation of 
each FCM model.  This approach extends application of FCMs to 
complex systems, which contain multiple subtasks that run in 
parallel, and thus must be simulated with multiple FCM models. 
In addition, application of parallel FCMs to analyze and design 
software development processes is presented. FCM models are 
focused on simulating and analyzing factors, such as progress 
and communication, and their relationships, which are based on 
theoretical research studies and practical implementations. The 
parallel FCM model is used to simulate complex projects where 
multiple tasks exist. The paper is based on our previous work 
where FCM models, which describe relationships between the 
above factors for individual development tasks, were developed. 
The newly proposed architecture allows for efficient analysis of 
dependences between tasks performed in parallel. 
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I. INTRODUCTION 

 Fuzzy Cognitive Maps are a tool that is used for modeling 
and simulation of dynamic systems. The FCMs have a very 
simple structure, in terms of a graph that consists of nodes and 
directed edges, and a very simple execution model that allows 
for fast dynamic simulations. They have been applied in many 
different areas, such as disease diagnosis [18], analysis of 
electrical circuits [15], analysis of failure modes effects [13], 
fault management in distributed network environment [12], 
modeling and analysis of business performance indicators 
[10], modeling of supervisors [16], modeling of software 
development project [14], modeling of plant control [6], 
modeling of political affairs in South Africa [11], and 
modeling of virtual worlds [4]. 
 The approach using a single FCM model is suitable to 
describe various dynamic systems, as presented in the 
previous paragraph. However, some complex dynamic 
systems cannot be simply modeled with a single FCM, 
especially in case when the system consists of multiple, 
parallel processes. In order to apply FCMs theory for such 
systems, a special architecture, called parallel FCM, is 
proposed. In this architecture, multiple FCMs communicate 
with a coordinator module, which control overall simulation 
and simulation of each model according to given constraints 
and rules. 
 This paper presents application of parallel FCMs in the 
software engineering domain. Software projects are excellent 
example of a system where multiple tasks are performed 
simultaneously. Here, each task is described by a FCM model, 
which shows relationships between factors that affect progress 
of work. The design of individual FCM models is based on 
theoretical research presented in [3] and extends model 
introduced in [14]. The structure of parallel FCM allows 
executing the individual models (software tasks) in parallel, 
and in accordance with a given scenario. 
 Software project management is the “process of planning, 
organizing, staffing, monitoring, controlling and leading a 
software project” [9]. Products of software projects have some 
unique features, like invisibility, complexity and flexibility, 



which cause difficulties in managing projects in accurate 
manner [7]. There are, essentially, three project estimation 
approaches: human-based, algorithmic, and machine learner-
based [2]. However, it is commonly known fact that 
estimation of software project is very difficult. Surveys clearly 
indicate that many project failed due to lack of time [5].  The 
extent and impact of this problem is quite substantial. 
According to a survey performed by the Standish Group in 
mid 1990’s, which included over 8,000 software projects, an 
average project exceeded its planned budget by 90% and its 
schedule by 222% [16]. Also, more than 50% of the 
completed projects implemented less than 50 percent of 
original requirements [16]. 
 Origin of this phenomenon is connected with complexity 
of factors that affect progress of work during development of 
software projects. Some researchers estimate software project 
progress based on very simple machine learning models, 
which were used to find relationship between the sources lines 
of code for each of the envisioned components in the end 
product and a project programming effort [1]. This paper is 
concentrated on analyzing issues that are associated with 
communication among workers. We note that underestimating 
this factor often leads to expensive project management errors. 
The experiments performed in [14] confirmed that 
communication effort is an essential part of software projects, 
which has to be taken into consideration in order to accurately 
manage projects. 
 Software project is a collection of inter-related tasks. In 
general, there are three approaches to identifying tasks that are 
present in software project – activity-based approach, 
product-based approach, and hybrid-approach [7]. With 
respect to the start time constraints, tasks can be divided into 
two types. The first group includes tasks that can be begun 
without any starting conditions, whereas tasks belonging to the 
second group require that others have to be completed before 
they can begin (it is commonly known as precedence 
requirements). In order to properly manage a project it is 
essential to have a plan, which must include the start and 
completion times for each task [7]. 
 What adds to the complexity of the management of 
software projects is the fact that there are several different 
types of software development tasks, depending on their 
nature. Brooks lists four tasks types, i.e. perfectly partitionable 
task, unpartitionable task, partitionable task requiring 
communication, and task with complex interrelationships [3]. 
Many software project managers act on the basis of 
assumption that all tasks belong to the first category, which 
would allow them to control project progress by number of 
involved people. Unfortunately, this group of tasks practically 
does not exist in real projects. This implies that progress 
cannot be expressed just in the man-month unit of effort. The 
length of a project is connected with its sequential constraints, 
and the maximum number of workers depends on independent 
subtasks [3]. This paper extends approach described in [14] by 
introducing new FCM-based models that describe each of the 
above task types. 

