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Abstract 

T he DescribePR OT database of amino acid-le v el descriptors of protein str uct ures and functions was substantially expanded since its re- 
lease in 2020. This expansion includes substantial increase in the size, scope, and quality of the underlying data, the addition of experimen- 
tal str uct ural information, the inclusion of ne w data do wnload options, and an upgraded graphical interf ace. DescribePR OT currently co v ers 
19 str uct ural and functional descriptors f or proteins in 273 reference proteomes generated b y 11 accurate and complementary predictiv e 
tools. Users can search our resource in multiple w a y s, interact with the data using the graphical interf ace, and do wnload data at various 
scales including individual proteins, entire proteomes, and whole database. The annotations in DescribePROT are useful for a broad spec- 
tr um of st udies that include in v estigations of protein str uct ure and function, de v elopment and v alidation of predictiv e tools, and to support 
efforts in understanding molecular underpinnings of diseases and de v elopment of therapeutics. DescribePROT can be freely accessed at 
http:// biomine.cs.vcu.edu/ servers/ DESCRIBEPROT/ . 
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Introduction 

With millions of protein sequences that have been collected
( 1 ), we are confronted with the great challenge of characteriz-
ing them functionally and structurally. These annotations are
done at three levels: the atomic, amino acid (AA) and whole
protein level. The notable atomic-level databases include Pro-
tein Data Bank (PDB) ( 2 ,3 ), the primary depository of ex-
perimentally solved structures, and AlphaFold DB ( 4 ), which
houses putative structures predicted with AlphaFold2 ( 5 ).
On the other end of the spectrum, the primary protein-level
database, UniProtKB, consists of two parts: 570 thousand
proteins that have undergone manual review (Swiss-Prot)
and roughly 248 million computationally annotated pro-
teins (TrEMBL) ( 6 ,7 ). The AA-level annotations, also named
as one-dimensional descriptors, bridge the gap between the
atomic and protein-level data by describing structural and
functional features of AAs that compose protein chains ( 8 ,9 ).
The structural descriptors include solvent accessibility, sec-
ondary structure, linkers, intrinsic disorder, and flexibility.
Commonly used functional descriptors cover annotations of
protein domains, catalytic residues, and residues that interact
with specific types of partners, such as proteins, peptides, nu-
cleic acids, and lipids. While these AA-level annotations can be
computed from the atomic structure files and collected from
Swiss-Prot / TrEMBL records, they cover a relatively small sub-
set of proteins in the case of PDB and a small subset of AAs
in the Swiss-Prot / TrEMBL annotated sequences. 

The AA-level descriptors can be predicted from the se-
quences using hundreds of available computational meth-
ods ( 10–20 ). However, selecting a sufficiently fast and accu-
rate collection of relevant methods is challenging, and us-
ing them in tandem is rather difficult (i.e. different websites
and software must be used, and their results have to be re-
formatted) and wasteful (i.e. different users would make the
same predictions when studying the same proteins). Some
of these issues can be mitigated with the help of predic-
tive platforms that provide integrated access to multiple pre-
dictors, such as PSIPRED workbench ( 21 ,22 ), MULTICOM
toolbox ( 23 ,24 ), DEPICTER web server ( 25 ,26 ) and Lamb-
daPP service ( 27 ,28 ). An alternative solution is offered by
three databases of the AA-level annotations: D 

2 P 

2 ( 29 ), Mo-
biDB ( 30–32 ) and DescribePROT ( 33 ). These resources pro-
vide quick and convenient access to pre-computed results gen- 
erated by multiple predictors and some experimental anno- 
tations. Both options are subject to certain trade-offs. The 
databases are limited to the proteins that they cover while the 
predictive platforms can be used for virtually any protein se- 
quence. On the other hand, these platforms require a relatively 
considerable amount of runtime to complete predictions, espe- 
cially when processing large collection of proteins, and make 
repeated predictions, while databases provide fast access to 

predictions for even larger protein sets. Among the existing 
databases, MobiDB and D 
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2 have a nearly singular focus on 

the intrinsic disorder, and the latter was last updated in 2012 

and is no longer maintained. At the point of its release in May 
2020, DescribePROT provided access to the predictions of 10 

descriptors generated by 10 predictors for a collection of 1.37 

million proteins from 83 complete proteomes of popular or- 
ganisms. Data from DescribePROT found applications in a 
broad range of contexts, including the development of new 

predictors of protein function ( 34 ,35 ), investigations of pro- 
tein functions ( 36–38 ), drug design efforts ( 39 ), and studies 
of molecular underpinnings of human diseases ( 40 ,41 ). Since 
the initial release, our resource underwent eight major updates 
that collectively expanded its coverage to 19 putative descrip- 
tors for 2.28 million proteins from 273 proteomes, incorpo- 
rated experimental data, provided new options to download 

data, and introduced an improved graphical interface. 

Database description 

DescribePROT is freely available at http://biomine.cs.vcu. 
edu/ servers/ DESCRIBEPROT/ . We provide three convenient 
ways to search our database: by UniProt accession number,
UniProt entry name, and FASTA-formatted sequence. The 
latter search generates a collection of proteins sorted by 
similarity to the input chain, which we produce using BLAST 

( 55 ,56 ). They are, by default, sorted using the E-values, but 
the protein list can be resorted using other measures, such as 
identity and coverage. Proteins on the sorted list are identified 

by their names, taxonomy IDs, and accession numbers that 
link to their UniProt records, providing helpful context for 
selecting the most relevant protein. In case the user-provided 

accession number or entry name cannot be found, we redirect 
Gr aphical abstr act 

http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/
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Table 1. Comparison of the scope of the initial release 1.0 of DescribePROT and the most recent version 2.0 

