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ABSTRACT

The rapid accumulation of molecular data motivates
development of innovative approaches to computa-
tionally characterize sequences, structures and func-
tions of biological and chemical molecules in an
efficient, accessible and accurate manner. Notwith-
standing several computational tools that character-
ize protein or nucleic acids data, there are no one-
stop computational toolkits that comprehensively
characterize a wide range of biomolecules. We ad-
dress this vital need by developing a holistic plat-
form that generates features from sequence and
structural data for a diverse collection of molecule
types. Our freely available and easy-to-use iFeature-
Omega platform generates, analyzes and visualizes
189 representations for biological sequences, struc-
tures and ligands. To the best of our knowledge,
iFeatureOmega provides the largest scope when di-

rectly compared to the current solutions, in terms
of the number of feature extraction and analysis ap-
proaches and coverage of different molecules. We
release three versions of iFeatureOmega including
a webserver, command line interface and graphical
interface to satisfy needs of experienced bioinfor-
maticians and less computer-savvy biologists and
biochemists. With the assistance of iFeatureOmega,
users can encode their molecular data into repre-
sentations that facilitate construction of predictive
models and analytical studies. We highlight benefits
of iFeatureOmega based on three research applica-
tions, demonstrating how it can be used to acceler-
ate and streamline research in bioinformatics, com-
putational biology, and cheminformatics areas. The
iFeatureOmega webserver is freely available at http:
//ifeatureomega.erc.monash.edu and the standalone
versions can be downloaded from https://github.
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com/Superzchen/iFeatureOmega-GUI/ and https://
github.com/Superzchen/iFeatureOmega-CLI/.

GRAPHICAL ABSTRACT

INTRODUCTION

The speed and affordability of high-throughput sequenc-
ing techniques have led to massive influx and accumula-
tion of molecular data (1–3). However, curation and anal-
ysis of these data could be challenging due to lack of com-
putational methods that facilitate visualization and encod-
ing of the raw data into features that are suitable for sta-
tistical data analysis and development of predictive mod-
els (4). The encoding is particularly crucial for machine-
learning and deep-learning techniques that are increasingly
being used to predict key structural and functional proper-
ties of nucleic acid and protein sequences (5–8). These stud-
ies enhance annotation of genomic and proteomic datasets,
indirectly improving understanding of biological processes,
pathways and molecular functions across cells, tissues and
organisms (9–11).

Efficient and systematic encoding of features that repre-
sent different molecule types (e.g. nucleic acids, proteins and
small ligands) and which cover different characteristics in-
cluding sequence, three-dimensional structure and binding-
partners, is challenging and vital to develop high quality
machine-learning models (4,7). This motivates demand for
reliable and accessible tools for feature engineering, extrac-
tion, calculation, analysis and visualization from molec-
ular sequences and structures. Many feature engineering
tools that target DNA, RNA, proteins and ligands were
released in recent years. They include PseAAC (12), PRO-
FEAT (13), PseAAC-Builder (14), PyDPI (15), ChemoPy
(16), propy (17), RDKit (18), PseAAC-General (19), Rcpi
(20), ProFET (21), protr/ProtrWeb (22), BioTriangle (23),
repRNA (24), POSSUM (25), PseKRAAC (26), iFeature
(27), PyFeat (28), Seq2Feature (29), MRMD2.0 (30) and
MathFeature (31). Besides these feature engineering tools,
several platforms for the development of machine learn-
ing predictors, including BioSeq-Analysis2.0 (32), PFea-
ture (33), iLearn (34) and iLearnPlus (5), also provide

feature extraction facilities. These computational toolk-
its have been employed in numerous bioinformatics and
cheminformatics projects, with just a few examples that
cover identification and prediction of mutational effects
(35), protein–protein interaction hotspots (36), drug-target
interactions (37), protein crystallization propensity (38),
DNA-binding sites (39) and DNA-binding proteins (40),
protein families (41) and/or DNA/RNA/protein modi-
fications (42–45). The PseAAC (12) web server appears
to be the earliest tool. It covers protein feature engineer-
ing, focusing on encoding features that rely on the pseudo
amino acid composition. We highlight two other well-
established early tools, Propy (17) (in Python) and Rcpi
(20) (in R/Bioconductor), which facilitate calculation of
a large numbers of structural and physicochemical fea-
tures from protein sequences. More recent platforms ex-
pand the coverage to extract features from other types of
molecules. For instance, PyFeat (28) is a Python-based fea-
ture generation tool for DNA, RNA and protein sequences;
Seq2Feature (29) calculates protein and DNA sequence-
based descriptors; and BioTriangle (23) provides represen-
tations for ligands/chemicals and protein, DNA and RNA
sequences.

