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ABSTRACT

Intrinsic disorder in proteins is relatively abundant in
nature and essential for a broad spectrum of cellu-
lar functions. While disorder can be accurately pre-
dicted from protein sequences, as it was empiri-
cally demonstrated in recent community-organized
assessments, it is rather challenging to collect and
compile a comprehensive prediction that covers
multiple disorder functions. To this end, we intro-
duce the DEPICTER2 (DisorderEd Predictlon Cen-
TER) webserver that offers convenient access to a
curated collection of fast and accurate disorder and
disorder function predictors. This server includes a
state-of-the-art disorder predictor, fIDPnn, and five
modern methods that cover all currently predictable
disorder functions: disordered linkers and protein,
peptide, DNA, RNA and lipid binding. DEPICTER2 al-
lows selection of any combination of the six meth-
ods, batch predictions of up to 25 proteins per re-
quest and provides interactive visualization of the re-
sulting predictions. The webserver is freely available
at http://biomine.cs.vcu.edu/servers/DEPICTER2/

GRAPHICAL ABSTRACT
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INTRODUCTION

Intrinsically disordered proteins (IDPs) have one or more
intrinsically disordered regions (IDRs) that lack stable ter-
tiary structure under physiological conditions (1-3). Bioin-
formatics studies estimate that IDPs and IDRs are relatively
common in nature, with 30 to 50% of eukaryotic proteins,
depending on the organism, that have at least one long IDR
with 30 or more consecutive disordered amino acids (4,5).
IDPs are involved in a variety of cellular functions (6-15),
are located across several cellular compartments (16), con-
tribute to human diseases (17,18), and are considered to be
promising drug targets (19,20). However, only several hun-
dred IDRs that are included in the DisProt database have
experimental annotations of their functions (21,22). Avail-
ability of these annotations and the fact that IDRs have
intrinsic compositional bias that makes them predictable
from sequence (23,24) motivate development of computa-
tional methods that predict disorder from the protein se-
quences. There are over 100 disorder predictors (25,26) and
over three dozen predictors of disorder functions (27-29).
Most of them rely on machine learning models that are
generated using training datasets composed of the experi-
mentally annotated IDRs (30,31). The function predictors
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address prediction of IDRs that interact with specific types
of molecular partners, such as proteins, peptides, DNA,
RNA and lipids, as well as disordered linker regions. Pre-
dictive performance of these tools was evaluated in a num-
ber of comparative assessments including the community-
driven Critical Assessment of techniques for protein Struc-
ture Prediction (CASP) experiments between CASP5 and
CASP10 (32,33) and more recently the Critical Assessment
of Intrinsic disorder (CAID) experiment (34). The CAID’s
results and subsequent follow-up studies reveal that modern
disorder predictors, particularly those that rely on deep neu-
ral networks, produce accurate results (31,34,35). Example
deep learning-based tools are fIDPnn (36), SPOT-Disorder2
(37), RawMSA (38), AUCpreD (39), IDP-Seq2Seq (40),
DeepIDP-2L (41) and DeepCLD (42).