DescribePROT 1.0 DescribePROT 2.0 

Number of proteomes 83 273 
Number of proteins 1 365 946 2 276 602 
Number of predictions 7 793 698 419 21 101 037 225 
Number and list of 10 19 
predicted descriptors Structural (4): solvent accessibility, secondary 

structure, intrinsic disorder, and disordered linkers 
Structural (4): solvent accessibility, secondary 
structure, intrinsic disorder, and disordered linkers 

Functional (4): protein-binding, MoRFs, 
RNA-binding, and DNA-binding 

Functional (13): protein-binding, MoRFs, 
RNA-binding, DNA-binding; phosphorylation, 
glycosylation, ubiquitination, SUMOylation, 
acetylation, methylation, pyrrolidone carboxylic 
acid, palmitoylation and hydroxylation 

Sequence (2): sequence conservation and signal 
peptides 

Sequence (2): Sequence conservation and signal 
peptides 

Number and list of 
predictive methods 

10 11 

used ASAquick ( 42 ); DFLpred ( 43 ); DisoRDPbind ( 44 ); 
DRNApred ( 45 ); MMseqs2 ( 46 ,47 ); MoRFchiBi 
( 48 ); PSIPRED ( 21 ,22 ); SCRIBER ( 49 ); SignalP 
( 50 ); VSL2B ( 51 ) 

ASAquick ( 42 ); DFLpred ( 43 ); DisoRDPbind ( 44 ); 
DRNApred ( 45 ); flDPnn ( 52 ); MMseqs2 ( 46 ,47 ); 
MoRFchiBi ( 48 ); MusiteDeep ( 53 ,54 ); PSIPRED 

( 21 ,22 ); SCRIBER ( 49 ); SignalP ( 50 ) 
Number of 
experimental 
annotations 

0 2 244 6340 

Number and list of 
experimental 
descriptors 

0 3 

Structural (3): solvent accessibility, secondary 
structure, and intrinsic disorder 

Table 2. Summary and taxonomic classification of protein data and predictions included in DescribePROT 

Taxonomic classification 
No. of 
proteomes 

No. of 
sequences No. of AAs 

No. of 
predictions 

Eukaryotes Animalia 41 893 034 434 456 143 9 349 965 970 
Plantae 17 606 916 232 930 949 5 046 831 941 
Fungi 17 124 010 60 280 917 1 322 327 409 
Protista 17 222 477 109 609 581 2 399 560 661 

Bacteria 103 384 907 122 975 734 2 703 915 554 
Archaea 17 39 207 11 140 376 240 727 024 
Viruses 61 6051 1 729 529 37 708 666 
Total 273 2 276 602 973 123 229 21 101 037 225 

users to identify the most similar protein using the sequence 
search. DescribePROT also provides direct landing pages for 
specific proteins that are identified with the UniProt accession 

numbers, e.g. results for P04637 (p53 protein) can be fetched 

with the following direct link: http://biomine.cs.vcu.edu/ 
servers/ DESCRIBEPROT/ result _ v2.php?uniprot=P04637 . 
Table 1 summarizes major changes since the initial re- 
lease of DescribePROT, which we describe in the following 
subsections. 

Increased coverage of proteomes 

We expanded the original list of 83 proteomes to 273 

proteomes (230% increase), which we identified by using 
the ‘(proteome_type:1) AND (cpd:4)’ search in the UniProt 
database. This search outputs reference proteomes with high 

levels of completeness of their protein sets that provide broad 

coverage of the Tree of Life and include frequently sought- 
after model organisms and other proteomes of interest for 
biomedical and biotechnological research. We increased the 
original list of organisms from 56 to 92 eukaryotes, 8 to 103 

bacteria, 6 to 17 archaea, and 13 to 61 viruses, with the un- 
derlying aim to provide a more taxonomically balanced and 

inclusive coverage that encompasses all major model organ- 
isms (e.g. human, mouse, rat, zebrafish, macaque, fruit fly, 
yeast, Caenorhabditis elegans , Arabidopsis thaliana , and Es- 
c heric hia coli ) and viruses (e.g. S AR S-CoV-2, HIV, papillo- 
mavirus, influenza, Ebola, mumps, and herpes). Correspond- 
ingly, this resulted in a significant growth in the number of 
included proteins from 1.36 million to 2.28 million, and in 

the total number of AA-level predictions from 7.7 billion to 

21.1 billion. Table 2 and Figure 1 provide a more detailed 

taxonomic breakdown of these data. Figure 1 A shows that 
DescribePROT includes 16.9% bacterial proteins, 1.7% ar- 
chaeal proteins, 0.3% viral proteins and 81.1% eukaryotic 
proteins. For comparison, the fraction of eukaryotic proteins 
in the original version of DescribePROT was 96.6%. More- 
over, Figure 1 B reveals that the distribution of the proteomes 
is relatively balanced with 33.7% eukaryotes, 37.7% bacte- 
ria, 22.3% viruses and 6.3% archaea. The disproportionally 
larger number of eukaryotic proteins is due to the large sizes 
of these proteomes. 
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Figure 1. Taxonomic distribution of the proteins (panel A ) and proteomes (panel B ) in DescribePROT. 