 As progress of software project development goes on, it is 
important to collect and present the data about this process. 
One of the methods, which are used to track project progress, 
is the Gantt chart [7]. This is a task bar chart that indicates 
scheduled task dates and durations. Gantt chart is constructed 
with a horizontal axis that represents the total span of the 
project and a vertical one that represents the tasks that 
constitute the project. The Gantt chart also includes progress 
indicators (e.g. as shaded tasks bars) and a ‘today cursor’. All 
these items allow assessing which tasks are ahead or behind 
the schedule. 

II. FUZZY COGNITIVE MAPS MODELS  

 The paper exploits and extends a FCM model that 
consists of three concept nodes that show relationships during 
software project development [14]. However, several 
important changes, which concern both concepts 
understanding and relationships strength, were introduced. 
The new base model is shown in Fig. 1.  

 

Fig. 1 FCM describing software development project 

The nodes represent the following concepts: 
- people base (N1) – degree of exploitation of people 

involved in project with respect to the initial human 
resources, which includes both designers and 
implementers, i.e. effectiveness of their work; 

- communication (N2) – communication effort, which 
reflects effort connected with cooperation among people 
working on project; 

- progress (N3) – development abilities, which can be 
interpreted as a factor, which describes rapidity of the 
development of the project. 

 Following, the interpretation of causal relationships 
between nodes is explained. Increase in people’s effectiveness 
has positive effect on progress (+0.5 directed edge between N1 
and N3). However, it forces higher level of communication 
among workers (+0.25 directed edge between N1 and N2), 
which is critical to ensure cohesion of their work. Moreover 
this has negative impact on the progress (-0.25 directed edge 
between N2 and N3). On the other hand, increase in progress 
can have a positive impact on effectiveness through factors, 
such as motivation (+0.25 directed edge between N3 and N1). 
What is more, higher value of progress requires higher level of 
communication (+0.25 directed edge between N3 and N2). 
This, in consequence, increased progress can cause decrease in 
effectiveness of work (-0.25 directed edge between N2 and 
N1). The strength of the relationships was established in the 
following way. First, the influence of a concept on another 
between each pair of concepts was determined as “negative” 
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or “positive”. Then, these relationships were expressed in 
fuzzy terms, i.e. weak, medium, strong and very strong by 
taking into consideration the common perception of their 
strength. Finally, these terms were replaced by the numerical 
values 0.25, 0.5, 0.75 and 1, respectively. 
  In this paper, an extension of the above model is 
presented. Three models, that include the same concepts, but 
describing different types of tasks, as defined in [3], are 
proposed. Below, a brief description of each task type is 
shown along the proposed FCM model. A plot that is a result 
of the model simulation, and shows number of iterations, 
which are necessary to complete task of given complexity (it 
was arbitrarily set at 100) as a function of initial people base 
node value, is also shown.  
A. Unpartitionable task – this task cannot be partitioned 

because of sequential constraints. As a result adding more 
manpower has no effect on the schedule, see Fig. 2 and 
Fig. 3.  

 

Fig. 2 FCM model of an unpartitionable task 
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Fig. 3 Time versus number of workers - unpartitionable task 

B. Partitionable task requiring communication – this kind of 
tasks can be partitioned. However, this process requires 
communications among people and the effort of 
communication must be added to the amount of work to 
be done.  