Computational methods offer an accurate and cost-
efficient way to predict and functionally annotate IDPs and
IDRs for the millions of protein sequences that lack anno-
tations. Predictions can be obtained with webservers and
implementations that are provided and supported by the
authors and by using popular and large databases of pre-
computed disorder predictions: D*P? (43) and MobiDB
(44). While these databases conveniently provide predic-
tions for millions of proteins, they offer a rather narrow se-
lection of the disorder function predictions that covers only
protein and peptide binding. They are also limited to the
proteins that they currently include. Collecting predictions
using webservers and/or code is rather difficult. This re-
quires identifying suitable methods that cover disorder pre-
diction and desired disorder function predictions, installing
code if this option was selected, converting between multi-
ple input/output formats, working with multiple interfaces,
and assembling different predictions. There is a prototype
solution that solves this problem by integrating disorder
and disorder function predictions, the DEPICTER (Dis-
orderEd Predictlon CenTER) webserver (45). DEPICTER
incorporates prediction of disorder using SPOT-Disorder-
Single (46) and IUPred?2 (47), disordered linkers with DFL-
pred (48), nucleic acid binding with DisoR DPbind (49,50),
and protein and peptide binding with ANCHOR?2 (47) and
fMoRFpred (51). However, this resource utilizes a selec-
tion of methods that are now outperformed by more recent
solutions (SPOT-Disorder-Single, [UPred2 and fMoRF-
pred), predicts only one sequence at the time, and omits
disorder functions for which methods were developed re-
cently. To this end, we provide a new and significantly im-
proved DEPICTER?2 resource. DEPICTER?2 provides ac-
cess to a comprehensive selection of fast tools that in-
clude state-of-the-art disorder predictor, fiDPnn (36), and
five methods that cover the currently predictable disorder
functions: disordered linkers (DFLpred (48)); protein and
peptide binding IDRs (ANCHOR2 (47)); MoRFs (51),
which are short protein-binding segments that are typi-
cally located in IDRs and that undergo disorder-to-order
transitions upon binding (MoRFcyigi_Light (52)); DNA and
RNA binding IDRs (DisoRDPbind (49,50,53)); and lipid-
binding IDRs (DisoLipPred (54)). The DEPICTER?2 web-
server allows for batch predictions of up to 25 proteins, au-
tomates the entire prediction process, provides an interac-
tive visualization of the results, and delivers results in a con-
sistent format across the six tools using easy to parse files

in multiple format (comma-separable, xml and json). DE-
PICTER?2 is freely available at http://biomine.cs.vcu.edu/
servers/DEPICTER?2/.

MATERIALS AND METHODS

Predictive performance and selection of methods included in
DEPICTER2

With nearly 150 disorder and disorder function predictors
(25,27), it would be impractical to provide access to all these
tools. Thus, DEPICTER2 covers a curated collection of six
predictors, where each method targets prediction of a dif-
ferent aspect of intrinsic disorder. We select fast, recently
published and empirically shown to provide accurate pre-
dictions tools that include a predictor of disorder and five
tools that comprehensively cover the five currently predicted
disorder functions. These predictors generate two results for
each residue in the input sequence: real-values propensi-
ties and binary scores (disorder vs. structure; function vs.
no function). Correspondingly, we quantify predictive accu-
racy with two popular metrics: area under receiver operat-
ing characteristic curve (ROC-AUC) that evaluates propen-
sities and F1 for the binary predictions.

A post-CAID commentary that analyzed CAID results
concludes that ‘SPOT-Disorder2 and fIDPnn, followed by
RawMSA and AUCpreD, are consistently good. However,
fIDPnn is at least an order of magnitude faster than its com-
petitors, and it succeeded on all sequences, whereas SPOT-
Disorder2 skipped 5% of sequences as a result of a length
limitation’ (35). More precisely, ROC-AUC and F1 values
are 0.814 and 0.48 for fIDPnn and 0.760 and 0.47 for SPOT-
Disorder2, respectively (34). Consequently, DEPICTER2
applies fIDPnn, the fastest among the most accurate dis-
order predictors in the CAID experiment, to generate the
disorder predictions. To compare, the ROC-AUC and F1 in
CAID for the two methods that were used in DEPICTER
are 0.757 and 0.43 (SPOT-Disorder-Single) and 0.740 and
0.42 (IUPred2), respectively (34).

