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 Abstract – FCMs are aimed at modeling and simulation of 
dynamic systems. They exhibit numerous advantages, such as 
model transparency, simplicity, and adaptability to a given 
domain, to name a few. FCMs have been applied to numerous 
industrial and research areas. In some cases generic FCMs suffer 
from a certain drawback that originates from their definition 
and concerns a limited, first-order dynamics of processing 
realized at the nodes of the maps. In this study, we introduce a 
concept of higher-order memory based FCMs. The proposed 
extension modifies the simulation model of a generic FCM while 
it does not negatively impact transparency and simplicity of the 
model itself. We discuss several architectural alternatives along 
with the ensuing computing and optimization aspects. 
Preliminary experimental results included in this paper show 
superiority of the extended higher-order memory based FCMs 
over a generic FCM in terms of the modeling accuracy. 
 

I.  INTRODUCTION 

 Generally speaking, methods for modeling of dynamic 
systems can be divided into two categories [1]. The first 
category concerns quantitative methods, which can be applied 
both to well-understood systems, e.g., mathematical 
programming techniques of operations research, and to less 
well-defined systems, e.g., statistically-based methods of data 
mining. However, quantitative methods suffer from 
substantial drawbacks. First, significant effort and specialized 
knowledge outside the domain of interest is required to apply 
these techniques. Second, some dynamic systems are 
nonlinear, which may make quantitative approaches difficult 
to use. Finally, numerical data are often hard to collect or 
uncertain. The second category concerns qualitative methods, 
which are free from these limitations.  
 Fuzzy Cognitive Maps (FCMs) introduced by Kosko in 
1986 are a convenient tool for qualitative modeling [2] [3]. 
Their main advantages include very simple and 
comprehensive graph representation, which results in an 
intuitive to understand model. In addition, FCMs are very 
flexible in terms of system design and applications since they 
have comprehensible structure and operation, are adaptable to 
a given domain, and are capable of abstract representation and 
fuzzy reasoning. The areas of applications of FCMs are very 
extensive and cover engineering, medicine, political sciences, 
earth and environmental sciences, economics and 
management, etc. Examples of specific applications include 
diagnosis of diseases [4], analysis of electrical circuits [5], 

failure modes effects analysis [6], fault management in 
distributed network environment [7], modeling of software 
development project [8][9], and many others. The scope and 
span of applications demonstrate usefulness of this method 
and justify further research in this area. 
 Being a powerful approach to modeling of dynamic 
systems, Fuzzy Cognitive Maps exhibit a substantial 
weakness. Given the definition of FCMs, their dynamics is of 
the first-order, meaning that the next state depends upon the 
one in the previous iteration. We note that this property limits 
ability of FCMs to model complex systems, especially for 
those that cannot be accurately described by models in which 
current state is calculated based on the previous state only. In 
order to enhance modelling capabilities of FCMs, this paper 
proposes an extension that introduces higher-order FCMs. We 
also introduce real-coded genetic algorithm based learning 
method for the newly proposed extended FCMs. 
 This paper is organized as follows. Section II presents 
Fuzzy Cognitive Maps including methods for their 
development. In Section III we provide motivation and 
summary of the related work and introduce the proposed 
extension. Section IV presents preliminary experimental 
results including comparative study between the proposed 
extended FCMs and generic FCMs. Section V summarizes 
this paper and outlines future research directions. 
 

II.  FUZZY COGNITIVE MAPS 

A. General Overview 
 FCMs model a given dynamic system using concepts and 
cause-effects relationships, which link concepts and describe 
how they affect each other. Generally speaking, three types of 
relationships can be distinguished: positive, negative, or 
neutral. They are usually quantified using a floating-point 
value from -1 to 1 that expresses given relationship strength. 
Positive values reflect promoting (positive) effect, whereas 
negative describe inhibiting (negative) effect. The value of –1 
represents full inhibiting, +1 full promoting and 0 denotes 
neutral causal effect. All other values in this range correspond 
to different, intermediate levels of causal effect. FCMs have a 
very simple and intuitive digraph representation, which 
includes nodes connected by directed edges. The graph’s 
nodes represent concepts (events, actions, values, goals, etc.) 
relevant to a given domain and the causal relations between 
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them are depicted by directed edges. Each edge is associated 
with a weight value that reflects strength of corresponding 
relation. The graph can be equivalently expressed by a square 
matrix, called connection matrix, which stores all weights for 
the edges between corresponding concepts represented by 
corresponding rows and columns. Figure 1 shows an example 
of FCM that describes relationships that affect pace of work 
during software project development [8]. 

