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ABSTRACT  

The sequence-based predictors of RNA-binding residues (RBRs) are trained on either structure-annotated or 
disorder-annotated binding regions. A recent study of predictors of protein-binding residues shows that they are 
plagued by high levels of cross-predictions (protein binding residues are predicted as nucleic acid binding) and 
that structure-trained predictors perform poorly for the disorder-annotated regions and vice versa. Consequently, 
we analyze a representative set of the structure and disorder trained predictors of RBRs to comprehensively 
assess quality of their predictions. Our empirical analysis that relies on a new and low-similarity benchmark 
dataset reveals that the structure-trained predictors of RBRs perform well for the structure-annotated proteins 
while the disorder-trained predictors provide accurate results for the disorder-annotated proteins. However, 
these methods work only modestly well on the opposite types of annotations, motivating the need for new 
solutions. Using an empirical approach, we design HybridRNAbind meta-model that generates accurate 
predictions and low amounts of cross-predictions when tested on data that combines structure and disorder-
annotated RBRs. We release this meta-model as a convenient webserver which is available at 
https://www.csuligroup.com/hybridRNAbind/. 

INTRODUCTION 

Protein-RNA interactions are instrumental for many cellular processes including gene expression, RNA splicing 
and regulation, protein synthesis, and post-transcriptional regulation (1-3). Misregulation of these proteins leads 
to a number of ailments including cancers, diabetes, cardiovascular and neurodegenerative diseases (3). 
Molecular-level details of protein-RNA interactions can be investigated from data in several resources, such as 
Protein Data Bank (PDB) (4) that covers atomic-level details, and BioLiP (5) and DisProt (6) that provide 
residue-level annotations. However, these details are available for only a small fraction of the RNA-binding 
proteins, motivating the need to develop accurate computational tools. 

Many methods have been developed for the prediction of RNA binding in proteins (7-13).  They can be divided 
into two categories depending on their input: structure-based vs. sequence-based. The structure-based 
predictors are constrained to proteins that have structure or for which structure can be predicted accurately. The 
sequence-based predictors in principle can be used to characterize RNA-binding in any protein sequence. The 
sequence-based methods can be further subdivided into those that make predictions at the protein-level (i.e., 
they predict whether a given protein sequence binds RNA) and residue-level (i.e., they predict RNA-binding 
amino acids in the sequence). We focus on the residue-level sequence-based predictors because they provide 
more details compared to the protein-level methods. 

Significant majority of the sequence-based predictors of RNA-binding residues (RBRs) utilizes machine learning 
models (7,8,10,13). These models are computed/parametrized on training datasets to minimize difference 
between their predictions and the ground truth. Then, the trained models can be applied to predict RNA-binding 
residues for sequences outside the training datasets. Some of these predictors also utilize template-based 
modelling where predictions are transferred from similar proteins that are in complex with RNAs (14-16). Based 
on the training datasets, the sequence-based predictors of RBRs can be divided into two categories: structure-
trained predictors vs. disorder-trained predictors. The former use training datasets where annotations of RBRs 



are extracted from structures of protein-RNA complexes, typically using the PDB and BioLiP databases. The 
latter apply training datasets where RBRs are localized in the intrinsically disordered regions (IDRs), which can 
be extracted from the DisProt (6) and MobiDB (17) databases. IDRs are segments in a protein sequence that 
lack a stable three-dimensional structure under physiological conditions (18-20). They are widely observed in all 
living organisms, and especially in eukaryotes (21-26). The prevalence and importance of intrinsic disorder to 
protein-RNA interactions was documented in numerous studies (27-33). Proteins with IDRs are also challenging 
for the structure-based predictors, further justifying our focus on the sequence-based predictors. 

Using a manual literature search and past surveys (7-13), we identified a comprehensive set of 31 sequence-
based predictors of RBRs. We found 2 disorder-trained predictors and 29 structure-trained predictors, including 
9 predictors that predict both RNA-binding and DNA-binding residues. The 29 structure-trained predictors 
include (in chronological order) a method by Jeong et al. (34), BindN (35), a method by Jeong and Miyano (36), 
RNABindR  (37), PRINTR (38), RISP (39), Pprint (40), RNAProB (41), BindN+ (42), NAPS (43), PiRaNhA (44), 
ProteRNA (45), RBRpred (46), PRNA (47), PRBR (48), a method by Choi and Han (49), RNABindRPlus (16), 
aaRNA (50), SNBRFinder (15), a method by Ren and Shen (51), PRIdictor (52), RNAProSite (53), DRNApred 
(54), PredRBR (55), NucBind (56), ProNA2020 (57), NCBRPred (58), and MTDsite (59). The disorder-trained 
predictors are DisoRDPbind (60-62) and DeepDISObind (63). They simultaneously predict RNA, DNA and 
protein binding residues. Their relatively low number compared to the structure-trained methods can be 
explained by a sparsity of the annotations of RBRs in IDRs. DisProt, the sole source of these annotations, has 
included them only in recent years (64). Interestingly, a recent study demonstrates that structure-trained 
predictors of protein binding residues perform poorly for the disorder-annotated proteins while the disorder-
trained predictors of protein binding residues provide inaccurate predictions for the structure-annotated proteins 
(65). To our knowledge, a similar study that analyzes this problem for the sequence-based predictors of RBRs 
was not yet undertaken. 

Our analysis of the 31 structure- and disorder-trained predictors reveals that none of them uses both structure- 
and disorder-annotated proteins in their training process. This suggests that the current predictors may provide 
poor results for the other type of annotations. Moreover, these predictors are always evaluated on their own type 
of annotations, i.e., the structure-trained predictors were not assessed on the disorder-annotated proteins and 
vice versa. Furthermore, recent studies identify and discuss a cross-predictions problem, where residues 
interacting with a given partner type are cross-predicted as interacting with a different partner type, essentially 
leading to partner-agnostic predictions (54,56,58,65-67). The cross-prediction in our scenario means that the 
residues that interact with the non-RNA partners (e.g., proteins and/or DNA) are predicted as RBRs. The cross-
predictions can be attributed to the fact that predictors are typically developed with training datasets consisting 
solely of the RNA-binding proteins, with little or no representations of proteins that interact with the non-RNA 
partners. While a few recent predictors, such as NCBRPred, DRNApred and DisoRDPbind, were designed to 
reduce the amount of cross-predictions, recent literature suggests that this is a substantial challenge for the 
current predictors of RBRs (56,58). 

To address these unresolved issues, we empirically evaluate a representative collection of disorder and 
structure-trained predictors on a new and low-similarity benchmark dataset that covers structure- and 
disordered-annotated proteins that interact with RNA and non-RNA partners. We measure and compare 
predictive performance, including the cross-predictions, on the whole test dataset and separately on the 
structure-annotated and disorder-annotated proteins. Moreover, inspired by the results of this empirical 
evaluation, we design, comparatively assess and release a new HybridRNAbind meta-predictor that combines 
results produced by the best disorder and structure-trained predictors to generate accurate predictions across 
all proteins. 