The current disorder function predictors address predic-
tions of disordered linkers and IDRs that interact with sev-
eral types of molecular partners: proteins, peptides, DNA,
RNA and lipids (27,28). DEPICTER?2 includes one predic-
tor for each of these functions, selected based on its favor-
able predictive performance from the CAID experiment if
multiple methods are available. In fact, CAID is the first
community-driven effort that evaluates predictions of bind-
ing IDRs. The top three predictors in this category are
ANCHOR?2 with ROC-AUC = 0.742 and F1 = 0.22, Dis-
oRDPbind with ROC-AUC = 0.729 and F1 = 0.21, and
MoRFcHigi Light With AUC = 0.720 and F1 = 0.21 (34).
We include these three tools in DEPICTER2. They pre-
dict disordered residues that interact with proteins and pep-
tides (ANCHOR?2), RNA and DNA (DisoRDPbind), as
well as MoRF regions (MoRFchigi Light). MORFs are short
regions that are embedded in longer IDRs that undergo
disorder-to-order transition when interacting with proteins
and peptides (55,56). To compare, the MoRF predictor that
is included in the original DEPICTER, fMoRFpred, ob-
tains ROC-AUC = 0.55 and F1 = 0.07 in the CAID ex-
periment. Moreover, we re-use the predictor of disordered
linkers, DFLpred, from DEPICTER. This tool secures
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ROC-AUC = 0.715 on a low-similarity test dataset in the
original publication (linker prediction was not included in
CAID) (48). Finally, DEPICTER?2 incorporates DisoLip-
Pred, the sole predictor of the disordered lipid-binding
residues that was released after CAID experiment was
completed. DisoLipPred obtains ROC-AUC = 0.781 and
F1 = 0.15 on a low-similarity test dataset, outperforming
other indirect ways to predict this functional type of disor-
der (54). Altogether, the six selected methods (IDPnn, AN-
CHOR?2, DisoRDPbind, MoRFchipi Light; DFLpred and
DisoLipPred) are relatively accurate and most of them, ex-
cept for DisoLipPred, are also optimized for speed. Their
predictions can be completed in approximately 15, 30 and
80 seconds for sequences with length of 100, 300 and 1000
amino acids, respectively.

RESULTS
Architecture

Figure 1 summarizes workflow of the DEPICTER2 web-
server. We use the input sequence (step 1) to generate
a comprehensive profile with several third-party methods
(step 2). The profile quantifies sequence-derived informa-
tion that is useful for the disorder and disorder function
prediction including sequence conservation, putative sec-
ondary structure, solvent accessibility and other character-
istics. This profile is shared between the six predictors that
are run individually. Each predictor relies on its own fea-
ture engineering procedure which converts a specific part
of the profile into inputs that are utilized by the predic-
tive model (step 3); details are described in their pub-
lications (36,47,48,50,52,54). We input the features into
the corresponding predictive models (step 4) that produce
predictions separately for each of the six predictors (step
5). This is a rather complex architecture, with nine third-
party programs, several vastly different feature engineer-
ing procedures, including the most sophisticated one for
fiIDPnn that generates features at amino acid, sequence
window and whole-chain levels, and seven diverse predic-
tive models. These models range from relatively simple re-
gressions (DFLpred and DisoRDPbind), scoring functions
(ANCHOR?2) and Bayesian models (MoRFcpigi Light), to
more sophisticated deep feedforward and recurrent neu-
ral networks (fIDPnn and DisoLipPred). The results in-
clude color-coded binary predictions (graphically repre-
sented as horizontal bars) and the corresponding real-
valued propensities (Figure 1). The webserver is available
at http://biomine.cs.vcu.edu/serverssyDEPICTER2/. We fo-
cus on convenience. The programs and models are run au-
tomatically by scripts on the server side. Users do not need
to install any additional software beside a web browser. The
front end is implemented in HTML and JavaScript while
the back end is based on PHP, Java, Python and MySQL
database. We offer a simple to navigate input interface and
parsable text file and graphical outputs.

Inputs and interface

We discuss the inputs and outputs of DEPICTER?2 using
results for an example human protein, Ataxin-3 (Disprot
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ID: DP00576; Uniprot ID: P54252). Ataxin-3 is a deubiq-
uitinating enzyme that cleaves ubiquitin from proteins just
before they are degraded. Ataxin-3 has a disordered C-
terminal domain (positions 174-361) (57,58) which hosts
multiple ubiquitin interacting motifs (UIM) that are essen-
tial for the deubiquitination (59,60).