Impro ved co verage and quality of the AA-level 
descriptors 

We carefully select tools that we use to generate putative an- 
notations in DescribePROT. They must satisfy four key char- 
acteristics: (i) relatively short runtime (up to on average 100 

s per protein), which is necessary given the large number of 
proteins; (ii) availability of a working standalone code that we 
can run locally; (iii) accurate predictions and (iv) complemen- 
tary coverage of a comprehensive set of AA-level descriptors. 
Details and justification for the selection of the initial group 

of the 10 predictors (Table 1 ) are included in the original De- 
scribePROT article ( 33 ). The new DescribePROT implements 
several key improvements by introducing a new predictor that 
generates putative annotations of several types of posttrans- 
lational modifications (PTMs), MusiteDeep ( 53 ,54 ), replacing 
the VLS2B disorder predictor ( 51 ) with a more modern and 

accurate flDPnn method ( 52 ), and improving quality of the 
sequence conservation scores generated with MMseqs2. Alto- 
gether, the current version of DescribePROT covers 19 diverse 
descriptors, which cover 4 structural, 13 functional and 2 se- 
quence characteristics (Table 1 ). The ‘Methods’ page that is 
linked at the top of the DescribePROT’s main web server page 
briefly summarizes the 11 included tools and discusses qual- 
ity of their results. We provide further details for the new and 

improved tools in the following three paragraphs. 
MusiteDeep is a fast, accurate and popular predictor of 

PTMs that satisfies the above selection criteria ( 53 ,54 ). It ap- 
plies modular design where separate hybrid deep networks 
composed of convolutional and fully connected feed-forward 

layers are used to predict different PTM types. These networks 
were trained using transfer learning and bootstrapping tech- 
niques to maximize predictive performance, achieving an av- 
erage area under the ROC curve (AUC) over different PTM 

types of 0.931 ( 53 ). As a point of reference, another popular 
tool, ModPred ( 57 ), secured an average AUC of 0.754 in the 
same test ( 53 ). MusiteDeep calculates a numeric score repre- 
senting the likelihood of a specific PTM type and assigns bi- 
nary labels (PTM site) to the corresponding amino acid types 
in the protein sequence. We use MusiteDeep to predict nine 
major types of PTMs: phosphorylation, glycosylation, ubiq- 
uitination, SUMOylation, acetylation, methylation, hydroxy- 
lation, pyrrolidone carboxylic acid and palmitoylation. 

Replacement of VSL2B with flDPnn is motivated by the 
results of a large community-run CAID (Critical Assessment 
of protein Intrinsic Disorder prediction) experiment ( 58 ). The 
flDPnn method was found to be the fastest among the most 
accurate disorder predictors in CAID ( 58 ,59 ). It secures per- 
protein runtime of 25 seconds and outperforms VSL2B by a 
wide margin, with AUCs of 0.814 versus 0.732 on the Dis- 
Prot dataset in CAID ( 58 ). This large margin of improvement 
was confirmed in a subsequent study ( 60 ). flDPnn relies on a 
deep feed-forward neural network that uses custom-designed 

inputs derived from the sequence that include sequence con- 
servation, putative secondary structure, and initial predictions 
of disorder, disordered linkers and disordered binding. It pro- 
duces a numeric propensity for intrinsic disorder and a binary 
label (disordered vs. structured) for each AA in the protein 

sequence. 
We also improved quality of the sequence conservation val- 

ues. As previously, we applied MMseqs2 ( 46 ,47 ) to gener- 
ate position specific scoring matrices (PSSMs) using the rela- 
tive entropy-based approach ( 61 ), with the background amino 

acid frequencies derived from BLOSUM62 ( 62 ). However, 
we now calculate the PSSMs using the substantially larger 
UniRef90 ( 63 ) dataset collected from the 2022_03 release of 
UniProt (151 million proteins), as compared to the reference 
proteomes dataset from the 2019_08 release that we used pre- 
viously (56 million proteins). 

Moreover, we introduce experimental annotations of the 
secondary structure, solvent accessibility, and intrinsic disor- 
der that we collected and aggregated from the source data 
in the PDB ( 2 ,3 ) (for structured proteins) and DisProt ( 64 ) 
(for intrinsically disordered proteins) databases. We rely on 

the DSSP software ( 65 ) to compute secondary structure and 

solvent accessibility from the PDB structures, normalize the 
DSSP-derived absolute solvent accessibility using the residue- 
specific factors from ref. ( 66 ) to obtain relative solvent acces- 
sibility, and apply in-house scripts to extract annotations of 
disorder from the DisProt files. Moreover, we follow the pro- 
tocol from ref. ( 67 ) to map data collected from the PDB chains 
into the corresponding UniProt sequences. This protocol maps 
multiple structures that correspond to the same protein to in- 
crease coverage. Altogether, we added 22446340 experimen- 
tal annotations for these three descriptors. 
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Figure 2. An example graphical page with data for the human p53 protein (UniProt ID: P04637). Red callouts identify key features of this page. 

Improved accessibility 

The data from DescribePROT are available to the users in 

multiple convenient and complementary formats and levels 
of aggregation, including individual protein, whole proteome, 
and the entire database. We provide the raw source data (all 
predictions and experimental annotations) in the JSON for- 
mat for each of the 273 proteomes and the entire database. 
We also introduce new protein-level aggregates of the under- 
lying 19 AA-level descriptors for each proteome in an easy- 
to-parse CSV format. These aggregates can be used to quickly 
assess and compare key structural and functional character- 
istics of individual proteins. They include helix, strand and 

coil content (% of helix, strand and coil residues); content 
of buried residues (% of amino acids that are buried in the 
structure); intrinsic disorder content; content of residues in 

linker regions; content of residues that bind RNA, DNA, pro- 
teins, and peptides; content of residues that are conserved 

and that have low conservation scores; content of the nine 
types of PTM sites; and presence of a signal peptide. The 
downloadable files are available at http://biomine.cs.vcu.edu/ 
servers/ DESCRIBEPROT/ download.html . 