MATERIAL AND METHODS 

Selection of predictors 

We consider a comprehensive set of disorder and structure-trained predictors that are published, available to 
the end users, and relatively fast. More specifically, we choose predictors that satisfy the following criteria: i) 
generate predictions from a protein sequence; ii) were available as webservers and/or source code as of 
September 2021 when we collected their predictions; iii) produce predictions for an average length sequence in 
<30 minutes; and iv) generate outputs that include binary predictions (RBR vs. non-RBR) and real-valued 
propensities (likelihood that are given residue binds RNA). Screening the 31 predictors with these criteria 
resulted in selection of eight methods including six structure-trained predictors: Pprint (40), BindN+ (42), 



DRNApred (54), ProNA2020 (57), NCBRPred (58), and MTDsite (59); and two disorder-trained predictors: 
DisoRDPbind (60) and DeepDISObind (63). These eight tools cover multiple predictors published in the last two 
years (since 2020) and both disorder-trained methods, arguably representing state-of-the-art in this area. They 
apply a broad spectrum of predictive models and inputs. They include several relatively simple early tools, such 
as Pprint (2008) that applies support vector machine model and evolutionary information; BindN+ (2010) that 
similarly uses support vector machine and evolutionary information while adding inputs that quantify 
hydrophobicity, pKa and molecular mass/volume; DisoRDPbind (2015) that utilizes logistic regression with an 
extended set of inputs that include empirically selected physiochemical characteristics of amino acids and 
putative disorder and secondary structure; and DRNApred (2017) that relies on a two-layer logistic regression 
model and further extends inputs that cover evolutionary information, empirically selected physiochemical 
characteristics of amino acids, and putative disorder, secondary structure and disorder. The design of the 
newest methods focuses on applying more sophisticated predictive models. ProNA2020 (2020) uses a model 
that combines support vector machine, ProtVec neural network and homology-based prediction. NCBRPred 
(2021) and MTDsite (2021) apply deep neural networks with bidirectional recurrent units where the former 
includes a multi-label layer while the latter uses a multi-task layer to address predictions for multiple ligand 
types. Finally, DeepDISObind (2022) utilizes a hybrid deep neural network with convolutional and feed-forward 
units and a multi-task layer. We also note that the six structure-trained predictors rely on the training datasets 
that were extracted solely from PDB while the training datasets of the disorder-trained predictors were collected 
exclusively from DisProt (Supplementary Table S1). 

Benchmark dataset 

We develop a new benchmark dataset with the aim to satisfy several key characteristics: i) it must include a 
balanced amount of proteins with the structure-annotated and disorder-annotated RBRs; ii) contains a large 
number of residues that interact with non-RNA binding partners in order to evaluate cross-predictions; iii) shares 
low sequence similarity with the training datasets of the selected predictors; and iv) has a similar rate of binding 
residues (RBRs and non-RNA binding residues) among structure-annotated vs. disorder-annotated proteins. 
These characteristics ensure that we can reliably compare results from the structure-trained vs. disorder-trained 
predictors across the structure-annotated and disorder-annotated proteins, and that the methods are assessed 
fairly since the benchmark proteins share the same low similarity against their training data. With these criteria 
in mind, we first collect the structure-annotated proteins using PDB as the source database and BioLiP as the 
means to identify interacting residues. We focus on good-quality structures (i.e., crystal structures with 
resolution < 3Å) in complex with RNA and other ligands and we map them into the full protein sequences from 
the UniProt (68) with SIFTS (69). This allows us to collect the most complete information where binding 
annotations for a given protein are extracted across all relevant PDB structures. We extract the disorder-based 
annotations of binding residues using DisProt and the procedure introduced in CAID (70). Finally, we collect the 
training datasets of the eight selected predictors: Pprint, BindN+, DRNApred, NCBRPred, ProNA2020, MTDsite, 
DisoRDPbind, and DeepDISOBind. We summarize these training datasets in Supplementary Table S1. We 
cluster the combined set of the training, structure-annotated and disorder-annotated proteins using the NCBI’s 
BLASTclust with similarity <30% (71). To ensure that proteins used for evaluation share <30% with the training 
proteins, we develop the benchmark/test dataset using proteins from the clusters that do not include training 
proteins. As a result, for the smaller set of the disorder-annotated proteins, we obtain 25 RNA binding proteins 
and 195 proteins with other IDRs that do not include RBRs but may interact with other partners. We match this 
selection of the disorder-annotated proteins by selecting at random 25 structure-annotated RNA binding proteins 
and 195 structure-annotated proteins without RBRs. Consequently, the benchmark/test dataset consists of 440 
proteins (220 disorder-annotated and 220 structure-annotated) with 175,278 residues that include 15% of 
binding residues. Detailed breakdown of the test dataset is summarized in Table 1. The dataset, including 
annotations of binding residues, is available at https://www.csuligroup.com/hybridRNAbind/. We use this 
benchmark dataset to evaluate predictive performance of the eight selected predictors and a new meta-predictor 
that we develop in this study. The meta predictor combines predictions generated from selected well-performing 
methods. It relies on a machine learning model that we train using the training datasets from these three 
methods. We note that these training datasets share low similarity to the test dataset, based on the above data 
collection procedure. 



Table 1. Summary of the test dataset. 

Annotation type 
Number of proteins Number of residues 
All RNA binding Non-RNA binding RNA binding Binding other ligands All 

Structure  220 25 195 1,105(3%) 4,520(12%) 36,740(15%) 
Disorder  220 25 195 3,011(2%) 184,56(13%) 138,538(15%) 
All proteins 440 50 390 4,116(2%) 228,76(13%) 175,278(15%) 

Evaluation criteria 

We use a broad range of metrics to offer a multifaceted analysis of predictive performance. The sequence-
based predictors of RBRs output binary predictions (RBR vs non-RBR) and real-valued propensities that 
quantify likelihood that a given residue interacts with RNA. The binary predictions are typically derived from 
propensities using a threshold, i.e., residues with propensities ≥ threshold are denoted as RBRs, and otherwise 
they are labeled as non-RBRs. Inspired by the evaluations performed in several related studies 
(8,13,56,65,66,72), we assess the binary predictions using: 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ൌ 𝑇𝑁/ሺ𝐹𝑃  𝑇𝑁ሻ       (1) 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ൌ  𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 ሺ𝑇𝑃𝑅ሻ ൌ 𝑇𝑃/ሺ𝑇𝑃  𝐹𝑁ሻ    (2) 

𝑚𝑎𝑥𝐹ଵ ൌ 𝑚𝑎𝑥ሾ𝐹1 ൌ ሺ2𝑇𝑃ሻ/ሺ2𝑇𝑃  𝐹𝑁  𝐹𝑃ሻሿ     (3) 

where TP (true positive) and TN (true negative) are the numbers of residues that are correctly predicted as 
RBRs and non-RBRs, respectively; FP (false positive) is the number of non-RBRs incorrectly predicted RBRs; 
FN (false negative) is the number of RBRs incorrectly identified as non-RBRs; and where 𝑚𝑎𝑥𝐹ଵ is the maximal 
value 𝐹ଵ computed over all thresholds 𝑖. Moreover, we further analyze the FPs to differentiate between residues 
that bind other types of ligands, which leads to the cross-predictions, and residues that do not bind ligands, 
which leads to over-predictions. Correspondingly, we use two metrics that were utilized in similar studies to 
quantify the rate of the cross-predictions and over-predictions (56,58,65,67): 

𝑐𝑟𝑜𝑠𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 ሺ𝐶𝑃𝑅ሻ ൌ 𝐹𝑃ை/𝑁ை                                                                  (4) 

𝑜𝑣𝑒𝑟 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 ሺ𝑂𝑃𝑅ሻ ൌ 𝐹𝑃/𝑁                                                                 (5) 

where 𝑁ை is the number of residues interacting with other partners (i.e., proteins and DNA);  𝐹𝑃ை is the number 
of residues interacting with other partners that are incorrectly predicted as RBRs; 𝑁 is the number of residues 
that do not interact with ligands; and 𝐹𝑃 is the number of residues that do not interact with ligands that are 
incorrectly predicted as RBRs. 

We standardize the rate of binary predictions across the considered predictors to facilitate side-by-side 
comparisons. To do that, we set the thresholds that are used to derive the binary predictions to equalize either 
the sensitivity (TPR) or the specificity. We use several thresholds to offer multiple points of comparison by fixing 
TPR to 0.5 and 0.7, and by fixing specificity to 0.9 and 0.95, i.e., all methods are compared using binary 
predictions that correspond to the same TPR or specificity. 