While being often utilized and useful, the existing fea-
ture engineering tools have some limitations (Table 1). First,
most of the current tools calculate features for one of the
molecules. Only BioTriangle covers DNA, RNA, ligands
and protein sequences, however, it does not consider protein
structures. MathFeature (31) and some of the recent ma-
chine learning platforms, such as BioSeq-Analysis2.0 (32),
iLearn (34) and iLearnPlus (5), provide a relatively rich col-
lection of feature sets for nucleic acids and proteins, outper-
forming the older feature engineering tools, however, they
do not consider ligands and protein structures, except for
PFeature (33) that considers only protein sequences and
structures. A few current tools, including PIC (46), PDB-
param (47) and PFeature, encode features from protein
structure, facilitating important applications, such as ratio-
nal drug development (48) and prediction of protein func-
tions (49–52).

Second, virtually none of the existing feature engineer-
ing tools, except for iFeature, supports analysis of the re-
sulting features. Relevant tasks include feature clustering,
dimensionality reduction and normalization. These utili-
ties are vitally important to ensure efficiency and qual-
ity of the subsequent applications of features. For ex-
ample, while BioTriangle (23) extracts a diverse collec-
tion of descriptors for ligands and protein, DNA and
RNA sequences, it does not offer support to cluster, se-
lect or normalize these features, forcing users to resort
to using other software for this purpose. However, clus-
tering and feature selection are fundamental to many
bioinformatics applications and have been widely used
(53–55).

Third, in addition to the feature calculation and analy-
sis, users would benefit from visualization capabilities. This
may include visualization of the feature values and statisti-
cal characteristics, such as distributions. These visual repre-
sentations assist in screening and validating features (56).
Our analysis (Table 1), reveals that only one feature en-
gineering tool, iFeature, and a few machine learning plat-

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkac351/6582173 by Virginia C

om
m

onw
ealth U

niversity Libraries user on 10 M
ay 2022

https://github.com/Superzchen/iFeatureOmega-GUI/
https://github.com/Superzchen/iFeatureOmega-CLI/


Nucleic Acids Research, 2022 3

T
ab

le
1.

C
om

pa
ri

so
n

of
ex

is
ti

ng
st

at
e-

of
-t

he
-a

rt
co

m
pu

ta
ti

on
al

to
ol

ki
ts

fo
r

fe
at

ur
e

en
gi

ne
er

in
g,

ex
tr

ac
ti

on
,c

al
cu

la
ti

on
,a

na
ly

si
s

an
d

vi
su

al
iz

at
io

n.
To

ol
s

ar
e

so
rt

ed
ch

ro
no

lo
gi

ca
lly

To
ol

s
C

ov
er

ag
e

of
di

ff
er

en
t

m
ol

ec
ul

e
ty

pe
s

P
er

fo
rm

s
fe

at
ur

e
an

al
ys

is
P

er
fo

rm
s

da
ta

vi
su

al
iz

at
io

n
A

va
ila

bl
e

in
te

rf
ac

es
R

ef
.

D
N

A
s

R
N

A
s

P
ro

te
in

se
qu

en
ce

s
L

ig
an

ds
P

ro
te

in
st

ru
ct

ur
es

W
eb

se
rv

er
C

L
I

st
an

d-
al

on
e

G
U

I
st

an
d-

al
on

e

P
IC

×
×

×
×

√
×

√
√

×
×

(4
6)

P
se

A
A

C
×

×
√

(3
)

×
×

×
×

√
×

×
(1

2)
P

R
O

F
E

A
T

×
×

√
(1

1)
√

(1
)

×
×

×
√

×
×

(1
3)

P
se

A
A

C
-B

ui
ld

er
×

×
√

(3
)

×
×

×
×

×
√

√
(1

4)
P

yD
P

I
×

×
√

(1
4)

√
(1

3)
×

×
×

×
√

×
(1

5)
C

he
m

oP
y

×
×

×
√

(1
9)

×
×

×
×

√
×

(1
6)

P
ro

py
×

×
√

(1
3)

×
×

×
×

×
√

×
(1

7)
P

se
A

A
C

-G
en

er
al

×
×

√
(1

3)
×

×
×

×
×

√
×

(1
9)

R
cp

i
×

×
√

(1
0)

√
(8

)
×

×
×

×
√

×
(2

0)
P

ro
tr

/
P

ro
tr

W
eb

×
×

√
(2

2)
×

×
×

×
×

√
×

(2
2)

B
io

T
ri

an
gl

e
√ (1

4)
√ (1

4)
√ (1

4)
√ (1

8)
×

×
×

√
×

×
(2

3)
P

D
B

pa
ra

m
×

×
×

×
√ (4

)
×

×
√

×
×

(4
7)

re
pR

N
A

×
√

(1
1)

×
×

×
×

×
√

×
×

(2
4)

P
se

K
R

A
A

C
×

×
√

(1
6)

×
×

×
×

√
×

×
(2

6)
iF

ea
tu

re
×

×
√

(5
3)

×
×

√ (1
0)

√ (2
)

√
√

×
(2

7)
P

yF
ea

t
√ (1

3)
√

(1
3)

√ (9
)

×
×

×
×

×
√

×
(2

8)
Se

q2
F

ea
tu

re
√ (1

)
√ (1

)
√

(4
)

×
×

×
×

√
×

×
(2

9)
B

io
Se

q-
A

na
ly

si
s2

.0
*

√ (3
6)