 

 

 C1 C2 C3 C4 C5
C1 0.5 0 1 0 0
C2 0.25 0 -0.5 0 0
C3 0 0.5 0 -0.5 -0.5
C4 0.25 0.5 0 0 0
C5 0.5 0 0 0.5 0

Fig. 1 An example of FCM (graph with corresponding connection matrix) 
There are two mainstream techniques for creation of 

FCMs [10]. The first group denoted as manual methods 
includes techniques that exploit only human knowledge. In 
this case, an expert(s) designs and implements adequate model 
manually, using pencil and paper, based on his or her 
understanding of the modeled domain. This approach suffers 
from several disadvantages. To name a few, models created 
this way are subjective and biased by experts’ insights into the 
system; it is also difficult to evaluate such models. However, 
for a long time this was the only way to develop FCMs, 
mainly because of lack of approaches for automated or semi-
automated FCMs’ development. Recently, several attempts 
have been made to provide support to this process based on 
available historical data. Methods from this group, denoted as 
computational methods, are aimed at learning FCM 
connection matrix, i.e. casual relationships (edges), and their 
strength (weights) based on historical data. In this case, the 
expert knowledge is substituted by a set of historical data and 
a computational procedure to optimize the connection matrix 
based on the data is applied. A number of algorithms for 
learning FCMs have been recently proposed. Two main 
learning paradigms are used: Hebbian learning and 
evolutionary algorithms. 

Once FCM is developed, qualitative analysis of a given 
system may be carried out by simulating the model. 
Simulation consists of computing state of the system, which is 
described by a state vector, over a number of successive 
iterations. The state vector specifies current values of all 
concepts (nodes) at a particular iteration. Initial state vector 
describes the system’s state at the beginning of simulation (at 
the zero iteration), and must be defined before simulation 
starts. Successive state vectors are determined based on the 
system’s state at preceding iteration. Value of each node is 
calculated from the values of nodes, which exert influence on 
the given node through cause-effect relationships (nodes that 
are connected to the given node). The equation (1) shows the 
formula, which is used to perform simulations of the system 
dynamics. 
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where  N is the number of concepts in a given system 
Cj(t) is the value of a given concept Cj at the iteration t 
eij  is the strength of mutual relationship that concept Ci 

exerts on concept Cj 

f is a transformation function 
The transformation function is used to reduce unbounded 

weighted sum to a certain range, which is usually set to [0, 1]. 
Several different transformation functions, which can be 
divided into discrete (e.g. taking only values 0 or 1) and 
continuous, have been used. The most commonly used 
function is sigmoid logistic function, which is described as 
follows. 

 Cxe
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=
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where  C is the parameter that determines the shape of the function  
In most practical applications of FCMs the parameter C in 

formula (2) was assumed to be 5, which provides a reasonable 
balance between a unit step function and a linear function. 
The normalization hinders quantitative analysis, yet it allows 
for comparisons between nodes. Each node can be defined as 
active (value of 1), inactive (value of 0), or active to a certain 
degree (value between 0 and 1). Thus, the concepts values 
represent the degree of their “existence” at a particular 
iteration. Different scenarios can be considered by simulating 
FCMs with different initial conditions represented by initial 
state vector. 

Simulations of FCMs lead the system to one of the three 
main groups of outcomes. The first group covers all the 
scenarios in which simulation heads to a fixed state vector 
value, which is called hidden pattern or fixed-point attractor. 
Alternatively, system may keep cycling between some fixed 
state vector values, which is known as a limit cycle. Finally, so 
called chaotic attractor may appear. This term refers to a 
simulation, in which the FCM continues to produce different 
state vector values for successive cycles. Figure 2 [11] 
illustrates sample simulation results for FCM with six 
concepts with applying logistic transformation function. 
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Fig. 2 Sample FCM simulation results 

The left hand side Figure shows simulation that results in 
the fixed point attractor, whereas the right hand side Figure 
presents the limit cycle.  