We assess the propensities with the Area Under receiver operating characteristic Curve (AUC), the Area under 
Cross-Prediction Curve (AUCPC) and the Area under Over-Prediction Curve (AUOPC), which were used in 
related studies concerning predictions of RBRs and protein-binding residues (58,65,67,73). The ROC curve 
plots TPRs against FPRs = FP/ (FP+TN) that are computed with the thresholds that equal to unique values of 
propensities generated by a given predictor. The cross-prediction curve plots CPRs against TPRs and the over-
prediction curve plots the OPRs against TPRs, which are computed using the same set of thresholds. The 
resulting AUCPC value evaluates whether residues interacting with non-RNA partners are predicted as RBRs 
while AUOPC assesses whether the non-interacting residues are predicted to bind RNA. Higher values of AUC 
indicate higher quality of predictions while lower values of AUCPC and AUOPC mean that the corresponding 
predictors generate fewer cross-predictions and over-predictions, respectively.  

We compute one more metric that accommodates for the imbalanced nature of the test dataset where only ~2% 
of residues interact with RNA. AULC quantifies the area under of ROC curve for low FPR values that are ≤ the 
native rate of the RBRs. This is the left-most part of the ROC curve where the amount of predictions of RBRs 
does not exceed the true rate of RBRs. Since AULC values are relatively small, we divide them by the AULC of 
a random predictor. AULCratio ≤ 1 when a given predictor is equivalent or worse than a random prediction, 
while AULCratio values >1 denote the rate by which a given method is better than random. 



Finally, we measure statistical significance of differences between results produced by different predictors. This 
analysis aims to investigate whether improvements would hold over a wide range of different datasets. To do 
that, we randomly select 50% of the test proteins and repeat that 10 times, creating 10 substantially different 
datasets. Next, we measure performance on each of the 10 datasets and compare the resulting vectors across 
different predictors. If the measured values of performance are normal, as tested using the Kolmogorov-Smirnov 
test at the 0.05 p-value, we use the t-test to quantify significance of differences; otherwise, we apply the 
Wilcoxon rank-sum test. 

RESULTS 

Predictive performance of the current sequence-based predictors of RBRs 

We compare predictive performance of the selected eight sequence-based predictors that include the two 
disorder-trained methods (DisoRDPbind and DeepDISOBind) and six structure-trained methods (Pprint, BindN+, 
DRNApred, NCBRPred, ProNA2020 and MTDsite) on the whole test dataset and on the subsets of the 
structure- and disorder-annotated proteins. 

Results on the test set, which are shown at the bottom of Table 2, suggest that the predictive performance is 
relatively modest, i.e., the AUC values <0.70. DeepDISObind secures the highest AUC = 0.69 while NCBRPred 
scores the highest AULCratio = 8.50. The latter suggests that NCBRPred is the best option when predicting with 
low FPR values, outperforming a random predictor by the 850%. The corresponding ROC curves, shown in 
Supplementary Figure S1A, indeed show that NCBRPred’s curve is the best for FPR<0.15. Moreover, analysis 
of statistical significance (details are described in Section 2.3) shows that AUC of DeepDISObind is statistically 
higher that AUCs of all other current methods (p-value < 0.01), however, its AULCratio is significantly lower than 
the NCBRPred’s AULCratio (p-value < 0.01). The binary metrics are similar to the results based on the 
threshold-free AUC, with NCBRPred, Pprint and DeepDISObind obtaining the highest values of sensitivity (at a 
given fixed specificity), specificity (as a given fixed sensitivity), and maxF1. Consistent with the AULCratio 
values, NCBRPred provides the highest sensitivity at the high specificity = 0.95 and 0.90, which correspond to 
FPR = 0.05 and 0.10, respectively.  

Interestingly, results on the structure-annotated and the disorder-annotated proteins are very different compared 
to the results on the entire test dataset. Table 2 reveals that DeepDISObind that obtains the highest AUC on the 
entire dataset (AUC=0.69), secures accurate results on the disorder-annotated proteins (AUC=0.72) while 
performing rather poorly on the structure-annotated proteins (AUC=0.64). At the same time, the method with the 
best AUC on the structure-annotated proteins, MTDsite (AUC=0.76), produces much worse results for the 
disorder-annotated proteins (AUC=0.60). Supplementary Figures S1D and S1G show ROC curves for the eight 
predictors on the structure-annotated and the disorder-annotated proteins, respectively. Using Table 2 and 
these figures, we find that only the structure-trained predictors provide accurate results for the structure-
annotated proteins, i.e., the methods that secure AUC>0.70 and AULCratio>8.0 for these proteins are all 
structure-trained (Pprint, NCBRPred and MTDsite). Similarly, only a disorder-trained predictor performs well on 
the disorder-annotated proteins, with DeepDISObind being the only tool that secures AUC>0.70 and 
AULCratio>5.0 and all structure-trained predictors having AUC<0.64 and AULCratio<4.0. Analysis of statistical 
significance shows that values of AUC, AULCratio and maxF1 of the best structure-trained MTDsite are 
statistically better than the values of these metrics for both disorder-trained predictors on the structure-
annotated proteins (p-value < 0.01). Similarly, AUC, AULCratio and maxF1 values of the best disorder-trained 
DeepDISObind are statistically better when compared to all structure-trained methods on the disorder-annotated 
proteins (p-value < 0.01).  



Table 2. Predictive performance of the eight selected sequence-based predictors of RBRs and the meta-predictor, HybridRNAbind, on the test dataset 
and the two subsets of the dataset that cover the structure-annotated and the disorder-annotated test proteins. The predictor with the highest AUC for 
each protein set is identified with the bold font. Results of the statistical significance test are shown next to the reported values using the “x/y” format 
where x represent comparison against the current method with the best AUC (i.e., MTDsite for the structure-annotated proteins, and DeepDISOBind for 
the disorder-annotated proteins and the complete test set) and y represent comparison against HybridRNAbind; +/=/- means that the best current 
predictor or HybridRNAbind is significantly better/not different/significantly worse than another method at p-value<0.01. 

Dataset Predictor type Predictor AUC AULCratio 
TPR at Specificity at 

maxF1 Specificity = 0.90 Specificity = 0.95 TPR = 0.5 TPR = 0.7 

Structure-
annotated 
proteins 

Structure-trained 
predictors 

Pprint 0.739+/+ 8.401+/+ 0.415+/+ 0.296+/+ 0.847+/+ 0.637+/+ 0.204+/+ 
BindN+ 0.477+/+ 0.034+/+ 0.067+/+ 0.040+/+ 0.469+/+ 0.292+/+ 0.058+/+ 
DRNApred 0.489+/+ 3.677+/+ 0.126+/+ 0.090+/+ 0.450+/+ 0.242+/+ 0.084+/+ 
NCBRPred 0.718+/+ 20.488-/- 0.507-/- 0.434-/- 0.905-/- 0.581+/+ 0.366-/- 
ProNA2020 0.622+/+ 15.600-/+ 0.360+/+ 0.360-/+ 0.553+/+ 0.439+/+ 0.296-/+ 
MTDsite 0.762 /= 10.047 /+ 0.421 /+ 0.304 /+ 0.854 /= 0.680 /- 0.220 /+ 

Disorder-trained 
predictors 

DisoRDPbind 0.681+/+ 3.522+/+ 0.276+/+ 0.163+/+ 0.735+/+ 0.540+/+ 0.123+/+ 
DeepDISObind 0.637+/+ 5.584+/+ 0.199+/+ 0.127+/+ 0.689+/+ 0.479+/+ 0.124+/+ 

Meta predictor HybridRNAbind 0.756=/ 19.809-/ 0.453-/ 0.394-/ 0.854=/ 0.597+/ 0.360-/ 

Disorder-
annotated 
proteins 

Structure-trained 
predictors 

Pprint 0.608+/+ 3.954+/+ 0.220+/+ 0.133+/+ 0.665+/+ 0.436+/+ 0.083+/+ 
BindN+ 0.500+/+ 0.026+/+ 0.090+/+ 0.045+/+ 0.507+/+ 0.303+/+ 0.042+/+ 
DRNApred 0.595+/+ 2.696+/+ 0.152+/+ 0.092+/+ 0.616+/+ 0.443+/+ 0.058+/+ 
NCBRPred 0.634+/+ 3.268+/+ 0.199+/+ 0.116+/+ 0.708+/+ 0.627-/+ 0.072+/+ 
ProNA2020 0.452+/+ 1.260+/+ 0.113+/+ 0.086+/+ 0.432+/+ 0.243+/+ 0.056+/+ 
MTDsite 0.600+/+ 3.332+/+ 0.216+/+ 0.129+/+ 0.651+/+ 0.419+/+ 0.079+/+ 