We provide access to the data for individual proteins via 
an interactive graphical page (Figure 2 ). The top of the page 

includes the accession number (linked to the corresponding 
UniProt record) and links to the CSV- and JSON-formatted 

files with the raw data. This is followed by protein informa- 
tion panel that provides protein name, taxonomy identifier 
and length of the sequence. Next, we include color-coded de- 
scriptors that aggregate structural and function information at 
the protein level, providing a quick overview of key character- 
istics of the selected protein. The bottom portion of the page is 
an interactive graphical panel that gives residue-level descrip- 
tors and applies the same color schema as the upper panel. We 
summarize each descriptor with two plots that include hor- 
izontal bars that identify sequence regions and immediately 
below a line plot that visualizes numeric propensities / scores 
for each amino acid in the sequence. The regions are com- 
posed of residues with high propensity scores. We redesigned 

the original graphical panel to provide a better layout, call- 
outs that appear on mouse hover showing useful residue-level 
and sequence region-level summaries, and new interactive fea- 
tures. Users can hide / show individual plots (by clicking on 

their name in the menu on the right side), zoom in on specific 
sequence regions, produce a spike line to identify position and 

underlying values for individual amino acids, and pan (move 
horizontally) the panel. The graphical view can be saved as an 
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image in the PNG format by clicking the little camera icon in 

the menu on the right side. 
We illustrate some of the above-mentioned features using 

results for the human cellular tumor antigen p53 (UniProt 
ID: P04637) in Figure 2 . This protein is involved in sev- 
eral key cellular processes, such as apoptosis and DNA re- 
pair ( 68 ), and has multiple intrinsically disordered regions 
that interact with a large number of proteins ( 69–73 ) and 

DNA ( 74 ,75 ) partners. The top panel with protein-level sum- 
maries shows that the native / experimental disorder content 
is 38% while the prediction suggests that 47% of residues 
are disordered (green annotations in Figure 2 ). The native dis- 
ordered regions are shown using the dark green horizontal 
bars at the top of the graphical panel in the middle of Fig- 
ure 2 . The callout reveals that the disordered region at the 
N-terminus stretches between positions 1 and 93. The light 
green plots immediately below are the disorder predictions 
generated by the flDPnn method, which are in good agree- 
ment with the experimentally identified regions. The blue- and 

purple-colored annotations focus on interactions with pro- 
teins and DNA, respectively. The top panel suggests that 20% 

of residues are involved in the interactions with proteins and 

4% with DNA, which is in line with the experimental data 
( 71 ). 

Discussion 

DescribePROT improves on its previous version across all key 
aspects by enlarging size and scope, improving the quality 
of underlying data, adding experimental information, provid- 
ing new data download options, and revamping and improv- 
ing the graphical interface. Our resource currently covers 19 

structural and functional characteristics for proteins from 273 

reference proteomes, focusing on model organisms and species 
of interest for biomedical research that provide taxonomically 
balanced coverage of the Tree of Life. We also offer multiple 
ways to conveniently search, download and interact with the 
data. 

We aim to update DescribePROT quarterly. Future changes 
will primarily concentrate on further expanding the size, cov- 
erage and functionality of our resource. We plan to continu- 
ally grow the number of included proteomes and introduce 
a broader selection of experimental annotations. The latter 
will draw on collection and processing of data from a num- 
ber of relevant databases that include PhosphoSitePlus ( 76 ) 
for PTMs, InterPro ( 77 ) for protein domains and BioLip ( 78 ) 
for annotations of protein-ligand interactions. We are also ac- 
tively working on adding structural data derived from the Al- 
phaFold2 DB ( 4 ). We plan to use the putative tertiary struc- 
tures produced by AlphaFold2 to extract the secondary struc- 
ture and solvent accessibility descriptors, eventually replacing 
the currently used programs. We note that dedicated disorder 
predictors were shown to provide more accurate results than 

AlphaFold2 for the disorder predictions ( 79 ,80 ) while other 
functional and structural characteristics cannot be extracted 

from AlphaFold2 DB. A current impediment that prevents us 
from using the AlphaFold2 DB data is that they do not cover 
viral proteomes. Moreover, we are in the process of imple- 
menting Application Programming Interface (API) access to 

facilitate programmable interactions with our resource. We 
are applying for networking permissions to setup this access 
and we anticipate that this work could be completed by early 
2024. 

Data availability 

The database and all corresponding data are freely available 
at http:// biomine.cs.vcu.edu/ servers/ DESCRIBEPROT/ . 

A c kno wledg ements 

We gratefully acknowledge the contributions of the authors 
of the predictive tools that were used to develop this re- 
source, which were developed by the labs of Drs Jörg Gsponer, 
David T Jones, Andrzej Kloczkowski, Lukasz Kurgan, Henrik 

Nielsen, Johannes Söding and Dong Xu. We also thank users 
of our resource for their constructive feedback that motivated 

some of the improvements to our resource. 

Funding 

National Science Foundation [2146027, 2125218 to L.K., in 

part]; Robert J. Mattauch Endowment funds (to L.K.); Na- 
tional Institutes of Health [R35-GM126985 to D.X.]. Fund- 
ing for open access charge: National Science Foundation. 

Conflict of interest statement 

None declared. 

References 

1. Li, W. , O’Neill, K.R. , Haft, D.H. , DiCuccio, M. , Chetvernin, V. , 
Badretdin, A. , Coulouris, G. , Chitsaz, F. , Derbyshire, M.K. , 
Durkin, A.S. , et al. (2021) RefSeq: expanding the Prokaryotic 
Genome Annotation Pipeline reach with protein family model 
curation. Nucleic Acids Res. , 49 , D1020–D1028. 