Figure 2A shows the interface of DEPICTER2. A user
is asked to provide either the FASTA-formatted protein
sequence(s) or the UniProt accession(s), and (optionally)
an email address. Figure 2A shows an example submission
with the sequence of Ataxin-3. We recommend providing
the email since this is where links to the results are sent upon
completion of the prediction process; otherwise, users must
ensure that the browser window is open and active as the
prediction progresses. The input interface that allows se-
lection of any combination of the six methods and by de-
fault the faster five predictors are selected (see ‘Runtime’
section). We support batch predictions for up to 25 proteins
when fast tools are selected and limit the input to two pro-
teins when the slow DisoLipPred is included. After select-
ing the methods, predictions are launched by clicking the
‘RUN’ button. The browser redirects to the status page that
shows the current position in the server queue. To provide
fair access to users, first-come-first-serve queue is applied
with a limit of five concurrent requests per user. We also
limit the time allocated to each submission to about 15 min-
utes, which is why we constrain the number of input proteins
to 25. Once the predictions are completed, the status page
redirects to the results page.

Outputs

The results page provides links to the graphical output of
each input sequence and to download raw formatted out-
puts for each selected method that are available in several
easy to parse formats that include comma-separable text,
json and xml. The files include explanations of the included
data, which comprise of raw propensity scores, propensity
scores that are normalized to a unit interval using the min-
max normalization, and binary predictions. We store these
results on the server for at least 3 months. The graphical
format is color-coded and interactive with zoom, selection,
image download, pan, and callouts features. The interac-
tive color-coded panels (Figures 1 and 2B) are grouped
into three parts: (i) putative disorder (in pink); (ii) puta-
tive linkers (in yellow) and (iii) putative disordered binding
regions (MoRF in light red, protein-binding in dark red,
DNA-binding in blue, RNA-binding in light blue and lipid-
binding in green). Each panel displays protein-level data at
the top, which includes percentage of predicted residues and
number of predicted regions (length > 4 residues). Residue-
level predictions are displayed as propensity scores plotted
in a line graph. The binarized labels are shown above as hor-
izontal bars. Threshold values that are used to derive binary
predictions (residues with propensities > threshold are clas-
sified as disordered/functional) are marked as dashed hor-
izontal line on the line-graphs. The threshold values were
established by the authors of the methods and they are
typically calibrated to ensure near native rate of the pre-
dicted disordered/functional residues (36,47,48,50,52,54).
The range of residues in the predicted region and their
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results (panel B) for the human Ataxin-3 protein (Disprot ID: DP00576;

Uniprot ID: P54252). Panel B shows the interactive color-coded panels for predictions of disordered residues (pink), MoRF residues (light-red) and

protein-binding residues (red).

underlying propensity scores can be viewed on the mouse
hover. Each panel allows zooming into a section of the
plot, panning axes on both sides, resetting axes to original
view, and downloading it as an image in the PNG and SVG
formats.

We explain how to read the outputs using the predic-
tions for Ataxin-3 (Figure 2B). Our webserver predicts
that Ataxin-3 has 48% of disordered residues (top of the
pink panel in Figure 2B), which comes close to the na-
tive disorder content of 52.1% reported in the reference
database DisProt (Disprot ID: DP00576). DEPICTER?2
predicts four IDRs at the C-terminus (positions 193-196,
199-202, 207-340 and 349-361; pink panel in Figure 2B).
These regions coincide with the position of the native IDR
(positions 174-361) (57,58). DEPICTER? also predicts a
putative IDR at positions 49-66; however, this region has
lower values of the underlying predicted propensity scores

when compared to the regions at the C-terminus. More
broadly, putative IDRs (binary predictions) that are asso-
ciated with higher propensities are more likely to corre-
spond to correct predictions. The webserver also predicts
two protein-binding regions (positions 215-291 and 307-
355; dark red panel at the bottom of Figure 2B) that are
in good agreement with the protein-binding UIM domains
of Ataxin-3 (58,61). MoRF predictions (light-red panel in
Figure 2B) include five regions, three of which coincide
with the protein-binding regions of Ataxin-3, while the
two short regions near the N-terminus are likely spurious
predictions.