Disorder-trained 
predictors 

DisoRDPbind 0.558+/+ 2.593+/+ 0.153+/+ 0.076+/+ 0.545+/+ 0.347+/+ 0.057+/+ 
DeepDISObind 0.716 /+ 5.266 /- 0.275 /= 0.175 /= 0.768 /= 0.611 /+ 0.102 /= 

Meta predictor HybridRNAbind 0.724-/ 5.028+/ 0.276=/ 0.171=/ 0.769=/ 0.653-/ 0.102=/ 

All  
proteins 

Structure-trained 
predictors 

Pprint 0.643+/+ 5.331+/+ 0.272-/+ 0.172-/+ 0.719+/+ 0.442+/+ 0.109-/+ 
BindN+ 0.494+/+ 0.032+/+ 0.085+/+ 0.044+/+ 0.496+/+ 0.301+/+ 0.046+/+ 
DRNApred 0.567+/+ 2.916+/+ 0.145+/+ 0.092+/+ 0.586+/+ 0.394+/+ 0.062+/+ 
NCBRPred 0.656+/+ 8.503-/+ 0.286-/+ 0.199-/+ 0.738=/+ 0.617-/+ 0.132-/+ 
ProNA2020 0.500+/+ 4.519+/+ 0.179+/+ 0.160+/+ 0.491+/+ 0.294+/+ 0.099+/+ 
MTDsite 0.643+/+ 5.591+/+ 0.270-/+ 0.177-/+ 0.719+/+ 0.495+/+ 0.112-/+ 

Disorder-trained 
predictors 

DisoRDPbind 0.591+/+ 2.830+/+ 0.186+/+ 0.103+/+ 0.609+/+ 0.401+/+ 0.072+/+ 
DeepDISObind 0.691 /+ 5.629 /+ 0.254 /+ 0.165 /+ 0.740 /+ 0.577 /+ 0.103 /+ 

Meta predictor HybridRNAbind 0.733-/ 9.545-/ 0.328-/ 0.237-/ 0.788-/ 0.673-/ 0.150-/ 



Additionally, we evaluate these methods on a subset of the 50 RNA-binding proteins from the test dataset. This 
is in line with previous studies that typically consider datasets composed solely of RNA-binding proteins 
(7,10,12,40,42,58), which consequently feature higher rates of RBRs. The results on the RNA-binding proteins, 
which are summarized in Supplementary Table S2, point to similar conclusions as the results on the full test 
dataset. More specifically, the best result on the combined set of disorder- and structure-annotated RNA binding 
proteins is generated by DeepDISObind that secures AUC = 0.77. While the best result for the subset of the 25 
disorder-annotated RNA binding proteins is secured by the disorder-trained DeepDISObind (AUC = 0.83), this 
method performs poorly on the 25 structure-annotated RNA binding proteins (AUC = 0.606). On the other hand, 
the structure-trained predictors that are inaccurate for the disorder-annotated RNA binding proteins (their AUCs 
range between 0.50 and 0.68), generate high-quality results for the structure-annotated proteins, with 
ProNA2020 obtaining the highest AUC = 0.75. The corresponding ROC curves are in Supplementary Figures 
S2A (for all RNA binding proteins), S2B (for the structure-annotated RNA binding proteins), and S2C (for the 
disorder-annotated RNA binding proteins).We focus on the false positives, which we divide into the cross-
predictions (residues that bind other ligands, such as proteins and DNA, predicted as RBRs) and over-
predictions (non-binding residues predicted as RBRs). Table 3 summarizes the corresponding AUCPCs and 
AUOPCs where higher values indicate larger amounts of cross- and over-predictions, respectively, and values 
around 0.5 correspond to a near random predictive performance. There are only three methods that obtain 
AUCPC values < 0.4 on the test dataset, including Pprint, NCBRPred and DisoRDPbind. Black bars in Fig. 1 
provide further insights by computing ratios of the TPR to CPR. The ratios of around 1 suggest that a given 
method predicts RBRs among the residues that bind other ligands at rates that are similar to the rates for the 
native RBRs, essentially indiscriminately predicting all binding residues. Ratios > 1 quantify the rate at which the 
correct predictions of RBRs improve over the CPRs. We find that several methods, such as DRNApred, BindN+, 
and DeepDISObind, are close to being ligand-agnostic predictors of all binding residues when tested on the test 
dataset.  

Next, we analyze the results for the structure-annotated vs. disorder-annotated proteins. Black bars in 
Supplementary Figures S3A and S3B show TPR to CPR ratios for the structure-annotated and disorder-
annotated proteins, respectively. They reveal that DRNApred and BindN+ provide indiscriminate predictions of 
all binding residues for the structure-annotated proteins (ratios<1.5), while methods that are capable of 
selectively predicting RBRs for the disorder-annotated proteins (ratios>1.5) include DisoRDPbind, 
DeepDISObind and Pprint. Furthermore, Table 3 demonstrates that Pprint, NCBRPred, MTDsite, DisoRDPbind 
and DeepDISObind have reasonably low AUCPC values (<0.34) for the structure-annotated proteins. However, 
only DisoRDPbind has AUCPC<0.4 for the disorder-annotated proteins, which makes it the sole method that 
provides low levels of cross-predictions across both structure- and disorder-annotated proteins. This reveals a 
substantial weakness of the other current tools. 

Table 3. Comparative assessment of the cross-predictions and the over-predictions of the eight selected 
sequence-based predictors of RBRs and the meta-predictor, HybridRNAbind, on the test dataset and the two 
subsets of the dataset that cover the structure-annotated and the disorder-annotated test proteins. The best 
results for each column are identified with the bold font. Results of the statistical significance test are shown 
next to the reported values using the “x/y” format where x represent comparison against the current method with 
the best AUC (i.e., MTDsite for the structure-annotated proteins, and DeepDISOBind for the disorder-annotated 
proteins and the complete test set) and y represent comparison against HybridRNAbind; +/=/- means that the 
best current predictor or HybridRNAbind is significantly better/not different/significantly worse than another 
method at p-value<0.01. 

Predictor type Predictor 
Structure annotated proteins Disorder annotated proteins All proteins 
AUCPC AUOPC AUCPC AUOPC AUCPC AUOPC 

Structure-
trained 

Pprint 0.319-/+ 0.253+/+ 0.417-/+ 0.387+/+ 0.388-/+ 0.351+/+ 

BindN+ 0.484+/+ 0.528+/+ 0.470+/+ 0.504+/+ 0.474+/+ 0.510+/+ 

DRNApred 0.552+/+ 0.552+/+ 0.418=/+ 0.402+/+ 0.449+/+ 0.429+/+ 

NCBRPred 0.325-/+ 0.276+/+ 0.406-/= 0.359+/+ 0.385-/+ 0.336+/+ 

ProNA2020 0.457+/+ 0.367+/+ 0.627+/+ 0.534+/+ 0.579+/+ 0.486+/+ 

MTDsite 0.333 /+ 0.225 /- 0.466+/+ 0.389+/+ 0.429+/+ 0.345+/+ 

Disorder-
trained 

DisoRDPbind 0.338=/+ 0.316+/+ 0.364-/- 0.453+/+ 0.355-/- 0.416+/+ 

DeepDISObind 0.333=/+ 0.367+/+ 0.422 /+ 0.259 /= 0.419 /+ 0.292 /+ 

Meta HybridRNAbind 0.263-/ 0.242+/ 0.403-/ 0.256=/ 0.368-/ 0.252-/ 

 