2. Burley, S.K. , Bhikadiya, C. , Bi, C. , Bittrich, S. , Chen, L. , 
Crichlow, G.V. , Christie, C.H. , Dalenberg, K. , Di Costanzo, L. , 
Duarte, J.M. , et al. (2021) RCSB Protein Data Bank: powerful new 

tools for exploring 3D structures of biological macromolecules for 
basic and applied research and education in fundamental biology, 
biomedicine, biotechnology, bioengineering and energy sciences. 
Nucleic Acids Res., 49 , D437–D451.

3. Burley, S.K. , Bhikadiya, C. , Bi, C. , Bittrich, S. , Chao, H. , Chen, L. , 
Craig, P.A. , Crichlow, G.V. , Dalenberg, K. , Duarte, J.M. , et al. (2023) 
RCSB Protein Data Bank (RCSB.org): delivery of 
experimentally-determined PDB structures alongside one million 
computed structure models of proteins from artificial 
intelligence / machine learning. Nucleic Acids Res., 51 , 
D488–D508.

4. Varadi, M. , Anyango, S. , Deshpande, M. , Nair, S. , Natassia, C. , 
Yordanova, G. , Yuan, D. , Stroe, O. , Wood, G. , Laydon, A. , et al. 
(2022) AlphaFold Protein Structure Database: massively 
expanding the structural coverage of protein-sequence space with 
high-accuracy models. Nucleic Acids Res. , 50 , D439–D444. 

5. Jumper, J. , Evans, R. , Pritzel, A. , Green, T. , Figurnov, M. , 
Ronneberger, O. , Tunyasuvunakool, K. , Bates, R. , Zidek, A. , 
Potapenko, A. , et al. (2021) Highly accurate protein structure 
prediction with AlphaFold. Nature , 596 , 583–589.

6. Boutet, E. , Lieberherr, D. , Tognolli, M. , Schneider, M. , Bansal, P. , 
Bridge, A.J. , Poux, S. , Bougueleret, L. and Xenarios, I. (2016) 
UniProtKB / Swiss-Prot, the manually annotated section of the 
UniProt KnowledgeBase: how to use the entry view. Methods Mol. 
Biol., 1374 , 23–54.

7. The UniProt Consortium (2023) UniProt: the Universal Protein 
knowledgebase in 2023. Nucleic Acids Res. , 51 , D523–D531. 

8. Kurgan, L. and Disfani, F.M. (2011) Structural protein descriptors 
in 1-dimension and their sequence-based predictions. Curr. Protein 
Pept. Sci., 12 , 470–489.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkad985/7337615 by VC

U
 Libraries, Tom

pkins-M
cC

aw
 Library user on 11 D

ecem
ber 2023

http://biomine.cs.vcu.edu/servers/DESCRIBEPROT/


Nucleic Acids Research , 2023 7 

9. Rost,B. (2003) Prediction in 1D: secondary structure, membrane 
helices, and accessibility. Methods Biochem. Anal., 44 , 559–587.

10. Zhao, B. and Kurgan, L. (2021) Surveying over 100 predictors of 
intrinsic disorder in proteins. Expert Rev. Proteomics , 18 , 
1019–1029.

11. Liu, Y. , Wang, X. and Liu, B. (2019) A comprehensive review and 
comparison of existing computational methods for intrinsically 
disordered protein and region prediction. Brief. Bioinform., 20 , 
330–346.

12. Basu, S. , Kihara, D. and Kurgan, L. (2023) Computational 
prediction of disordered binding regions. Comput. Struct. 
Biotechnol. J., 21 , 1487–1497.

13. Zhang, Y. , Bao, W. , Cao, Y. , Cong, H. , Chen, B. and Chen, Y. (2022) A 

survey on protein-DNA-binding sites in computational biology. 
Brief. Funct. Genomics , 21 , 357–375.

14. Jiang, Q. , Jin, X. , Lee, S.J. and Yao, S.W. (2017) Protein secondary 
structure prediction: a survey of the state of the art. J. Mol. 
Graphics Model., 76 , 379–402.

15. Yan, J. , Friedrich, S. and Kurgan, L. (2016) A comprehensive 
comparative review of sequence-based predictors of DNA- and 
RNA-binding residues. Brief Bioinform. , 17 , 88–105. 

16. Miao, Z. and Westhof, E. (2015) A large-scale assessment of nucleic 
acids binding site prediction programs. PLoS Comput. Biol., 11 , 
e1004639.

17. Si, J. , Cui, J. , Cheng, J. and Wu, R. (2015) Computational prediction 
of RNA-binding proteins and binding sites. Int. J. Mol. Sci., 16 , 
26303–26317.

18. Oldfield, C.J. , Chen, K. and Kurgan, L. (2019) Computational 
prediction of secondary and supersecondary structures from 

protein sequences. Methods Mol. Biol. , 1958 , 73–100. 
19. Zhang, J. , Ma, Z. and Kurgan, L. (2019) Comprehensive review and 

empirical analysis of hallmarks of DNA-, RNA- and 
protein-binding residues in protein chains. Brief Bioinform , 20 , 
1250–1268.

20. Wang, K. , Hu, G. , Wu, Z. , Su, H. , Yang, J. and Kurgan, L. (2020) 
Comprehensive survey and comparative assessment of 
RNA-binding residue predictions with analysis by RNA type. Int. 
J. Mol. Sci., 21 , 6879.

21. Buchan, D.W. , Minneci, F. , Nugent, T.C. , Bryson, K. and Jones, D.T. 
(2013) Scalable web services for the PSIPRED Protein Analysis 
Workbench. Nucleic Acids Res. , 41 , W349–W357. 

22. Buchan, D.W.A. and Jones, D.T. (2019) The PSIPRED Protein 
Analysis Workbench: 20 years on. Nucleic Acids Res., 47 , 
W402–W407.