Runtime

We include a runtime analysis for the six methods in
DEPICTER?2 in the context of the size of the input
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proteins. We collect and compare their runtime using ran-
domly selected 100 proteins from the DisProt dataset that
was used in CAID (34) utilizing the same hardware and op-
erating system: Linux OS (Ubuntu v14.04.5) with 48 64-bit
Intel processors and 128 GM RAM. To accommodate for
performance variation due to a background workload, we
measure the runtime three times for each predictor with a
break in between each run, and record average of the three
replicates. To study the effect of sequence length on run-
time we sort the sequences in the ascending order by their
length into five equally sized bins. Figure 3 plots the median
runtime measured in seconds (y-axis in base 10 logarith-
mic scale) against the median sequence length (x-axis) for
each bin. Runtime of DisoLipPred is considerably higher
than that of the other five methods, by about 3 orders of
magnitude compared to ANCHOR2 and DFLpred and 2
orders of magnitude compared to MORFchi;_Light, DisoR-
DPbind and fiIDPnn. Consequently, we categorize DisoLip-
Pred as a slow method and limit the webserver input for that
method to two proteins. The five fast predictors take <30
s to produce result for an average length protein, with AN-
CHOR?2 and DFLpred completing predictions in under 1 s.
Figure 3 also reveals that the runtime increases for longer
sequences. However, the degree of the increase varies be-
tween tools. DFLpred and ANCHOR?2 are the least af-
fected by sequence length as their runtime increases 2 times
between the shortest and longest sequence bins, compared
to the DisoRDPbind that suffers the worst increase by
25 times.

SUMMARY

Despite the availability of nearly 150 intrinsic disorder and
disorder function predictors, convenient options to obtain
high-quality predictions that comprehensively cover dis-
order and a broad selection of its functions are lacking.
DEPICTER?2 webserver substantially extends its prototype
DEPICTER and offers a one-stop solution that includes
prediction of intrinsic disorder by the accurate and fast
fIDPnn along with five state-of-the-art methods that de-
liver complete coverage of the currently available disorder
function predictions: disordered linkers, MoR Fs, and disor-
dered protein-, RNA-, DNA- and lipid-interacting regions.
Ability to predict interacting regions will facilitate down-
stream efforts to utilize this knowledge for other applica-
tions, such as drug design. Recent works point to an un-
tapped value of utilizing IDPs as drug targets (19,62), for in-
stance in the context of host-pathogen interactions and for-
mation of protein assemblies and biomolecular condensates
(63,64). This will require the development of novel disorder-
specific scoring functions, following similar efforts for the
structured interactions (65), and access to a curated collec-
tion of annotations of IDP-drug interactions, with the latter
suffering a limited size.

DEPICTER?2 automatically runs the six methods on the
server-backend without the need to install any software. It
provides an easy to navigate input interface that supports
selection of any combination of methods and batch sub-
mission. The webserver generates predictions in two ways,
as a consistently formatted and easy to parse text files and
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color-coded graphical interface with interactive features
that include residue-level and protein-level results. In a nut-
shell, DEPICTER?2 is an accurate and fast platform that
provides a holistic approach for disorder and disorder func-
tion predictions. The DEPICTER2 webserver is freely avail-
able at http://biomine.cs.vcu.edu/servers/ DEPICTER?2/. We
are committed to maintaining this resource in the long term
and plan to update it periodically to incorporate newer ver-
sions of the predictors that it covers and to extend the scope
by inclusion of additional functions that will become pre-
dictable in the future. Moreover, users interested in predic-
tions for large collections of proteins should consider the
DescribePROT database (66) at http://biomine.cs.vcu.edu/
servers/DESCRIBEPROTY/. DescribePROT provides access
to pre-computed predictions from several methods included
in DEPICTER2, such as DFLpred, DisoRDPbind and
MoRFchibi, for 2.3 million proteins from 273 complete
proteomes of popular/model organisms. We plan to incor-
porate predictions of the other three methods into this re-
source in a near future.
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