√ (2
7)

√ (5
3)

×
×

√ (2
)

√ (1
)

√
√

×
(3

2)

P
F

ea
tu

re
*

×
×

√
×

√
×

×
√

√
×

(3
3)

iL
ea

rn
*

√ (2
6)

√ (1
8)

√ (5
3)

×
×

√ (1
5)

√ (3
)

√
√

×
(3

4)
iL

ea
rn

P
lu

s*
√ (4

6)
√ (3

5)
√ (6

6)
×

×
√ (2

0)
√ (7

)
√

×
√

(5
)

M
at

hF
ea

tu
re

√ (3
0)

√ (3
0)

√ (1
2)

×
×

×
×

×
√

√
(3

1)
iF

ea
tu

re
O

m
eg

a
√ (4

9)
√ (3

7)
√ (7

1)
√ (1

8)
√ (1

4)
√ (1

5)
√ (9

)
√

√
√

-

N
ot

e:
*
th

e
to

ol
is

a
m

ac
hi

ne
-l

ea
rn

in
g

pl
at

fo
rm

.‘
X

’m
ea

ns
th

at
th

e
fu

nc
ti

on
is

un
av

ai
la

bl
e.

N
um

be
rs

in
th

e
br

ac
ke

ts
de

no
te

th
e

nu
m

be
rs

of
di

ff
er

en
t

fe
at

ur
e

se
ts

,o
r

an
al

ys
is
/
vi

su
al

iz
at

io
n

op
ti

on
s.

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkac351/6582173 by Virginia C

om
m

onw
ealth U

niversity Libraries user on 10 M
ay 2022



4 Nucleic Acids Research, 2022

forms (BioSeq-Analysis2.0, iLearn and iLearnPlus) provide
visualization facilities.

Fourth, very few of the published tools provide graphical
user interface (GUI). This makes it rather difficult for non-
coders and less computer savvy users, including structural
biologists and biochemists, to use these tools. Majority of
the existing tools must be used with the command line in-
terface (CLI), which requires knowledge of a specific pro-
gramming language. Web servers and local executable GUI
solve these challenges by providing point-and-click inter-
faces and an easy-to-follow process. However, web servers
usually constraint the size of input data and could be of-
fline or heavily used at times, resulting in long delays. Thus,
the desired solution is to provide a wide range of options in-
cluding CLI to cater to experienced bioinformaticians and
programmers, web server for users who may not be able to
run software on their local hardware and need ad hoc ac-
cess, and GUI to serve users who have limited program-
ming background but would like to run the analysis locally.
We note that we have experience and history providing re-
lated platforms including iLearnPlus (5), iFeature (27) and
iLearn (34).

We present iFeatureOmega platform that overcomes the
above limitations and challenges. iFeatureOmega produces
189 feature sets and covers analysis and visualization of
DNA, RNA, proteins and ligands. To compare, the largest
number of feature sets produced by the current feature en-
gineering tools is 72 for MathFeature and among the ma-
chine learning platforms is 147 for iLearnPlus (Table 1).
More importantly, iLearnPlus and MatchFeature consider
only DNA, RNA and proteins. Our platform integrates 15
feature analysis methods including ten clustering, three di-
mensionality reduction and two feature normalization algo-
rithms. It provides nine types of interactive plots, including
histograms, boxplots, scatters and three-dimensional struc-
tures, to facilitate visualization of statistical summaries for
the generated features. In contrast to the published feature
engineering and machine learning tools (Table 1), iFeature-
Omega provides a full spectrum of interfaces including the
web server and locally executable CLI and GUI. The web
server can be accessed through http://ifeatureomega.erc.
monash.edu, and the GUI and CTL versions can be down-
loaded at: https://github.com/Superzchen/iFeatureOmega-
GUI and https://github.com/Superzchen/iFeatureOmega-
CLI, respectively.

METHODS

Features representing amino acid sequences

To describe protein sequences, iFeatureOmega incorporates
ten categories of feature sets which are widely applied in
modern bioinformatic investigations (Supplementary Ta-
ble S1). They include the amino acid composition, grouped
amino acid composition, autocorrelations, quasi-sequence-
order, pseudo-amino acid composition, residue represen-
tation, physicochemical property, BLOSUM matrix, Z-
scale index and similarity-based descriptor. The ‘amino
acid composition’ category calculates 12 different types of
composition features for a given protein/peptide sequence,
while ‘grouped amino acid composition’ clusters amino