 

Fig. 4 FCM model of a partitionable task requiring communication 

 In order to control the progress rate by number of people 
involved in it, one of the edge values of model, presented in 

Fig. 4, is parameterized. The variable x reflects the impact on 
progress by effectiveness of work. This value is fixed before 
starting simulation with an initial value of people base node. 
The model represents the situation where the more workers are 
assigned to the task the higher is the progress, but with the 
dumping effect represented by the communication node, see 
Fig. 5. 
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Fig. 5 Time versus number of workers - partitionable task requiring 

communication 

C. Task with complex interrelationships – in some cases, the 
communication effort may fully counteract the progress 
of the work when too many people are added. This 
problem occurs when each part of task must be separately 
coordinated with each other part. 

 

Fig. 6 FCM model of a task with complex interrelationships 
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Fig. 7 Time versus number of workers - task with complex relationships 

The FCM structure, see Fig. 6, is identical to the structure 
shown in Fig. 4. However, this time the modified edge value is 
given as a function of initial value of people base node. The 
function type was selected experimentally to obtain model that 
fit the behavior of this type of task.  

5.05.0)( +−−= xxf  
where x is the initial people base node value. 
 Value of this function is established prior to start the 
simulation and given as a weight of directed edge between N1 
and N3. Therefore all model weights values are fixed before 
starting simulation, and do not change during its execution. 
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III. PARALLEL FUZZY COGNITIVE MAPS 

 The paper introduces a novel parallel FCM architecture. 
The architecture coordinates multiple FCMs into a single 
model that is able to simulate and coordinate the individual 
FCM models that are executed in parallel, and produce the 
overall simulation results. The architecture is shown in Fig. 8.  

 

Fig. 8 Parallel Fuzzy Cognitive Maps – architecture of the system 

 The coordinator module is responsible for triggering 
FCMs that are included in the system, coordinating the 
individual FCMs, as well as checking when the simulation 
should stop. The I/O enables to send information between 
individual FCMs and the coordinator module. The system can 
trigger, stop, or change parameters of the individual FCMs 
through the I/O. Each individual FCM sends values of its all 
concept nodes to the coordinator module in each iteration of 
the execution. The coordinator module is able to simulate the 
parallel FCM by analyzing and coordinating current state of 
each individual FCM, and setting their initial parameters. 
 
 The execution model of the parallel FCM in given in the 
form of the following pseudo-code: 
A. Initialize the parallel FCM: 

1. Create individual FCMi, i=1, 2, …n; 
Each FCMi is initialized with predefined structure and 
weights values. Each FCMi had defined a stopping 
condition that is used to terminate its execution. 

2. Initialize the list of all individual FCMi. 
AllFCM={FCM1, FCM2, …, FCMn}; 

3. Initialize the FCM-start schedule. 
The schedule lists the start time for each FCMi in terms 
of a fixed time (iteration) or dependency on finishing 
set of preceding other individual FCMs {FCMj}, where 
each FCMj starts before FCMi, and j≠i; 

4. Initialize the list of active individual FCMi. 
ActiveFCM={}; 

B. At each iteration of the parallel FCM: 
1. Check which tasks can be started according to the 

FCM-start schedule, and add them into the 
ActiveFCM; 

2. Perform one iteration for each FCM from ActiveFCM; 
3. Check which tasks from ActiveFCM are finished and 

remove them from AllFCM; 
4. If AllFCM={} then TERMINATE, otherwise go to B.1. 

 
 Each individual FCM model is described by set of 
parameters (weights and structure) that are used by the 
coordinator module to perform the simulation. Each individual 
FCM has also defined a stopping condition that terminates its 

execution according to a predefined criterion, e.g. achieving 
stable state, max number of iterations, etc. These parameters 
are established in step A.1. The individual FCM models are 
executed in parallel according to a schedule given by the user, 
which is initialized in step A.3. 