 
B. RCGA Learning Method for FCMs 

A state-of-the-art approach to learning FCMs was 
introduced by Stach et al. in 2005 [11]. It applies real-coded 
genetic algorithm (RCGA) to develop FCM from a set of 



historical data. The core of this method is a learning module, 
which exploits RCGA to find FCM structure that is capable to 
mimic a given historical data. Figure 3 shows a high-level 
diagram of this method. 
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Fig. 3 High-level diagram of the RCGA learning method  

The RCGA learning method is fully automated. Based on 
historical data it develops the FCM (called candidate FCM), 
which describes a given system. The detailed description of 
this method can be found in [11] [12]. The core element of 
this approach is a real-coded genetic algorithm (RCGA) [13]. 
Essentially, this floating-point extension to a generic genetic 
algorithm represents chromosome using a floating point 
vector. The vector’s length corresponds to a number of 
variables being optimized, which makes this approach suitable 
for problems with continuous search space.  

III.  HIGHER-ORDER FUZZY COGNITIVE MAPS 

A. Motivation 
The expression (1) that governs the dynamics of FCM 

captures only the first-order dynamics. In other words, a state 
of FCM at a particular iteration depends only on its state in a 
preceding iteration, as expressed by the following formula 

 ( )EtCtCtCtCgtC njj ),(),...,(),...,(),()1( 21=+  (3) 

where  g stands for “is a function of” 
E is the nxn connection matrix that stores all the 
relationships eij between concepts 

This imposes considerable restrictions on the range of 
dynamic systems that can be modeled using this tool. More 
precisely, an accurate generic FCM model cannot be obtained 
for systems, in which their current state depends not only on 
the immediate preceding state, but is also influenced by the 
past states. Although several generalizations of FCMs, which 
are summarized in the next subsection, were proposed in the 
literature, none of them directly addresses this issue. 

  

B. Related Work 
Several other research groups introduced extensions and 

modifications to the generic FCMs. They are summarized in 
Table I.  

TABLE I 
SUMMARY OF RELATED WORK 

Extension Reference Memory Learning 

E-FCM [14]  Applies fixed delay time 
between certain concepts Only manual 

FTCM [15]  Applies fixed delay time 
between certain concepts Only manual 

RFCM [16]  Depends only on 
immediate preceding state 

Manual and automated 
via Hebbian learning 

DRFCM [17]  Depends only on 
immediate preceding state 

Manual and automated 
via Hebbian learning 

RBFCM [18]  Depends only on 
immediate preceding state Only manual 

CNFCM [19]  Depends only on 
immediate preceding state Only manual 

DCN [20] Depends only on 
immediate preceding state Only manual 

KM [21] Depends only on 
immediate preceding state Only manual 

Our 
method This paper Considers more than one 

iteration 

Manual and automated 
via RCGA genetic 
learning 

Extended FCMs proposed in 1992 [14] introduced three 
relationship types: nonlinear, conditional, and time-delayed. 
The next extension, Fuzzy Time Cognitive Maps, introduced 
time dependencies on relationships between particular 
concepts [15]. In Random FCMs [16] [17], the model was 
defined based on a random neural network (RNN), which 
incorporated probabilities for concepts activation. In 2000 
Rule Based FCMs [18] were proposed. They combined FCMs 
with a rule based fuzzy architecture in order to enrich the 
representation of relationships. Certainty Neuron FCM 
applied a special type of transfer function to enrich generic 
FCM [19]. In Dynamic Cognitive Networks [20], weights 
between nodes were represented as functions of the 
corresponding source node values. Finally, most recent 
extension called Knowledge Maps [21] proposed four types of 
causal relations: simple cause-effect relations, time-delay 
causal relations, conditional probabilistic causal relations, and 
sequential relations, which are special kinds of time-delay 
causal relations. In short, we note that the previously proposed 
extensions targeted causal relationships representation and 
introduced the concept of time-delayed relationships between 
selected concepts. Those enhancements, however, have 
targeted fundamentally different shortcomings of FCMs when 
compared with extension proposed in this paper. This work 
presents a novel research direction, which is aimed at 
introducing higher-order memory. Moreover, most of the 
proposed extensions have not been supported by any learning 
algorithm. This means that their development was entirely 
based on expert(s) beliefs and manual development. The 
manual development of an extended FCM is more 
complicated and potentially susceptible to a human bias, since 
it requires more parameters to be established when compared 
to generic FCMs. In contrast, our extension is supported by an 