acids based on the calculation of the composition mea-
sures for the amino acids in a given subgroup. To compute
the autocorrelations and cross-covariance feature sets, iFea-
tureOmega covers six correlation and covariance measures
for individual amino acid sequences, summarized in the
‘autocorrelations’ category. Two sequence order-based fea-
tures can also be calculated by iFeatureOmega in the ‘quasi-
sequence-order’ category. Similar to the amino acid compo-
sition, pseudo amino acid composition uses a series of mea-
sures to characterize protein/peptide sequences, but pseudo
amino acid composition incorporates additional informa-
tion, such as the correlation between residues within a dis-
tance threshold, to better describe local sequence patterns
(57). iFeatureOmega also provides measures including am-
phiphilic pseudo-amino acid composition (APAAC), and
16 types of pseudo K-tuple reduced amino acid composi-
tions. The sixth group includes 16 types of residue-level fea-
ture sets, where each amino acid is represented by a vector
of a fixed length. To better represent the physicochemical
properties of a particular protein/peptide sequence, iFea-
tureOmega also refers to the AAindex database (58), which
contains 556 indices that quantify physicochemical proper-
ties of individual amino acids, such as alpha-CH chemical
shifts and hydrophobicity. The BLOSUM (BLOcks SUbsti-
tution Matrix) (59) is a widely-used matrix to show the re-
latedness of amino acids in sequence alignments, reflecting
evolutionary divergence. iFeatureOmega incorporates BLO-
SUM62 (59) to build such matrices. Finally, the ninth cat-
egory is the Z-scales, in which each amino acid is repre-
sented by five physicochemical descriptor variables; this fea-
ture set is inspired by the Z-scales index that was devel-
oped by Sandberg et al. (60). Finally, the similarity-based
descriptor quantifies similarity between sequences based on
the nearest neighbor approach.

Features representing nucleic acid sequences

Eight major categories of features can be encoded from
DNA and RNA sequences with iFeatureOmega. They in-
clude nucleic acid composition, pseudo nucleic acid compo-
sition, position-specific encoding of n-nucleotides, electron-
ion interaction pseudopotential (EIIP), autocorrections
and cross-covariance, physiochemical property, mutual in-
formation, and similarity-based descriptor (Supplementary
Table S2). The ‘Nucleic acid composition’ features quantify
the frequencies of nucleotides in a sequence. The ‘position-
specific of n-nucleotides’ group provides nucleic acid feature
vectors calculated using more advanced nucleotide compo-
sitions, such as dinucleotide binary encoding and position-
specific encoding of the four nucleotides. EIIP refers to the
energy of delocalized electrons in nucleotides (61,62). We
also provided autocorrelations and cross-covariance fea-
tures for nucleotides, which represent the statistical pat-
tern of nucleic acid sequences. Regarding the physicochem-
ical properties of nucleotides, iFeatureOmega calculates di-
/tri-nucleotide physicochemical properties using a recently
published approach (63). The sixth feature group is multi-
variate ‘mutual information’, which quantifies correlations
between nucleotide pairs (64). The seventh feature group
consists of six types of pseudo nucleic acid compositions
(65,66), such as pseudo k-tuple composition and parallel
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correlation pseudo dinucleotide composition, complement-
ing the above nucleic acid composition features. The last
feature group is similarity-based, and it calculates similar-
ity between a query nucleotide sequence and the other nu-
cleotide sequences using the nearest neighbor method.

Features representing ligand information

Ligand features quantify several different aspects of their
chemical structures (23). The iFeatureOmega platform cov-
ers more than ten feature groups for the ligand data in-
cluding constitution, topology, connectivity, E-state (topo-
logical and electronic information linked to atoms), Kappa
(molecular shape descriptors), bask, burden, Kappa, au-
tocorrelations, charge (electronic measure for a complete
molecule or specific regions within a molecule), molecular
property descriptors, pharmacophore, MOE-type and fin-
gerprints (Supplementary Table S3). The molecular con-
stitution descriptors characterize composition of chemi-
cal elements and chemical bonds, path length, hydrogen
bond-acceptor, and donator in the constitution module.
The topological descriptors, which are calculated directly
from the ligand structure, quantify key topological aspects
including molecular connectivity and valence connectivity
for different path-orders, cycle, or cluster size. In addition,
the E-state, bask, burden, pharmacophore and charge can
also be calculated and used to represent the physiochemi-
cal properties of a ligand. We also provided three types of
autocorrelation-based features including geary, moran and
moreau-broto autocorrelations. The molecular descriptors
focus on the chemical structures of ligands while the Molec-
ular Operating Environment (MOE)-type descriptors repre-
sent the topological, structural, and physiochemical prop-
erties. In iFeatureOmega, the MOE-type descriptors are
computed from the connection table information based on
atomic contributions to Van der Waals surface area, log P,
molar refractivity, partial charge and E-state value. Finally,
we incorporated fingerprint calculations to facilitate rapid
screening, string representations and structural similarity
measurements ligands and similar chemicals (67). We cov-
ered multiple fingerprint types including MACCS, morgan
and E-state.

Features representing protein structure

The three-dimensional structure of a protein is useful to de-
code and study protein function, following the ‘structure-
to-function’ paradigm (68). Accurate representation of a
protein structure is therefore critically important to ana-
lyze and predict its function and functional sites. Func-
tional sites are microenvironments within the structure that
can be defined by both three-dimensional and local neigh-
borhood locations and which are involved in a particular
function (69). In iFeatureOmega, we implemented seven fea-
ture groups that capture the microenvironments––ranging
in scale from atoms to residues and to secondary struc-
ture elements; in total 14 feature encoding schemes. These
groups include amino acids composition, grouped amino
acid composition, secondary structure, half sphere expo-
sure, residue depth, atom composition and network-based
index (Supplementary Table S4).