 
 In case of the application of the parallel FCM to analysis 
of software development projects, each individual FCM 
represents a given development task. The tasks are combined 
using schedule, which is usually represented by a Gantt chart. 
The simulation of the parallel FCM model enables to analyze 
relationships between specific tasks, and their impact on the 
overall schedule. The initialization parameters are computed 
by analyzing project description and Gantt chart: 
A. Structure and weights of each individual FCMi are 

defined by selecting one of three types of FCM model, 
which are described in section II. The selection is 
performed based on the work type associated with a given 
development task. 

B. Each individual FCMi has defined a stopping criterion 
that is used to stop its simulation. This criterion is defined 
in terms of total amount of work that needs to be 
performed in the task modelled by a given FCMi. The 
value is derived from the length of the task defined in the 
Gantt chart. 

C. Schedule is derived from the Gantt chart. Each individual 
FCMi will be started either in a specified time (iteration), 
or must wait until others FCMi are completed, as given in 
the chart.  

IV. EXPERIMENTS 

 The objective of these experiments is to assess suitability 
of proposed parallel FCM structure to simulate scheduling of 
software project. The goal of the simulations is to allow 
examining the influence of different initial conditions on the 
anticipated schedule, as defined by the Gantt chart. 

Fig. 9 Original Gantt chart 

 The proposed parallel FCM tool was applied to simulate a 
real project related to schedule of time and resources in the 
web design, which is described in [8]. The guidelines for 
project and a Gantt chart, which is shown in Fig. 9, are 
borrowed from [8]. The Gantt chart describes an autonomous 

I/O 

I/O 

I/O 

FCM
1 

FCM 
2 

FCM 
n 

Coordinator 
Module 

 
- FCMs-start schedule 
- current iteration number  
- parameters for each FCMs 
- list of all FCMs 
- list of currently active 

FCMs 



part of whole project, and is used to perform experiments with 
the parallel FCM tool. 
 The descriptions of all tasks along with their duration and 
start time are specified in Table I. Comparing to the origin 
schedule, some dates were changed by considering the 
weekends as work days, whereas they were treated originally 
as holidays. 

TABLE I  
LIST OF TASKS 

Task 
number Description Duration 

(days) 
Start 
time Typea

1 Write design brief, communicate 
to staff 1 Feb 26 B 

2 Writing: first draft complete 10 Feb 27 B 
3 Writing: editorial review of draft 5 Mar 9 B 
4 Writing: final draft complete 4 Mar 14 A 

5 Define navigation and site 
structure 4 Feb 27 C 

6 Complete sketches for graphic 
elements and placement of media 3 Mar 3 C 

7 Complete sketches for interface 
design 3 Mar 3 B 

8 Review sketches and site 
structure 1 Mar 6 A 

9 Create low-fidelity prototype of 
interaction and navigation 3 Mar 7 A 

10 Test prototype with users 3 Mar 10 B 

11 Visual and media elements 
complete (first iteration) 5 Mar 13 B 

12 Create high-fidelity prototype 
including content 5 Mar 18 C 

a A – unpartitionable task 
B – partitionable task requiring communication 
C – task with complex interrelationships 

  
 The type of tasks was selected based on characteristics of 
particular tasks, which were derived from their description. 
Each task is also described by a number that expresses its 
complexity, and which represents the amount of work that has 
to be done in order to complete it. It corresponds to the 
number of days depicted on the Gantt chart. Complexity of 
each task (amount of work to complete the task) is equal to 
half of its duration expressed in days. This relationship was 
reported in [3]. 
 
 The above project was simulated using the parallel FCMs 
architecture. Each simulation considered different set of initial 
conditions, which correspond to different assignment of 
workers to particular tasks.  
 First simulation was performed by assigning workers 
without considering the task type. In this case the available 
manpower was evenly assigned to the tasks. For example, if 
upon completion of a given task the workers would be divided 
into two new tasks, then each new task would be assigned half 
of the workers. To enable modelling projects with an arbitrary 
number of workers, the total number of workers was 
normalized to 1. Considering these assumptions, the initial 
values of people base nodes, which represent the amount of 
workers assigned to each task, for the first experiment are 
shown in Table II. 
 