automated learning approach to establish corresponding 
models from data. Experimental evaluation of the quality of 
the proposed extension is also presented in this paper. 
Preliminary experimental results for development and 
simulation of the proposed extended FCM are performed and 
compared with the results generated by a generic FCM. 
 
C. Proposed Approach 

This paper introduces a higher-order memory extension 
into the generic FCM model, which is described as 

 







−−

−−
=+

EKtCKtC
tCtCtCtC

gtC
n

nn
j ),(),...,(...,

),1(),...,1(),(),...,(
)1(

1

11  (4)  

where  K is the parameter that determines the order of dynamics of 
FCMs 

For generic FCMs the parameter K equals 0. This general 
formula can be equivalently represented in the form 
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where  Kj is the number of historical values that are taken into 
account to calculate current value of a given concept Cj 

gj(k) is a coefficient that determines how much preceding 
values influence the current one for a given concept Ci 

Parameter K determines the number of historical values 
that are used to calculate new value of a given concept, while 
function g determines strength of the effect of the historical 
values on the current value. If we assume Kj=0 and gj(0)=1 
for each concept Cj, then the extended formula reduces to the 
generic FCM, which is described by (1). 

The experiments reported in this paper are performed with 
a few simplifications in (5). In particular, both Kj and gj(k) are 
assumed to be the same for each concept. With those 
assumptions, learning of the extended FCM requires 
establishing K additional variables during the learning 
process. Given the number of concepts and transformation 
function, the total number of variables equals N*N + K, in 
which the first part correspond to all relationships strength, 
and the second one determines set of coefficients that define 
g.  

The RCGA-based learning optimizes those parameters 
such that the developed model fits the input data. The general 
architecture of our learning method is the same as shown in 
Figure 3. The difference lies in the chromosome 
representation, which consists of N*N+K floating point 
values, limited to the range [-1, 1] for the first N*N values, 
and to [0, 1] for the last K values. RCGA parameters are given 
in section IV.B. 

IV.  EXPERIMENTS 

A comparative study between FCMs with various orders 
of memory was performed. The objective was to determine 
the differences in accuracy between modeling using the 
generic and the higher-order FCMs. 

A. Data Sets 
The dataset used in experiments concern climate and 

weather observations for Canada in 2005 and have been 
acquired from National Climate Archive [22]. Four large cities 
have been selected for our experiments, namely Edmonton, 
Montréal, Toronto, and Vancouver. Five attributes, i.e. 
temperature, dew point, relative humidity, wind speed, and 
pressure, have been chosen to describe the weather patterns. 
The data pre-processing stage included linear normalization of 
each attribute to the range [0,1] for each location. This was 
done with respect to maximum and minimum value of a given 
attribute at a given location throughout the whole year. Next, 
four subsets from the data were taken for each location. Each 
subset concerned two weeks interval in different season 
(January 8-21 – winter, April 15-28 – spring, July 8-21 – 
summer, and October 8-21 – fall). Finally, we picked up 
observations recorded every four hours, which resulted in 84 
data points per location per interval.  
 