The first group includes two types of feature sets that
quantify the amino acid composition: AAC type1 and
AAC type2. Here, the target sites (microenvironments) are
defined by a three-dimensional position and a radius defin-
ing the neighborhood. Shells are formed around each target
site (Supplementary Figure S1) and the frequency of each
amino acid type is calculated for each shell (AAC type1)
and for cumulative shells (AAC type2). In the secondary
group, the 20 amino acid types are further categorized into
five classes, according to their physicochemical properties
(hydrophobicity, charge and molecular size). Then, the fre-
quency of each amino acid group is calculated in the same
way as for the first group. The ‘secondary structure’ feature
group encodes multiple features based on secondary struc-
tural elements around a target residue. For feature sets in
this group, ‘SS3’ considers three types of secondary struc-
tural elements (i.e. helix, �-strand, and �-turns and -loops
(70)), while ‘SS8’ considers eight types of secondary struc-
tural elements (i.e. �-helix, isolated �-bridge residue, strand,
3–10 helix, �-helix, turn, bend and other (70)). The type1
features calculate the frequency of each type of SSE in each
shell (i.e. SS3 type1 and SS8 type1) while type2 features
quantify the frequency of each SSE type in cumulative shells
(i.e. SS3 type2 and SS8 type2). iFeatureOmega also calcu-
lates the half sphere exposure and residue depth as descrip-
tors for each residue in a given structure. Half sphere ex-
posure (HSE) is a 2D measure of solvent exposure which
counts the number of C� atoms around a residue in the di-
rection of its side chain and in the opposite direction (within
a radius of 13 Å) (71). HSE compliments the residue depth
measure (72), which is calculated as an average distance of a
residue’s atoms from the solvent accessible surface (73). The
‘atom composition’ feature group includes two types of en-
coding schemes that are computed at the atomic level. For
the feature sets in this group, the target atom is specified as a
three-dimensional position and a radius defining its neigh-
borhood, and shells are formed around each target atom
(Supplementary Figure S1). Then, frequency of each atom
type is calculated in each shell (i.e. AC type1) and in cumu-
lative shells (i.e. AC type2). Finally, the ‘network-based in-
dex’ feature set encodes residues in the context of a network
that represents placement of residues in the space defined
by the protein structure. These features quantify the degree,
degree centrality, betweenness, clustering coefficient, close-
ness, and centrality values.

Feature analysis

Feature analysis is an important step to examine and un-
derstand relationships between features. This is critically
important to guide the process of constructing the subse-
quently developed models and to assist with evaluation of
performance of these models. To this end, iFeatureOmega
supports three major types of approaches for feature anal-
ysis using 15 distinct algorithms. We covered ten methods
for feature clustering, three for dimensionality reduction,
and two for normalization (Supplementary Table S5). Fea-
ture clustering aims to group similar molecules (i.e. DNA,
RNA, protein or ligand), which are encoded by a specific set
of features. Upon the completion of clustering, molecules
are grouped, and each group is assigned a cluster identi-
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fication code (ID). The feature clustering results are dis-
played in a scatter plot. Feature dimensionality reduction
approaches transform the high-dimensional feature repre-
sentation to a low-dimensional space, with the aim to re-
tain the most informative features for the subsequent model
construction. Supplementary Table S5 lists specific cluster-
ing and dimensionality reduction algorithms that are in-
cluded in iFeatureOmega. They include popular methods,
such as k-means (74), DBSCAN (75) and principal com-
ponent analysis (PCA) (76). Finally, feature normalization
is used to rescale feature values to a specific range so that
they are consistent across different feature sets that iFea-
tureOmega generates. We implemented two commonly used
normalization algorithms, the Z-score and Min–Max nor-
malizations. For Z-score normalization, feature values are
rescaled to a normal distribution with a mean of 0 and a
standard deviation of 1. While for Min-Max normalization,
feature values are scaled to the range between 0 and 1.