23. Hou, J. , Wu, T. , Guo, Z. , Quadir, F. and Cheng, J. (2020) The 
MULTICOM protein structure prediction server empowered by 
deep learning and contact distance prediction. Methods Mol. Biol., 
2165 , 13–26.

24. Cheng, J. , Li, J. , Wang, Z. , Eickholt, J. and Deng, X. (2012) The 
MULTICOM toolbox for protein structure prediction. BMC 

Bioinf., 13 , 65.
25. Barik, A. , Katuwawala, A. , Hanson, J. , Paliwal, K. , Zhou, Y. and 

Kurgan,L. (2020) DEPICTER: intrinsic disorder and disorder 
function prediction server. J. Mol. Biol., 432 , 3379–3387.

26. Basu, S. , Gsponer, J. and Kurgan, L. (2023) DEPICTER2: a 
comprehensive webserver for intrinsic disorder and disorder 
function prediction. Nucleic Acids Res. , 51 , W141–W147. 

27. Olenyi, T. , Marquet, C. , Heinzinger, M. , Kroger, B. , Nikolova, T. , 
Bernhofer, M. , Sandig, P. , Schutze, K. , Littmann, M. , Mirdita, M. , 
et al. (2023) LambdaPP: fast and accessible protein-specific 
phenotype predictions. Protein Sci. , 32 , e4524. 

28. Bernhofer, M. , Dallago, C. , Karl, T. , Satagopam, V. , Heinzinger, M. , 
Littmann, M. , Olenyi, T. , Qiu, J. , Schutze, K. , Yachdav, G. , et al. 
(2021) PredictProtein - predicting protein structure and function 
for 29 years. Nucleic Acids Res. , 49 , W535–W540. 

29. Oates, M.E. , Romero, P. , Ishida, T. , Ghalwash, M. , Mizianty, M.J. , 
Xue, B. , Dosztanyi, Z. , Uversky, V.N. , Obradovic, Z. , Kurgan, L. , 
et al. (2013) D(2)P(2): database of disordered protein predictions. 
Nucleic Acids Res., 41 , D508–D516.

30. Piovesan, D. , Tabaro, F. , Paladin, L. , Necci, M. , Micetic, I. , 
Camilloni, C. , Davey, N. , Dosztanyi, Z. , Meszaros, B. , Monzon, A.M. , 
et al. (2018) MobiDB 3.0: more annotations for intrinsic disorder, 
conformational diversity and interactions in proteins. Nucleic 
Acids Res., 46 , D471–D476.

31. Piovesan, D. , Necci, M. , Escobedo, N. , Monzon, A.M. , Hatos, A. , 
Micetic, I. , Quaglia, F. , Paladin, L. , Ramasamy, P. , Dosztanyi, Z. , et al. 
(2021) MobiDB: intrinsically disordered proteins in 2021. Nucleic 
Acids Res., 49 , D361–D367.

32. Piovesan, D. , Del Conte, A. , Clementel, D. , Monzon, A.M. , 
Bevilacqua, M. , Aspromonte, M.C. , Iserte, J.A. , Orti, F.E. , 
Marino-Buslje, C. and Tosatto, S.C.E. (2023) MobiDB: 10 years of 
intrinsically disordered proteins. Nucleic Acids Res., 51 , 
D438–D444.

33. Zhao, B. , Katuwawala, A. , Oldfield, C.J. , Dunker, A.K. , Faraggi, E. , 
Gsponer, J. , Kloczkowski, A. , Malhis, N. , Mirdita, M. , Obradovic, Z. , 
et al. (2021) DescribePROT: database of amino acid-level protein 
structure and function predictions. Nucleic Acids Res., 49 , 
D298–D308.

34. Zhou, T. , Rong, J. , Liu, Y. , Gong, W. and Li, C. (2022) An ensemble 
approach to predict binding hotspots in protein-RNA interactions 
based on SMOTE data balancing and Random grouping feature 
selection strategies. Bioinformatics , 38 , 2452–2458.

35. Hou, C. , Li, Y. , Wang, M. , Wu, H. and Li, T. (2022) Systematic 
prediction of degrons and E3 ubiquitin ligase binding via deep 
learning. BMC Biol., 20 , 162.

36. Cermakova, K. and Hodges, H.C. (2023) Interaction modules that 
impart specificity to disordered protein. Trends Biochem. Sci., 48 , 
477–490.

37. Zhao, B. , Katuwawala, A. , Oldfield, C.J. , Hu, G. , Wu, Z. , 
Uversky, V.N. and Kurgan, L. (2021) Intrinsic disorder in Human 
RNA-binding proteins. J. Mol. Biol., 433 , 167229.

38. Tamburrini, K.C. , Pesce, G. , Nilsson, J. , Gondelaud, F. , Kajava, A.V. , 
Berrin, J.G. and Longhi, S. (2022) Predicting protein 
conformational disorder and disordered binding sites. Methods 
Mol. Biol., 2449 , 95–147.

39. Emonts, J. and Buyel, J.F. (2023) An overview of descriptors to 
capture protein properties-tools and perspectives in the context of 
QSAR modeling. Comput. Struct. Biotechnol. J., 21 , 3234–3247.

40. Waury, K. , Willemse, E.A.J. , Vanmechelen, E. , Zetterberg, H. , 
Teunissen, C.E. and Abeln, S. (2022) Bioinformatics tools and data 
resources for assay development of fluid protein biomarkers. 
Biomark. Res., 10 , 83.

41. Mackmull, M.T. , Nagel, L. , Sesterhenn, F. , Muntel, J. , Grossbach, J. , 
Stalder, P. , Bruderer, R. , Reiter, L. , van de Berg, W.D.J. , de Souza, N. , 
et al. (2022) Global, in situ analysis of the structural proteome in 
individuals with Parkinson’s disease to identify a new class of 
biomarker. Nat. Struct. Mol. Biol., 29 , 978–989.