B. Experimental Setup 
 Firstly, several initial experiments were performed to tune 
up the RCGA algorithm. Comparing to the basic parameters 
reported in [11] for RCGA learning of generic FCMs, we 
modified the fitness function to obtain faster and better 
convergence in case of learning the extended FCMs. The 
fitness function is expressed by (6) 

 ( ) ( )( ) ( ) ( )( )∑∑
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where  ( )tCn  is the value of a node n at iteration t in the input data 

( )tCn
ˆ – is the value of a node n at iteration t from 

simulation of the model 
( ) ( ) ( )1−−=∆ tCtCtC nnn  

( ) ( ) ( )1ˆˆˆ −−=∆ tCtCtC nnn  
T – is the input data length  
N – is the number of concepts 
a – normalization coefficient equals to [ ] 1)1(10 −⋅−⋅ NT  

 Other RCGA parameters, which were established 
experimentally, include recombination method (randomly 
chosen from simple and flat crossover), mutation method 
(randomly chosen from random mutation, non-uniform 
mutation, and Mühlenbein’s mutation), selection method 
(randomly chosen from roulette wheel and tournament), 
probability of recombination equal to 0.4, probability of 
mutation equal to 0.4, population size that equals 100 
chromosomes, max generation size that equals 25000, and 
max fitness value that equals 0.999. 
 Two main groups of experiments have been carried out, 
i.e. in-sample and out-of-sample. The former one concerned 
modeling task, in which the goal was to find an accurate 
model of the input data, which consisted of first 42 
observations in each case, see Figure 4 to see a sample input 
data.  
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Fig. 4 Sample input data 

The evaluation criterion is defined in the form 
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 The latter group of experiments involved adding the test 
subset (remaining 42 observations in each case). The first 
subset, training, was used to establish a model, whereas the 
test one was used for evaluation of the model accuracy on 
unseen data – again, criterion (7) was used.  
 Both of the above mentioned groups of experiments have 
been performed for FCMs with different order of memory K 
to analyze how this parameter influences modeling accuracy.  
 
C. Results 
 Close to a hundred of experiments have been performed 
to evaluate the proposed extension. Table II summarizes the 
experimental results. The reported values of each criterion are 
calculated taking averages across all four locations. Also, 
average and standard deviations are given for each 
experimental setup. The reported results can be compared to a 
baseline accuracy, which is around 43% and has been 
calculated running one experiment for each case (96 
experiments in total). In this case, however, random FCMs 
have been generated and the out-of-sample test was 
performed. The results also report time required to learn the 
FCM model using RCGA algorithm to study the impact of the 
application of the higher-order memory on the training time. 

TABLE II 
SUMMARY OF EXPERIMENTAL RESULTS 

Season Criterion K=0 K=1 K=2 K=3 K=4 K=5 
In-sample 0.108 0.108 0.105 0.104 0.095 0.088
Out-of-
sample 0.234 0.242 0.204 0.231 0.215 0.202

w
in

te
r 

Execution 
time [s] 1101 1319 1517 1709 1882 2078 

In-sample 0.086 0.082 0.079 0.076 0.080 0.074
Out-of-
sample 0.147 0.171 0.149 0.140 0.156 0.139

sp
rin

g 

Execution 
time [s] 1117 1321 1510 1714 1907 2096 

In-sample 0.070 0.067 0.071 0.070 0.068 0.067
Out-of-
sample 0.106 0.096 0.098 0.090 0.091 0.091

su
m

m
er

 

Execution 
time [s] 1108 1321 1516 1718 1890 2078 

In-sample 0.059 0.055 0.053 0.053 0.054 0.056
Out-of-
sample 0.132 0.126 0.119 0.121 0.113 0.112