Data visualization

iFeatureOmega offers various plots that facilitate visualiza-
tion, interpretation, and analysis of the engineered features.
They include histograms, kernel density plots, heatmaps,
boxplots, line charts and circular plots (Supplementary Ta-
ble S6). Histograms and kernel density plots are partic-
ularly useful for the visualization of distributions of fea-
ture values. Histograms are distribution where feature val-
ues are grouped into discrete intervals while kernel density
plots produce smooth curves that represent probability den-
sity functions and they are best suited for continuous fea-
tures. The heatmaps provide a different and complemen-
tary perspective where distributions of the feature values are
set against samples/molecules, i.e. rows and columns corre-
spond to samples and features, respectively. The boxplots
and the line charts succinctly summarize distribution of in-
dividual features where boxplots, which rely on medians and
quartiles, allow for efficient examination and comparison
of distributions across features. On the other hand, scat-
ter plots provide detailed and data-rich visualization that
is best suited to analyze results of the clustering and di-
mensionality reduction. The circular plot should be used
to examine correlations and associations between features
and molecules. Taking comparison of molecules as an ex-
ample, the circular plots use nodes to represent molecules
and edges to denote correlations/associations between the
molecules. The associations can be quantified with, for in-
stance, Pearson’s correlation coefficients (PCCs), in which
case presence of an edge would mean that two molecules
are correlated as a certain minimal value of PCC. Notably,
the plots are interactive. We used the JavaScript package
ECharts (v. 5.1.1) to implement plots in the web server ver-
sion, and the matplotlib library (v. 3.4.2) (77) for the GUI
version. Moreover, powered by two JavaScript libraries,
NGL viewer v1.0.0 and Ketcher v2.1.0, the iFeatureOmega
server can be used to display interactive three-dimensional
protein and chemical structures, respectively.

Webserver-construction of iFeatureOmega

iFeatureOmega resides on the Nectar (The National eRe-
search Collaboration Tools and Resources) cloud comput-

ing infrastructure, managed by the eResearch Centre at
Monash University. The iFeatureOmega web server was
built in a ‘Linux + Apache + Django’ framework and is
equipped with 16 cores, 64 GB memory and 2 TB hard
disk space. The server supports five popular web browsers
including the Internet Explorer (≥v.7.0), Microsoft Edge,
Mozilla Firefox, Google Chrome and Safari.

iFeatureOmega implementation and visualization

The CLI- and GUI-based versions of iFeatureOmega were
implemented and visualized using Python (v3.7.4), together
with the third-party software packages including Biopy-
thon (v.1.78), Pandas (v.1.1.3) (78), Numpy (v.1.19.2) (79),
NetworkX (v.2.5) (80), RDKit (v. 2020.03.3.0) (18), Mat-
plotlib (v.3.1.2) (77), DSSP (v.3.0.0) (70,81) and MSMS
(v.2.6.1) (73). The latter version of iFeatureOmega was im-
plemented by PyQt5 (v.5.9.2).

RESULTS

Calculation and analysis of feature sets using iFeatureOmega

The core of iFeatureOmega platform is a python pack-
age implemented using PyQt5 in the GUI version, Apache
ECharts for the data visualization in the webserver, RD-
Kit (18) for the ligand descriptor calculation, and scikit-
learn (85) for the feature analysis. We implemented code for
the feature extraction for the DNA, RNA and protein se-
quences and protein structure. The iFeatureOmega’s archi-
tecture is summarized in Figure 1.

The web server version (http://ifeatureomega.erc.
monash.edu/) performs feature extraction, calculation,
analysis and visualization on the server-side, relieving
users from the necessity to utilize local computational
resources (Supplementary Figure S1a). The server includes
five webpages that are accessible via the navigation bar at
the top of the main page. To calculate features for protein,
DNA and/or RNA sequences, users are required to use
the FASTA format and either upload a file containing
the sequences or copy them into the provided entry
text box. To calculate protein structural features, users
should provide input protein structure(s) in the PDB (86)
(https://www.rcsb.org/) format (i.e. PDB or CIF format)
or a PDB accession. For the analysis of ligands, uses
should use SMILES encoding or files in the SDF format.
Moreover, ligand molecules be also drawn using Ketcher
(https://github.com/epam/ketcher), which is a web-based
interface for editing chemical structures (Supplementary
Figure S1b). The resulting software-drawn ligand structure
can be converted to SMILES format and displayed.

The features and results of feature analysis are displayed
on the ‘Result’ page. Multiple tabs are available to view the
results. The calculated features are available for download
in four formats including SVM (https://www.cs.cornell.edu/
people/tj/svm light/), Comma-Separated Values (CSV), Tab
Separated Values (TSV), and Waikato Environment for
knowledge Analysis (WEKA) (87). iFeatureOmega gener-
ates nine types of interactive plots including histograms,
kernel density plots, heatmaps, boxplots, line charts, scat-
ters, circular plots, three-dimensional protein structures and
ligand structures. For example, a scatter plot is useful to

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/advance-article/doi/10.1093/nar/gkac351/6582173 by Virginia C

om
m

onw
ealth U

niversity Libraries user on 10 M
ay 2022

http://ifeatureomega.erc.monash.edu/
https://www.rcsb.org/
https://github.com/epam/ketcher
https://www.cs.cornell.edu/people/tj/svm_light/


Nucleic Acids Research, 2022 7

Figure 1. The iFeatureOmega architecture with three version applications, including iFeatureOmega-Web, iFeatureOmega-GUI and iFeatureOmega-CLI.

summarize results of feature clustering, where each point
represents an individual molecule, and different colors rep-
resent distinct categories of clusters. Relevant information,
including sample name and category, are displayed in a ta-
ble when points are selected using the lasso tool.