Table 3, which measures over-predictions with AUOPC, shows that they are better/lower than the cross-
predictions for the methods that make accurate predictions of RBRs in the first place. DeepDISObind secures 
the best AUOPC<0.3 on the test dataset, with AUOPC=0.26 for the disorder-annotated proteins and a much 
higher AUOPC=0.37 for the structure-annotated proteins, again showing substantially better results for the 
proteins for which this model was trained. Similarly, the best structure-trained predictors, such as MTDsite, 
Pprint and NCBRPred, secure AUOPC<0.28 for the structure-annotated proteins, coupled with a substantially 
worse AUOPCs ranging between 0.36 to 0.39 for the disorder-annotated proteins. We find similar observations 
using the TRP to OPR ratios that are summarized using gray bars in Figure 1 for the test dataset, and in 
Supplementary Figures S3A and S3B for the structure- and disorder-annotated proteins, respectively. The 
methods that secure the best ratios on the test dataset include NCBRPred, MTDsite, DeepDISObind, and 
Pprint. More interestingly, the best ratios for the structure-annotated proteins are secured by the structure-
trained methods (ProNA2020, NCBRPred, MTDsite and Pprint), while by far the best result for the disorder-
annotated proteins is obtained by the disorder-trained DeepDISObind. 

 

Figure 1. Analysis of the cross-predictions and over-predictions based on TPR/CPR and TPR/OPR ratios 
measured on the test dataset. The predictions rely on thresholds where the specificity = 0.95. Predictors are sorted 
by their TPR/CPR values. Results for the disorder- and the structure-annotated proteins are in Supplementary 
Figure S2. 

To summarize, we observe modest levels of predictive performance on the test dataset. This can be explained 
by the dichotomy of the current methods that provide accurate results only for the proteins on which they were 
trained. More specifically, the best disorder-trained method (DeepDISObind) secures relatively strong results on 
the disorder-annotated proteins, but performs rather poorly for the structure-annotated proteins. On the other 
hand, the best structure-trained models (Pprint, NCBRPred and MTDsite) generate accurate results for the 
structure-annotated proteins while making inaccurate predictions for the disorder-annotated proteins. This 
agrees with recent results that show a similar pattern for the prediction of the protein-binding residues (65). We 
also observe relatively high levels of the cross-predictions, where some of the methods seem to indiscriminately 
predict all binding residues. 

Residue-level analysis of the best disorder-trained and structure-trained predictors of RBRs 

We investigate whether the pattern of structure-trained methods making accurate predictions solely for the 
structure-annotated proteins and disorder-trained predictors performing well for the disorder-annotated proteins 
extends across various amino acid types. We compute AUC values for predictions made by the accurate 
disorder-trained DeepDISObind for each of the 20 amino acid types, separately for the structure-annotated and 
disorder-annotated proteins. We similarly calculate the 20 AUC values for the averaged predictions produced by 
the three accurate structure-trained models, Pprint, NCBRPred and MTDsite, on both protein sets. Table 4 
compares these results. We find that the disorder-trained predictions are more accurate than the structure-
trained predictions across all amino acid types when tested on the disorder-annotated proteins (bold font in the 
last two columns in Table 4). Similarly, the structure-trained predictions outperform the disorder-trained 
predictions for virtually all amino acid types when evaluated on the structure-annotated proteins (bold font in the 
third and fourth columns in Table 4); the only exception is Tryptophan (W) for which both disorder and structure 
trained predictions are modestly accurate. Altogether, this analysis suggests that the pattern is universal across 
different residue types.  



Table 4. Comparative analysis of AUC scores produced by the accurate structure-trained and disorder-trained 
predictions of RBRs for each of the 20 amino acid types in the structure-annotated vs. disorder-annotated test 
proteins. The structure-trained predictions are computed as the average of the normalized results produced by 
the three accurate methods: Pprint, NCBRPred and MTDsite. The disorder-trained predictions are produced by 
the accurate DeepDISObind method. The amino acids are sorted based on their propensity for RNA binding that 
was estimated from the structure-annotated data, which is listed in the second column. The third column lists 
propensity for intrinsic disorder based on the TOP-IDP scale. Bold font identifies amino acids for which AUC is 
higher when comparing structure-trained vs. disordered trained predictions for a given protein set. 

Amino 
acid type 

Propensity for 
RNA binding for 

structure-
annotated data 

Propensity for 
disorder (TOP-

IDP scale) 

Structure-annotated test proteins Disorder-annotated test proteins 

Structure-trained 
predictions 

Disorder-trained 
predictions 

Structure-trained 
predictions 

Disorder-trained 
predictions 

R 1.33 0.180 0.747 0.623 0.679 0.706 
M 0.55 -0.397 0.795 0.724 0.677 0.762 
H 0.54 0.303 0.853 0.602 0.570 0.698 
K 0.51 0.586 0.750 0.648 0.690 0.730 
F 0.41 -0.697 0.809 0.576 0.542 0.713 
Y 0.33 -0.510 0.798 0.649 0.616 0.762 
W 0.30 -0.884 0.599 0.668 0.596 0.662 
C 0.17 0.020 0.921 0.571 0.576 0.671 
I 0.11 -0.486 0.740 0.665 0.582 0.756 
V 0.06 -0.121 0.780 0.740 0.530 0.661 
G 0.04 0.166 0.811 0.664 0.594 0.730 
N -0.10 0.007 0.758 0.560 0.641 0.774 
T -0.10 0.059 0.801 0.635 0.588 0.717 
S -0.14 0.341 0.828 0.572 0.649 0.740 
Q -0.17 0.318 0.821 0.549 0.636 0.683 
L -0.18 -0.326 0.817 0.662 0.555 0.697 
A -0.25 0.060 0.833 0.680 0.553 0.664 
P -0.26 0.987 0.725 0.639 0.614 0.703 
D -0.62 0.192 0.709 0.581 0.630 0.774 
E -0.64 0.736 0.722 0.592 0.544 0.685 

 

Interestingly, we note that the structure-trained predictions perform relatively well (AUC > 0.65) for the disorder-
annotated proteins for three amino acids types: Arginine (R), Methionine (M) and Lysine (K); we identify them 
with underscore in Table 4. Using a recently published propensity scale for RNA binding that was estimated 
using PDB data (8), and which is available in the second column in Table 4, we find that these three amino acid 
types have high propensity for RNA binding. We hypothesize that the structure-trained methods can relatively 
accurately predict these residues in the disorder-annotated proteins since some of the RNA-binding interfaces 
that are included in their structure-annotated training dataset actually include disordered regions that fold upon 
interacting with RNA. This claim is supported by a recent analysis of the PDB structures that shows that many of 
the protein-RNA interfaces are in disordered regions (74). Similarly, we observe that disorder-trained predictions 
are reasonably accurate (AUC > 0.65) for the structure-annotated proteins for seven amino acids types including 
Valine (V), Methionine (M), Alanine (A), Tryptophan (W), Isoleucine (I), Glycine (G), and Leucine (L); we 
underscore them in Table 4. Using a popular TOP-IDP propensity scale for intrinsic disorder (75), which is 
shown in the third column in Table 4, we find that they exclude amino acids types that have high propensity for 
disorder (P, E, K, S, Q, and H). This can be explained based on a premise that these seven amino acids are 
likely to be structured in the disorder-annotated training datasets, and thus the disorder-trained predictors can 
transfer this part of the model onto the structure-annotated data. Collectively, these results suggest that at least 
part of these predictive models works across the structure-annotated and disorder-annotated data, supporting 
an idea to design a meta-predictor. 