42. Faraggi, E. , Zhou, Y. and Kloczkowski, A. (2014) Accurate 
single-sequence prediction of solvent accessible surface area using 
local and global features. Proteins , 82 , 3170–3176.

43. Meng, F. and Kurgan, L. (2016) DFLpred: high-throughput 
prediction of disordered flexible linker regions in protein 
sequences. Bioinformatics , 32 , i341–i350.

44. Peng, Z. and Kurgan, L. (2015) High-throughput prediction of 
RNA, DNA and protein binding regions mediated by intrinsic 
disorder. Nucleic Acids Res. , 43 , e121. 

45. Yan, J. and Kurgan, L. (2017) DRNApred, fast sequence-based 
method that accurately predicts and discriminates DNA- and 
RNA-binding residues. Nucleic Acids Res. , 45 , e84. 

46. Mirdita, M. , Steinegger, M. and Soding, J. (2019) MMseqs2 desktop 
and local web server app for fast, interactive sequence searches. 
Bioinformatics , 35 , 2856–2858.

47. Steinegger, M. and Soding, J. (2017) MMseqs2 enables sensitive 
protein sequence searching for the analysis of massive data sets. 
Nat. Biotechnol., 35 , 1026–1028.

48. Malhis, N. , Jacobson, M. and Gsponer, J. (2016) MoRFchibi 
SYSTEM: software tools for the identification of MoRFs in protein 
sequences. Nucleic Acids Res. , 44 , W488–W493. 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkad985/7337615 by VC

U
 Libraries, Tom

pkins-M
cC

aw
 Library user on 11 D

ecem
ber 2023



8 Nucleic Acids Research , 2023 

49. Zhang, J. and Kurgan, L. (2019) SCRIBER: accurate and partner 
type-specific prediction of protein-binding residues from proteins 
sequences. Bioinformatics , 35 , i343–i353.

50. Teufel, F. , Almagro Armenteros, J .J . , Johansen, A.R. , Gislason, M.H. , 
Pihl, S.I. , Tsirigos, K.D. , Winther, O. , Brunak, S. , von Heijne, G. and 
Nielsen,H. (2022) SignalP 6.0 predicts all five types of signal 
peptides using protein language models. Nat. Biotechnol., 40 , 
1023–1025.

51. Peng, K. , Radivojac, P. , Vucetic, S. , Dunker, A.K. and Obradovic, Z. 
(2006) Length-dependent prediction of protein intrinsic disorder. 
BMC Bioinf., 7 , 208.

52. Hu, G. , Katuwawala, A. , Wang, K. , Wu, Z. , Ghadermarzi, S. , Gao, J. 
and Kurgan,L. (2021) flDPnn: accurate intrinsic disorder 
prediction with putative propensities of disorder functions. Nat. 
Commun., 12 , 4438.

53. Wang, D. , Liu, D. , Yuchi, J. , He, F. , Jiang, Y. , Cai, S. , Li, J. and Xu, D. 
(2020) MusiteDeep: a deep-learning based webserver for protein 
post-translational modification site prediction and visualization. 
Nucleic Acids Res., 48 , W140–W146.

54. Wang, D. , Zeng, S. , Xu, C. , Qiu, W. , Liang, Y. , Joshi, T. and Xu, D. 
(2017) MusiteDeep: a deep-learning framework for general and 
kinase-specific phosphorylation site prediction. Bioinformatics , 33 , 
3909–3916.

55. Camacho, C. , Coulouris, G. , Avagyan, V. , Ma, N. , Papadopoulos, J. , 
Bealer, K. and Madden, T.L. (2009) BLAST+: architecture and 
applications. BMC Bioinf., 10 , 421.

56. Hu, G. and Kurgan, L. (2019) Sequence similarity searching. Curr. 
Protoc. Protein. Sci., 95 , e71.

57. Pejaver, V. , Hsu, W.L. , Xin, F.X. , Dunker, A.K. , Uversky, V.N. and 
Radivojac,P. (2014) The structural and functional signatures of 
proteins that undergo multiple events of post-translational 
modification. Protein Sci., 23 , 1077–1093.

58. Necci, M. , Piovesan, D. , Predictors, C. , DisProt, C. and Tosatto, S.C.E. 
(2021) Critical assessment of protein intrinsic disorder prediction. 
Nat. Methods , 18 , 472–481.

59. Lang, B. and Babu, M.M. (2021) A community effort to bring 
structure to disorder. Nat. Methods , 18 , 454–455.

60. Zhao, B. and Kurgan, L. (2022) Deep learning in prediction of 
intrinsic disorder in proteins. Comput. Struct. Biotechnol. J., 20 , 
1286–1294.

61. Wang, K. and Samudrala, R. (2006) Incorporating background 
frequency improves entropy-based residue conservation measures. 
BMC Bioinf., 7 , 385.

62. Styczynski, M.P. , Jensen, K.L. , Rigoutsos, I. and Stephanopoulos, G. 
(2008) BLOSUM62 miscalculations improve search performance. 
Nat. Biotechnol., 26 , 274–275.

63. Suzek, B.E. , Wang, Y. , Huang, H. , McGarvey, P.B. , Wu, C.H. and 
UniProt,C. (2015) UniRef clusters: a comprehensive and scalable 
alternative for improving sequence similarity searches. 
Bioinformatics , 31 , 926–932.