Thestand-alone versions, including GUI and CLI inter-
faces, provide users with the ability to run iFeatureOmega
on their local hardware. This avoids the potential pitfalls of
web servers that require uninterrupted availability of Inter-
net and could be delayed by extensive use. Moreover, these
versions offer the option of running feature calculation and
analysis in batches, while the web server version provides de-
scriptors for one feature type for each submitted task. For
the GUI-based version (Figure 2), seven tab-widgets that
implement different functionality are available. For exam-
ple, using the ‘DNA’ tab, users can select to obtain one or
more feature descriptors for DNA sequences. After clicking
the ‘Start’ button, the selected descriptors are calculated,
and relevant statistical plots are produced to facilitate anal-
ysis of the resulting features. The selected subset of feature

sets is displayed in a convenient table widget, and includes
molecule name, (column) and associated values. The plots
are displayed in a single tab widget and can be conveniently
saved in a variety of image formats, such as PNG, JPG, PDF
and TIFF. Moreover, most of the plot types, except only for
the histogram and kernel density plot, are interactive. For
instance, in the heatmaps, users can specify which data to
display by adjusting the range sliders on rows (i.e. samples)
and/or columns (i.e. descriptors). A detailed description of
the interactive plots is available in the online manual.

The CLI-based version, which was developed and imple-
mented as a python package, targets experienced bioinfor-
maticians and programmers. This version accepts a JSON
format configuration file, allowing users to conveniently
specify parameter values that define which features and
algorithms for feature analysis should be run (Supple-
mentary Figure S2a). There are seven major schemes for
this version of iFeatureOmega including ‘iProtein’, ‘iDNA’,
‘iRNA’, ‘iStructure’ and ‘iLigand’, which implement meth-
ods for the extraction of features from protein sequences,
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Figure 2. The screenshot showing the GUI version of iFeatureOmega, including ‘Protein’ panel, ‘DNA’ panel, ‘RNA’ panel, ‘Structure’ panel, ‘Ligand’
panel, ‘Feature analysis’ panel and ‘Plot’ panel.

DNA sequences, RNA sequences, protein structures and
ligand molecules, respectively. The iAnalysis scheme pro-
vides access to the feature analysis algorithms while the
iPlot scheme should be used to produce plots. Supple-
mentary Figure S2b shows the source code pertaining
to feature extraction and feature analysis in the CLI-
based version. The online manual provides further de-
tails concerning the use of the web server, CLI and GUI
versions.

Demonstrating the utility and versality of iFeatureOmega

We present three diverse practical applications of iFeature-
Omega to demonstrate versatility and usefulness of this
platform. Each application utilizes a different iFeature-
Omega interface and concerns a different type of inputs.
They include (i) a representation of the zinc-binding sites
microenvironment in protein structures, (ii) visualization of
the feature descriptors for long noncoding RNAs (lncR-
NAs) and (iii) extraction and visualization of features gen-
erated for the adenosine A2A receptors.

Zinc is one of the most important and ubiquitous trace
elements in microorganisms, plants and animals. Similar
to other types of metal ions, zinc is involved in the catal-
ysis of some enzymes (e.g. cytidine deaminase (88) and 6-
pyruvoyl tetrahydropterin synthase (89)) and plays key roles
in governing some protein structures, such as the zinc fin-
ger proteins (90). Zinc-binding sites contain four main types
of amino acids––CYS, HIS, GLU and ASP––‘CHED’ for

short (90). Here, we applied the CLI-based version of iFea-
tureOmega to depict the three-dimensional microenviron-
ment (i.e. amino acids content) around the zinc-binding
sites using a published dataset (82). This dataset con-
tains 999 protein-zinc binding sites (531 CYS, 325 HIS,
92 ASP and 51 GLU) and 7426 non-zinc-binding sites in
208 non-redundant PDB chains. The structural feature sets
‘AAC type2’ were used to obtain features. For the feature
set, each zinc-binding CHED and non-zinc-binding CHED
residue was specified by their three-dimensional position
and the radius defining their ‘neighborhood’, and shells
were formed around each target site (Supplementary Fig-
ure S3). Then, the frequency of each amino acid type was
calculated for cumulative shells. The PDB structures were
downloaded, and a python script written to execute the ex-
traction of features. First, we applied the t-SNE algorithm
to display the distribution of the 999 zinc-binding sites (Fig-
ure 3A). According to the dimensionality reduction result,
the zinc-binding sites of the same residues clustered well
(i.e. the zinc-binding sites with the same residue cluster to-
gether), indicating that ‘AAC type2’ features are suitable
to capture the three-dimensional microenvironmental char-
acteristics around the zinc-binding sites. Second, we per-
formed a linear discriminant analysis (LDA) analysis to dis-
play the difference in distribution between zinc-binding sites
and non-zinc-binding sites (Figure 3B). The results revealed
a marked difference in the feature values between the zinc-
binding and non-zinc-binding sites.
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Figure 3. The feature analysis result for protein zinc-binding sites using the ‘AAC type2’ feature extraction method and the local CLI version of iFeature-
Omega, including the data visualization for four types of zinc-binding sites (A), the data visualization for zinc-binding sites and non-zinc-binding sites
(B).