HybridRNAbind: novel meta-predictor of RBRs 

The results summarized in Tables 2 and 3 suggest that none of the current methods works well for the “other” 
type of annotations. Moreover, we find that DeepDISOBind achieves the best results for the disorder-annotated 
proteins (AUC>0.7 and AULCratio>5 in Table 2), while NCBRPred and MTDsite are the top two predictors for 
the structure-annotated proteins (AUC>0.7 and AULCratio>10 in Table 2). One potential reason why these 
methods perform well on their datasets is that they rely on the deep convolutional and/or recurrent neural 



networks that model sequence order information, in contrast to the other predictors that utilize less sophisticated 
models. This observation is supported by a recent study that empirically demonstrates that deep neural 
networks outperform other models for a related problem of sequence-based prediction of intrinsic disorder (76). 
Inspired by these observations, we investigate whether combining the best structure-trained and disorder-
trained predictors could produce a meta-predictor that works well across both types of annotations, 
consequently providing more accurate predictions on the entire test dataset. We aim to combine a small number 
of the best methods to minimize the computational footprint of the meta-predictor. 

To this end, we design a new meta-predictor, HybridRNAbind, that combines predictions of an accurate 
disorder-trained predictor (DeepDISObind) and an accurate structure-trained predictor (either NCBRPred or 
MTDsite). First, we normalize the range of propensities produced by each predictor to the unit interval using the 
min-max approach, where the threshold used to generate the binary predictions is mapped to 0.5. Based on 
Table 2, we consider two options to set the threshold, based on specificity = 0.9 and = 0.95. Next, we fuse the 
predictions from two best methods (DeepDISObind and NCBRPred vs. DeepDISObind and MTDsite) to 
generate new scores that can potentially work for both disorder- and structure-annotated proteins.  

We consider two alternatives: a simple consensus that combines predictions using heuristic rules and a 
machine learning model that is generated using training data. We formulate and compare two simple/rule-based 
consensuses: simple_average where the new score is an average of the two normalized scores; and 
merge_average where we use average of the two normalized scores if neither method predicts binding in binary 
and maximum of the two scores if at least one of the methods predicts binding in binary. The merge_average 
performs logical OR of the binary predictions of the two input methods, effectively merging the putative RBRs 
that they produce. This results in 2ൈ2ൈ2 = 8 configurations given the two types of rules (simple_average vs. 
merge_average), two pairs of input methods (DeepDISObind and NCBRPred vs. DeepDISObind and MTDsite), 
and two ways to derive binary predictions and normalization (specificity = 0.9 vs. 0.95). The machine learning 
model-based approach applies three popular algorithms to produce meta-models using training datasets of the 
input predictors: DeepDISObind, NCBRPred and MTDsite. NCBRPred and MTDsite use the same training 
dataset (Supplementary Table S1), which we combine with the training dataset of DeepDISObind. We apply a 
simple logistic regression that implements a weighted average of the predictions and two more advanced 
algorithms: Random Forest (77) and XGBoost (78). We did not utilize more complex algorithms since the 
number of inputs features (i.e., predictions) is low. We parametrize Random Forest and XGBoost by performing 
a grid search based on the 3-fold cross-validation (at the protein level) on the training dataset; logistic 
regression does not need parametrization. For Random Forest, we consider number of trees = {15, 20, 50, 75, 
100, 200} and max tree depth = {3, 4, 5, 6, 7}. For XGBoost we try number of trees = {15, 20, 50, 75, 100, 200}, 
max tree depth = {3, 4, 5, 6, 7} and learning rate = {0.1, 0.3}. We select parameters that produce the best AUC 
on the 3-fold cross-validation and in case of a tie we pick parameters that produce the smallest model. The 
selected parameters for Random Forest include number of trees = 15 and max depth = 5 when combining 
DeepDISObind and MTDsite, and number of trees = 100 and max depth = 4 when combining DeepDISObind 
and NCBRPred. For XGBoost, number of trees = 50, max depth = 3 and learning rate = 0.1 for the meta-
predictor that ensembles DeepDISObind and MTDsite, and number of trees = 20, max depth = 3 and learning 
rate = 0.3 for DeepDISObind and NCBRPred. Supplementary Table S3 compares quality of predictions 
produced by the resulting meta-predictors including the simple/heuristic approaches and the three machine 
learning models. We find that combining DeepDISObind with NCBRPred generates higher predictive quality 
(higher AUCs and AULCratios) when compared with using DeepDISObind with MTDsite. For the heuristic meta-
models, use of the higher specificity-based threshold slightly reduces over-predictions and, as expected, the 
merge_average generates more putative RBRs compared to the simple_average, as evidenced by higher 
AULCratios. XGBoost and Random Forest produce models that offer similar levels of predictive performance, 
with Random Forest having a small edge when evaluated on the dataset that includes both disorder- and 
structure-annotated proteins (AUC = 0.733 vs. 0.730 and AULCratio = 9.55 vs. 9.46). Both of these models are 
better than the simpler logistic regression (AUC = 0.728 and AULCratio = 9.37). The Random Forest model is 
also modestly more accurate than the best heuristic meta-model (AUC = 0.729 and AULCratio = 9.55). 
Altogether, these results suggest that the best configuration combines DeepDISObind and NCBRPred using the 
Random Forest model, which is the version that we use to implement HybridRNApred. Figure 2 shows a 
flowchart of HybridRNApred. 



 

Figure 2. Flowchart of the HybridRNApred method. 

Next, we empirically compare HybridRNApred to the current methods. Table 2 demonstrates that the new meta-
predictor generates the most accurate results on the test dataset, with AUC = 0.73 and AULCratio = 9.55. These 
predictions are statistically better than the results of current methods (p-value < 0.01). TPR (i.e., sensitivity) of 
HybridRNApred reaches 0.33 when specificity is set to 0.9, which is statistically better than the TPRs of current 
methods that range between 0.09 and 0.29 (p-value < 0.01). We note that the sensitivity values can be raised by 
lowering the specificity and this relation is described by the ROC curves in Supplementary Figure S1A. 
Importantly, this figure reveals that HybridRNApred’s ROC curve is consistently above the curves of the other 
tools (i.e., above over the entire range of specificity). We also find that HybridRNApred matches the predictive 
quality of the best disorder-trained DeepDISObind on the disorder-annotated proteins (AUC = 0.72 vs. 0.72; 
AULCratio = 5.0 vs 5.3) while also having similar predictive performance to the best structure-trained MTDsite 
on the structure-annotated proteins (AUC = 0.76 vs. 0.76; AULCratio = 19.8 vs 10.0). Similarly, when evaluating 
on the 50 RNA binding proteins from the test dataset (Supplementary Table S2), HybridRNApred obtains AUC = 
0.80 and AULCratio = 5.4, which are statistically higher than the results of current methods (p-value < 0.01), 
with the second best DeepDISObind securing AUC = 0.77 and AULCratio = 4.4. Moreover, HybridRNApred 
performs similarly well when compared to the best disorder-trained predictor on the 25 disorder-annotated RNA 
binding test proteins (AUC = 0.83 vs. 0.83; AULCratio = 5.2 vs 5.8) and to the best structure-trained predictor on 
the 25 structure-annotated RNA binding test proteins (AUC = 0.73 vs. 0.75; AULCratio = 9.2 vs 7.1). We also 
perform assessment using precision-recall curves (see Supplement, Supplementary Figure S4, and 
Supplementary Tables S4 and S5), and these results are highly correlated with the results based on AUC and 
AUCratio, producing similar conclusions. The ability to match performance of the best structure-based methods 
on the structure-annotated data and the best disorder-based methods on the disorder-annotated data stems 
from the underlying design that merges outputs of the best disorder-trained and structure-trained predictions. 

Table 3, which focuses on the cross-predictions and over-predictions, demonstrates that HybridRNApred 
produces competitive results. For the structure-annotated proteins, HybridRNAbind’s AUCPC and AUOPC are < 
0.3 and their average equals 0.252 vs. the average of 0.279 for the second best MTDsite. Our meta-predictor 
also secures the lowest average of AUCPC and AUOPC for the disorder-annotated proteins (0.329 vs. 0.340 of 
the second-best DeepDISObind) and on the complete test dataset (0.310 vs 0.355 of the second best 
DeepDISObind). Similar observations can be drawn based on the analysis of the TPR to CPR and the TPR to 
OPR ratios (Figure 1 and Supplementary Figure S3). Figure 1 demonstrates that HybridRNApred secures the 
highest TPR to OPR ratio (gray bars) and the second-best TPR to CPR ratio (black bars) on the test dataset. 
We conclude that HybridRNApred generates predictions with reasonably low cross-prediction and over-
predictions rates, which follows from its overall high predictive quality. Altogether, we find that the new meta-
predictor significantly outperforms the other methods on the test dataset while matching the results of the best 
disorder-trained/structure-trained methods on the disorder-annotated/disorder-annotated proteins and providing 
relatively low levels of cross-predictions. 