 

TABLE II 
INITIAL VALUE OF PEOPLE BASE NODE FOR EACH TASK IN SIMULATION 1 
Task 1 2 3 4 5 6 7 8 9 10 11 12 

Initial value 1 0.5 0.5 0.5 0.5 0.25 0.25 0.5 0.5 0.5 0.5 1 
 
 Result of this simulation, i.e. Gantt chart, is presented in  
Fig. 10. The grey chart shows the original schedule, while the 
black one shows the simulated schedule. The ending points of 
grey (Original Task 12) and black chart (Task 12) correspond 
to original and simulated project end date, respectively.   

 Fig. 10 Gantt chart obtained from simulation 1 

 As can be seen from this chart, the simulated schedule is 
worse than planned by three days, which is caused by the 
simplistic assignment of workers to tasks. Several others 
simulations were performed with different initial conditions. 
These conditions were chosen on the basis of the following 
heuristics: 
A. For A-type tasks the initial value of people base has no 

significant impact on progress, and thus it can be set at a 
low level. 

B. For B-type tasks increasing in number of people is 
justified, so the amount of assigned workers should be 
maximized. 

C. For C-type tasks there exists a limitation above which 
increasing people base value has negative impact on task 
duration, so amount of assigned workers should be high, 
but not exceeding the limit. 

 
 By applying above heuristics, the simulated schedule was 
significantly improved, when compared with the results of the 
first simulation. The parameters and Gantt chart that describes 
the simulations with the shortest resulting schedule are 
presented in Table III and  Fig. 11, respectively. The improved 
assignment of workers resulted in the simulated schedule that 
is shorter than the original schedule. 
 

TABLE III 
INITIAL VALUE OF PEOPLE BASE NODE FOR EACH TASK IN SIMULATION 2 
Task 1 2 3 4 5 6 7 8 9 10 11 12 

Initial value 1 0.4 0.5 0.4 0.5 0.3 0.3 0.4 0.4 0.5 0.5 0.5



 Fig. 11 Gantt chart obtained from simulation 2 

 Comparison the results of the first and the final simulation 
shows that it is important to identify type of each task before 
starting software project. It is also essential to recognize that 
adding more people can boost only some of the tasks. We note 
that based on these observations, it is possible to perform 
optimization of worker assignment, which will results in 
decreasing the overall length of the project. On the other hand, 
neglecting these observations may lead to mismanagement of 
human resources. This, in consequence, may lead to project 
completion delays. To show the impact of incorrect worker 
assignment decisions another experiment was performed. The  
Table IV shows initial conditions that are chosen against the 
presented above heuristics. Corresponding simulation, which 
is presented in  Fig. 12, shows the resulting one week delay of 
the project.  

TABLE IV 
INITIAL VALUE OF PEOPLE BASE NODE FOR EACH TASK IN SIMULATION 3 
Task 1 2 3 4 5 6 7 8 9 10 11 12 

Initial value 1 0.2 0.2 0.2 0.8 0.4 0.4 0.8 0.8 0.8 0.8 1 

 Fig. 12 Gantt chart obtained from simulation 3 

V. CONCLUSIONS AND FUTURE WORK 

 The paper proposes a novel parallel Fuzzy Cognitive 
Maps (FCM) architecture. The architecture is suitable to 
simulate dynamic systems, which include a number of sub-
systems that run in parallel, and are represented by individual 
FCM models. The proposed architecture allows analysis of the 
behavior of both entire system and each FCM individually. 

The simulation of the proposed parallel FCM model allows for 
exploratory analysis of the simulated system. 
 
 The paper also presents successful application of the 
newly proposed model to simulate scheduling of software 
projects. Three individual FCMs that describe different 
software task types were developed. The software project is 
represented using a Gantt chart that shows relationship 
between all atomic tasks that constitute the project. The 
experiments that aimed to simulate the anticipated schedule 
for different assignment of workers for the atomic tasks 
showed that parallel FCM is a helpful tool to simulate such 
complex dynamic systems. Analysis of different simulated 
schedule scenarios provides valuable support that helps to 
determine and minimize length of the schedule based on the 
worker assignment. 
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