fa
ll 

Execution 
time [s] 1117 1321 1521 1708 1903 2255 

In-sample 0.081 
±0.005

0.078 
±0.005 

0.077 
±0.004 

0.076 
±0.003

0.074 
±0.003

0.071
±0.001

Out-of-
sample 

0.155 
±0.027

0.159 
±0.029 

0.142 
±0.019 

0.145 
±0.024

0.144 
±0.026

0.136
±0.025av

g 

Execution 
time [s] 1111 1321 1516 1712 1895 2127 

Baseline 0.413 
±0.076

0.403 
±0.093 

0.426 
±0.101 

0.415 
±0.100

0.461 
±0.097

0.474
±0.103

 As can be seen from the table, in-sample error decreases 
with increasing the memory order – 0.081 for K=0 vs. 0.071 
for K=5 on average. The relative difference is approximately 
12.3%. The same is observed in case of the out-of-sample 
error, which decreases from 0.155 to 0.136 – approximately 
12.2% reduction of the error. At the same time the execution 
time increases, which is a result of increasing the number of 
parameters that have to be established during the learning 
process. Almost double increase of training time is observed 
when comparing execution time between K=0 and K=5.  
 Table III presents statistical significance analysis of the 
difference between the results of the higher order FCMs and 
the generic FCM. A paired t-test values have been calculated 
based on errors obtained for all 16 experiments performed 
with a given order of memory for each location and season.   

TABLE III 
STATISTICAL RESULTS COMPARISON THROUGH PAIR T-TEST S 

Test Models t-
value 

K=0 vs. K=1 1.81 
K=0 vs. K=2 1.99 
K=0 vs. K=3 1.86 
K=0 vs. K=4 2.19 In

-s
am

pl
e 

K=0 vs. K=5 2.78  

Test Models t-
value

K=0 vs. K=1 -0.55
K=0 vs. K=2 1.48
K=0 vs. K=3 1.32
K=0 vs. K=4 1.67O

ut
-o

f-
sa

m
pl

e 

K=0 vs. K=5 2.91 
 Critical t-value at 95% confidence equals 2.160 and thus 
the application of the higher order model provides statistically 
significantly more accurate model for K = 5 when compared 
with a generic FCM. 
 Figure 5 illustrates the relation between in-sample (left 
hand side) and out-of-sample (right hand side) errors 
depending on location for K = 0 through 5.  
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Fig. 5 Experimental results with respect to location 

 This view provides results that are similar to those shown 
in Table II, i.e. the error decreases with increasing of memory 
order. Considering the location dimension, in-sample errors is 
the smallest for Vancouver (0.071 on average versus 0.079 for 
Edmonton). The out-of-sample errors are the smallest for 
Edmonton, whereas the order of other cities in general is 
similar to the order for the in-sample tests. The results suggest 
that weather in the cities from the West coast may be more 
predictable than weather in the other considered cities. 



 Figure 6 shows example in-sample simulation result that 
corresponds to learning from input data given in Figure 4 for 
K=0 (plot on the left hand side), and K=5 (plot on the right 
hand side). Plots drawn as lines without markers correspond 
to simulations results, whereas plots with the circular markers 
give the input data. 

Fig. 6 Sample experimental results 
 The simulation results reveal that the generic FCMs are 
biased towards fixed point attractor or limit cycle behavior. 
This observation is consistent with an inherent property of 
generic FCMs, in which the current state depends only on the 
state at the previous iteration. This implies one of the above 
mentioned behaviors after the simulation reaches a state that 
already has been reached in one of the previous iterations. 

V.  CONCLUSIONS AND FUTURE WORK 

 In this paper, a generalized higher-order memory Fuzzy 
Cognitive Maps are proposed. While the introduced extension 
retains the key advantages of the generic FCMs, including 
their transparency, it helps capture higher-order dynamics of 
the processes to be modeled. Additionally, a fully automated 
method for development of the proposed extended FCM based 
on a genetic algorithm was proposed. Some preliminary 
experimental results demonstrate the superiority of the 
generalized version of the FCM over the generic FCM. More 
specifically, the experiments indicate that higher-order FCMs 
has led to the improved accuracy of both in-sample and out-
of-sample tests when compared with the performance of the 
generic FCM. The differences are shown to be statistically 
significant at 95% significance level. One has to note, though, 
that the improved accuracy came at a cost of longer training. 
This stems from the fact that the higher the order of FCMs is 
the more parameters need to be established.  

This paper elaborates on introducing dynamics to FCMs 
by means of higher memory-order at a global level, i.e. 
involving the entire map, which is described by equation (4). 
As an alternative research direction we plan to explore local 
dynamics described as 
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This approach considers introducing higher-order 
memory for a certain single concept, which would result in 
reducing the training time when compared with the proposed 
extension. On the other hand, this modification may results in 
a smaller improvement in accuracy. 
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