Comparison with structure-based prediction of RBRs 

Motivated by recent transformational advances in the protein structure prediction field (79,80), we compare the 
sequence-based methods, including HybridRNAbind, against a representative structure-based predictor of 



RBRs. We select a recently published PST-PRNA (81) since that this tool is readily available, computationally 
efficient and was shown to outperform other recent structure-based predictors, such as GraphBind (82) and 
NucleicNet (83). We predict structure of a given test protein sequence using AlphaFold 2 (80) and we use this 
putative structure as the input to PST-PRNA that predicts RBRs. We modify the test dataset to remove 
sequences that share >30% sequence similarity with the training dataset of PST-PRNA using the same 
procedure as we describe in the “Benchmark dataset” section. The resulting test dataset, which shares low 
sequence similarity to the training data of all sequence-based predictors and PST-PRNA, includes 419 proteins, 
with 43 RNA-binding proteins. We remove only 21 proteins from the original test dataset. Table 5 summarizes 
results. The corresponding ROC curves are in Supplementary Figure S5. We find that the structure-based PST-
PRNA generates the most accurate results for the structure-annotated proteins (AUC = 85 and AULCratio = 
11.2), with HybridRNAbind securing second place (AUC = 0.83 and AULCratio = 32.4). The AUC of PST-PRNA 
is significantly better (p-value < 0.01) than AUCs of all other methods. This strong result can be attributed to the 
accurate predictions of structure by AlphaFold 2 combined with the high-quality results generated by PST-
PRNA. We also note that HybridRNAbind, NCBRpred and ProNA2020 secure statistically better AULCratio 
values when compared with PST-PRNA (p-value < 0.01). The latter is due to the fact that these three sequence-
based predictors obtain better/higher ROC curves when FPRs < 0.1 (Supplementary Figure S5B). However, 
PST-PRNA performs only modestly well for the disorder-annotated proteins, with AUC of 0.61 and AULCratio = 
3.5, while HybridRNAbind (AUC = 0.71) and DeepDISObind (AUC = 0.70) perform well for these proteins. When 
using the entire dataset, HybridRNAbind produces the most accurate predictions (AUC = 0.74 and AULCratio = 
8.1) when compared to the other methods that include PST-PRNA (AUC = 0.66 and AULCratio = 3.9) and the 
second-best DeepDISObind (AUC = 0.68 and AULCratio = 4.9) (p-value < 0.01). Altogether, our analysis 
reveals that the structure-based PST-PRNA offers similarly limited predictive performance as the sequence-
based and structure-trained predictors of RBRs for the disorder-annotated proteins. This is because the 
predicted structure for the disordered regions located in the disorder-annotated proteins may has low quality 
and/or since PST-PRNA was trained on the structure-annotated proteins and thus it could not learn how to 
predict the disorder-annotated proteins. 

Table 5. Predictive performance of the eight selected sequence-based predictors of RBRs, HybridRNAbind and 
the structure-based PST-PRNA on the version of the test dataset that excludes proteins similar to the training 
dataset of PST-PRNA and the two subsets of this dataset that include the structure-annotated and the disorder-
annotated test proteins. The predictor with the highest AUC for each protein set is identified with the bold font. 
Results of the statistical significance test are shown next to the reported values using the “x/y” format where x 
represent comparison against the current method with the best AUC (i.e., PST-PRNA for the structure-
annotated proteins, DeepDISOBind for the disorder-annotated proteins, and NCBRPred for the complete test 
set) and y represent comparison against HybridRNAbind; +/=/– means that the best current predictor or 
HybridRNAbind is significantly better/not different/significantly worse than another method at p-value<0.01. 

Predictor type Predictor 
Structure-annotated 
proteins 

Disorder-annotated 
proteins 

All proteins 

AUC AULCratio AUC AULCratio AUC AULCratio 

Structure-trained 
predictors 

Pprint 0.775+/+ 8.951+/+ 0.604+/+ 3.411+/+ 0.632+/+ 4.280+/+ 
BindN+ 0.455+/+ 0.012+/+ 0.493+/+ 0.019+/+ 0.487+/+ 0.017+/+ 
DRNApred 0.494+/+ 0.001+/+ 0.614+/+ 2.832+/+ 0.592+/+ 2.574+/+ 
NCBRPred 0.847=/= 32.218-/= 0.656+/+ 2.734+/+ 0.684 /+ 6.432 /+ 
ProNA2020 0.598+/+ 12.509-/+ 0.413+/+ 1.129+/+ 0.440+/+ 1.895+/+ 
MTDsite 0.787+/+ 10.017=/+ 0.576+/+ 2.833+/+ 0.609+/+ 3.898+/+ 

Disorder-trained 
predictors 

DisoRDPbind 0.664+/+ 3.323+/+ 0.520+/+ 2.980+/+ 0.536+/+ 3.061+/+ 
DeepDISObind 0.566+/+ 0.723+/+ 0.704 /+ 5.140 /= 0.683=/+ 4.927+/+ 

Structure-based 
predictor 

PST-PRNA 0.851 /- 11.165 /+ 0.613+/+ 3.534+/+ 0.658+/+ 3.937+/+ 

Meta predictor HybridRNAbind 0.832+/ 32.351-/ 0.713-/ 4.856=/ 0.738-/ 8.097-/ 

Analysis of predicted RBRs 

Annotation of RBRs, particularly for the structure-annotated proteins, relies on a somehow arbitrary approach 
where a given amino acid is assumed to bind RNA if at least one of its atoms is close enough to one of the RNA 
atoms. For instance, the most-recent structure-trained MTDsite uses the 3.5Å cutoff for the maximal distance 
(59), while BioLiP applies a more sophisticated approach where the maximal distance is computed as 0.5Å plus 
the sum of the Van der Waal’s radii of the two closest atoms, one from protein and one from RNA (5). These 



discrepancies inevitably lead to slightly different annotations of native RBRs for the same protein. Consequently, 
we investigate whether predictions are sensitive to these differences by analyzing whether the false positives 
(incorrectly predicted putative RBRs) are localized nearby the native RBRs. In other words, RBRs predicted for 
the amino acids adjacent to the native RBRs in the sequence could be driven by the threshold-dependent nature 
of annotations, and perhaps should not be treated as mistakes. 

 

Figure 3. TPR values (y-axis) in the function of the number of positions in the sequence between the evaluated 
residues and the nearest native RBRs (x-axis). TPRs are computed by assuming that putative RBRs that are 
within a given number of positions away from the native RBR are correct. We cover the best color-coded predictors 
selected based on Table 2 including HybridRNAbind (black), NCBRPred (orange), MTDsite (green) and 
DeepDISOBind (purple). The TPRs are based on two specificity-based thresholds of 0.9 (solid lines) and 0.95 
(dashed lines). 

Figure 3 analyzes the presence of putative RBRs in the vicinity of the native RBRs in the sequence; we cannot 
perform this analysis using proximity in the structure since some annotations concern disordered regions. The x-
axis defines the number of positions between the residues that we analyze and the nearest native RBRs while 
the y-axis quantifies the corresponding TPRs assuming that the putative RBRs that are within the distance 
defined by the x-axis are correct. In other words, TPRs for x=0 are the same as the values reported in Table 2 
while for x=1, 2 and 3 they also count the putative RBRs localized close to the native RBRs as true positives. 
We cover the best performing predictors (HybridRNAbind, NCBRPred, MTDsite and DeepDISOBind) and define 
the binary predictions based on the same two thresholds that we apply in Table 2 (i.e., specificity = 0.90 and 
0.95).  