64. Quaglia, F. , Meszaros, B. , Salladini, E. , Hatos, A. , Pancsa, R. , 
Chemes, L.B. , Pajkos, M. , Lazar, T. , Pena-Diaz, S. , Santos, J. , et al. 
(2022) DisProt in 2022: improved quality and accessibility of 
protein intrinsic disorder annotation. Nucleic Acids Res., 50 , 
D480–D487.

65. Kabsch, W. and Sander, C. (1983) Dictionary of protein secondary 
structure: pattern recognition of hydrogen-bonded and 
geometrical features. Biopolymers , 22 , 2577–2637.

66. T ien, M.Z. , Meyer, A.G. , Sydykova, D.K. , Spielman, S.J. and 
Wilke,C.O. (2013) Maximum allowed solvent accessibilites of 
residues in proteins. PLoS One , 8 , e80635.

67. Biro, B. , Zhao, B. and Kurgan, L. (2022) Complementarity of the 
residue-level protein function and structure predictions in human 
proteins. Comput. Struct. Biotechnol. J., 20 , 2223–2234.

68. T oufektchan,E. and T oledo,F. (2018) The Guardian of the Genome 
revisited: p53 downregulates genes required for telomere 
maintenance, DNA repair, and centromere structure. Cancers 
(Basel) , 10 , 135.

69. Ferreon, J.C. , Lee, C.W. , Arai, M. , Martinez-Yamout, M.A. , 
Dyson, H.J. and Wright, P.E. (2009) Cooperative regulation of p53 
by modulation of ternary complex formation with CBP / p300 and 
HDM2. Proc. Natl. Acad. Sci. U.S.A., 106 , 6591–6596.

70. Wells, M. , T idow, H. , Rutherford, T.J. , Markwick, P. , Jensen, M.R. , 
Mylonas, E. , Svergun, D.I. , Blackledge, M. and Fersht, A.R. (2008) 
Structure of tumor suppressor p53 and its intrinsically disordered 
N-terminal transactivation domain. Proc. Natl. Acad. Sci. U.S.A., 
105 , 5762–5767.

71. Oldfield, C.J. , Meng, J. , Yang, J.Y. , Yang, M.Q. , Uversky, V.N. and 
Dunker,A.K. (2008) Flexible nets: disorder and induced fit in the 
associations of p53 and 14-3-3 with their partners. BMC 

Genomics , 9 (Suppl. 1), S1.
72. Feng, H. , Jenkins, L.M. , Durell, S.R. , Hayashi, R. , Mazur, S.J. , 

Cherry, S. , Tropea, J.E. , Miller, M. , Wlodawer, A. , Appella, E. , et al. 
(2009) Structural basis for p300 Taz2-p53 TAD1 binding and 
modulation by phosphorylation. Structure , 17 , 202–210.

73. Mujtaba, S. , He, Y. , Zeng, L. , Yan, S. , Plotnikova, O. , , Sachchidanand, 
Sanchez, R. , Zeleznik-Le, N.J. , Ronai, Z. and Zhou, M.M. (2004) 
Structural mechanism of the bromodomain of the coactivator CBP 
in p53 transcriptional activation. Mol. Cell , 13 , 251–263.

74. Lidor Nili, E. , Field, Y. , Lubling, Y. , Widom, J. , Oren, M. and Segal, E. 
(2010) p53 binds preferentially to genomic regions with high 
DNA-encoded nucleosome occupancy. Genome Res., 20 , 
1361–1368.

75. McLure, K.G. and Lee, P .W . (1998) How p53 binds DNA as a 
tetramer. EMBO J., 17 , 3342–3350.

76. Hornbeck,P .V ., Kornhauser,J.M., Latham,V., Murray,B., 
Nandhikonda, V. , Nord, A. , Skrzypek, E. , Wheeler, T. , Zhang, B. and 
Gnad,F. (2019) 15 years of PhosphoSitePlus(R): integrating 
post-translationally modified sites, disease variants and isoforms. 
Nucleic Acids Res., 47 , D433–D441.

77. Paysan-Lafosse, T. , Blum, M. , Chuguransky, S. , Grego, T. , Pinto, B.L. , 
Salazar, G.A. , Bileschi, M.L. , Bork, P. , Bridge, A. , Colwell, L. , et al. 
(2023) InterPro in 2022. Nucleic Acids Res. , 51 , D418–D427. 

78. Zhang, C. , Zhang, X. , Freddolino, P.L. and Zhang, Y. (2023) 
BioLiP2: an updated structure database for biologically relevant 
ligand-protein interactions. Nucleic Acids Res. 
https:// doi.org/ 10.1093/ nar/ gkad630 .

79. Zhao, B. , Ghadermarzi, S. and Kurgan, L. (2023) Comparative 
evaluation of AlphaFold2 and disorder predictors for prediction of 
intrinsic disorder, disorder content and fully disordered proteins. 
Comput. Struct. Biotechnol. J., 21 , 3248–3258.

80. Wilson, C.J. , Choy, W .Y . and Karttunen,M. (2022) AlphaFold2: a 
role for disordered protein / region prediction? Int. J. Mol. Sci., 23 , 
4591.

Received: September 14, 2023. Revised: October 12, 2023. Editorial Decision: October 13, 2023. Accepted: October 16, 2023 

© The Author(s) 2023. Published by Oxford University Press on behalf of Nucleic Acids Research. 

This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License 

(http: // creativecommons.org / licenses / by-nc / 4.0 / ), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For 

commercial re-use, please contact journals.permissions@oup.com 

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkad985/7337615 by VC

U
 Libraries, Tom

pkins-M
cC

aw
 Library user on 11 D

ecem
ber 2023

https://doi.org/10.1093/nar/gkad630

	Graphical abstract
	Introduction
	Database description
	Discussion
	Data availability
	Acknowledgements
	Funding
	Conflict of interest statement
	References