Interestingly, we find that a substantial number of putative RBRs generated by each of these methods is located 
immediately adjacent to a native RBR in the sequence. This is apparent based on the substantial increase in the 
TPRs between x=0 and x=1. For instance, TPR measured at specificity=0.90 for HybridRNApred’s TPR grows 
from 0.33 to 0.40 and for MTDsite from 0.27 to 0.39. The pace of the increase slows considerably for x=2 and 
x=3, i.e., TPR for HybridRNApred grows to 0.44 and 0.46 and for MTDsite to 0.45 and 0.50, respectively. This 
means that “false positives” in the positions adjacent to the native RBRs are much more frequent than for the 
positions further away. In turn, this suggests that some of the false positives that we categorize as over-
predictions might be caused by the divergent approaches used to annotate binding residues and could in fact 
correspond to correct predictions. This result concurs with recent studies that similarly found a substantial 
increase in the “false positives” near the sites of native proteins and nucleic acids binding residues (54,84). The 
bottom line is that the predictive performance that we quantify in Table 2 is likely an underestimate of the actual 
quality, given the variability in how RBR are annotated. 

Case study 

We illustrate predictions generated by the new meta predictor and the two well-performing methods that 
HybridRNAbind uses as inputs, DeepDISObind and NCBRpred, for one of the test proteins, the 60S ribosomal 
protein L28 (UniProt ID: P02406). This example, which we visualize in Figure 4A, aims to exemplify differences 



between the meta-predictions and their inputs. This protein includes multiple RNA-binding regions including the 
long region at the N-terminus (M1 to K47), a medium-size binding region in the middle of the sequence (K55 to 
E84), and a couple of short regions towards the C-terminus (L113 to I118 and S131 to L133). A large fragment 
of the long region (M1 to H39) is intrinsically disordered based on the annotations from the MobiDB database 
(17). This is likely why the disorder-trained DeepDISObind predicts these residues as RBRs. The medium-size 
and both short binding regions are located in the structured part of this protein, and correspondingly the 
structure-trained NCBRPred identifies majority of these RBRs. The new meta predictor combines the results 
from DeepDISObind and NCBRPred in a way that results in improvements compared to using each of these two 
methods individually. HybridRNApred mimics the predictions from both input predictors for the long binding 
region where both methods produce high propensity values; fixes the DeepDISObind’s underprediction of the 
structured medium-size region by using the more accurate results from NCBRPred; and reduces the 
overprediction of RBRs (i.e., number of false positives) near the C-terminus produced by NCBRpred by utilizing 
the low scores from DeepDISObind. Figure 4B maps the sequence-based predictions from HybridRNAbind into 
the structure of the L28 protein in complex with the ribosomal RNA. It shows that the correct predictions of 
RBRs (true positives that are shown in green) are located along the part of the protein that is embedded into the 
RNA while the correct predictions of non-RBRs (true negatives in grey) cluster in the fragment of the protein that 
extends outside. Altogether, this case study demonstrates effectiveness of the approach utilized by our meta-
predictor. 

 

Figure 4. Predictions of RBRs for the 60S ribosomal protein L28 (UniProt ID: P02406). Panel A visualizes the 
putative propensities and binary predictions where the horizontal axis corresponds to the protein sequence. The 
black horizontal bar below the axis shows annotations of the native RBRs. Results produced by different predictors 
are color-coded, where DeepDISOBind and NCBRPred are shown in blue and orange, respectively. Predictions 
from hybridRNAbind are encoded in green, red, yellow and gray for true positives (TPs), false positives (FPs), 
false negatives (FNs), and true negatives (TNs), respectively. The plots in the top panel show the putative 
propensity scores (solid color-coded lines) while the horizontal bars underneath give the corresponding binary 
predictions. Panel B show two sides of the corresponding structure of this protein in complex with RNA that is 
available in PDB (PDB ID: 4v88). The structures are drawn using Pymol. RNA is cropped to include all fragments 
that are in contact with this protein. Predictions from hybridRNAbind are color-coded in the proteins structure 
(green, red, yellow and gray) using the color schema described for panel A. 



Webserver 

Motivated by the fact that HybridRNAbind produces favorable predictive quality and given its relatively low 
computational footprint, we implemented it as a convenient webserver that is freely available at 
https://www.csuligroup.com/hybridRNAbind/. The server automates the entire prediction process by running 
DeepDISObind and NCBRPred and combining their predictions using the Random Forest-based model. Users 
simply need to provide the input protein sequence(s) in FASTA format and collect the resulting residue-level 
propensities and binary predictions generated by HybridRNApred. Moreover, the webserver allows for batch 
jobs of up to 10 proteins and provides notifications by email when the requested predictions are ready. 

DISCUSSION 

Sequence-based predictors of RBRs fall into two distinct sub-groups: those trained on the structure-annotated 
proteins vs. disorder-annotated proteins. Motivated by a recent study that analyzes predictors of protein binding 
residues (65), we perform a comprehensive comparative study that investigates a representative collection of 
both sub-groups of predictors of RBRs using a low-similarity benchmark dataset that covers structure and 
disorder-annotated proteins.  

We find that current predictors of RBRs deliver modest levels of predictive performance. This can be explained 
by our empirical observation that they provide accurate results only for the proteins that they were trained on. 
More specifically, the disorder-trained methods perform well on the disorder-annotated proteins, which are 
consistent with their training dataset, whereas they produce relatively poor-quality predictions for the structure-
annotated proteins since structure-annotated proteins were not included in their training datasets. Similarly, the 
structure-trained methods generate accurate results for the structure-annotated proteins while underperforming 
for the disorder-annotated proteins. This could be potentially fixed by developing new tools that are trained on 
both structure-annotated and disorder-annotated proteins. We find that their predictions are characterized by 
relatively high levels of cross-predictions, with some methods indiscriminately predicting residues that bind any 
ligand type. Moreover, we show that a representative structure-based predictor of RBRs that relies on putative 
structures generated by AlphaFold 2 produces accurate results on the structure-annotated proteins, while 
underperforming for the disorder-annotated proteins.  

We devise a solution to these problems by designing, testing and deploying the HybridRNAbind meta-predictor 
that combines results produced by the best structure- and disorder-trained methods. HybridRNAbind statistically 
outperforms the current methods, including the structure-based predictor, and provides relatively low levels of 
cross-predictions. It matches results of the best disorder-trained predictors on the disorder-annotated proteins 
and the best structure-trained predictors on the structure-annotated proteins. We release HybridRNAbind as a 
convenient and freely available webserver at https://www.csuligroup.com/hybridRNAbind/.  

Moreover, our empirical analysis of the results produced by the current methods and the new meta-model finds 
that false positives are much more frequent in the sequence positions adjacent to the native RBRs when 
compared to the positions further away in the sequence. Given the somehow arbitrary (i.e., threshold-
dependent) nature of annotations of binding residues, this result suggests that some of these false positives 
might correspond to correct predictions. This agrees with similar analyses done for the prediction of the protein 
and nucleic acids binding residues (54,84), and indicates that the measured predictive performance likely 
underestimates the actual performance. 
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Abbreviations 

AUC: Area Under receiver operating characteristic Curve 

AUCPC: Area under Cross-Prediction Curve  

AULC: area under of ROC curve for low FPR values 

AULCratio: ratio of the AULC of a given predictor by the AULC of a random predictor 

AUOPC : Area under Over-Prediction Curve 

CPR: cross-prediction rate 

FN: false negative 

FP: false positive 

IDR: intrinsically disordered region 

maxF1: maximal value of the F1-score 

non-RBR: non-RNA-binding residue 

OPR: over-prediction rate 

PDB: Protein Data Bank 

RBR: RNA-binding residue 

TN: true negative 

TP: true positive 

TPR: true positive rate 
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