Figure 4. The data visualization for lncRNA sequences and mRNA sequences using local GUI version of iFeatureOmega, including the histogram and
kernel density plot shows the distribution difference between lncRNA and mRNA sequences (A), line chart shows the mean value difference (B) and box
plot shows the distribution difference (C) for each descriptor between lncRNA and mRNA sequences.

The lncRNAs are transcripts of >200 bp in length that
do not code for proteins (83). Various algorithms have been
proposed to predict lncRNAs and their functions from mR-
NAs (91). The ‘Kmer’ based features were shown to be ef-
fective in the prediction of lncRNAs (5,92,93). Here, we uti-
lized the GUI-based version of iFeatureOmega to compare
distributions using the ‘Kmer’ features between lncRNAs
and mRNAs using a recent data set of 4200 lncRNA and
4200 mRNA sequences from mouse (Mus musculus) (83).
First, we used the ‘DNA’ panel to obtain the Kmer features
for both sets of sequences. The features for lncRNAs were
taken as positive samples and labelled as ‘1’; while the fea-
tures generated from the mRNA sequences were taken as
negative samples and labeled as ‘0’. Second, we applied the
‘iPlot’ panel to produce several plots including a histogram,
a kernel density plot, a line chart and a boxplot (Figure
4). The histogram and kernel density plot (Figure 4A) dis-
play statistical distributions of the two sets of features. The
line chart (Figure 4B; display area is adjustable) shows the
mean difference between the lncRNAs and mRNAs data for

each descriptor. Finally, the boxplot (Figure 4C) illustrates
the difference in the distribution of feature values between
lncRNAs and mRNAs. This demonstrates how easy it is to
utilize iFeatureOmega to encode the features and obtain in-
sightful and comprehensive analysis of their values.

The adenosine A2A receptor is one of the most extensively
studied G protein-coupled receptors in human (84), and
has been reported as a promising target for drugs against
Parkinson’s, cardiovascular and inflammatory diseases (94).
Here, we applied the web server version of iFeatureOmega
to extract, calculate and visualize features for the A2A recep-
tors. We selected 997 small organic molecules as active lig-
ands for the A2A receptors based on recent work (84). This
set was divided into four different chemotypes: one repre-
senting known ligands obtained from ChEMBL database
(3) (cluster 0) and the other three inferred by three differ-
ent deep-learning (DL)-based molecular generators (clus-
ters 1, 2 and 3). After these molecules were uploaded into
the web server, we selected and calculated the ‘constitution’
and ‘geary’ features and visualized them using several plots
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Figure 5. The data visualization for ligands with constitution (A–D) and geary (E and F) features. The feature matrix is shown as heatmap, and the value in
the matrix can be filtered with the color bar (A). The distribution of whole feature values is shown in a histogram, and the line plot represents the probability
density curve fitted with kernel density estimation (B). The distribution of each feature is shown using the box plots (C). The first two component of PCA
on these calculated features with provided labels are shown using a scatter plot, and the detailed information are listed in the table at the right side when
the points are railed out (D). The similarity of these molecules is exhibited as relationship plot in which each node stands for a molecule (E). If it is similar
to another molecule, there will be an edge between them, and the similarity value will be shown when the mouse pointer hovers. The different clusters
obtained by the clustering algorithms will be labeled with different colors. The relationship plot can also visualize the similarity of features with different
distance metrics (F).

(Figure 5). Relations between these features are shown with
the help of an interactive heatmap (Figure 5A), in which
feature values can be filtered via the color bar. The distri-
butions of the feature values are visualized in the histogram
and we fitted them into a probability density curve via ker-
nel density estimation (Figure 5B). Next, we produced a
boxplot to analyze distributions of values of individual fea-
tures (Figure 5C). We also used the scatter plot (Figure 5D)

to study two main components generated via principal com-
ponents analysis (PCA) of the calculated features, where the
four different chemotypes (clusters) are conveniently color-
coded. The latter plot indicates that clusters 0 and 1 and
clusters 2 and 3 overlap, suggesting that their correspond-
ing features can be used to accurately separate clusters 0 and
1 from clusters 2 and 3. The circular plot (Figure 5e) visual-
izes similarity between these molecules where each node on
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the rim represents a molecule and edges are used to denote
that the two molecules are similar. The similarity scores as-
sociated with the edges are shown when the mouse hovers
over them. We produced the second circular plot (Figure
5F) to visualize the calculated features with different dis-
tance metrics shown/given.

CONCLUSIONS

The development of modern feature-engineering, analysis
and visualization tools for the characterization and clas-
sification of protein, nucleic acid and ligand molecules
plays critically important role for machine-learning and
deep-learning based exploration of genomic and proteomic
data sets. However, our analysis suggests that there are no
‘one-stop’ computational toolkits for this purpose. There-
fore, using our prior iFeature (27) tool as a foundation,
we constructed a complete and convenient iFeatureOmega
platform for the extraction and analysis of features from
molecules and molecular data sets. Our platform includes
three interface versions to satisfy the needs of a wide spec-
trum of users, including biologists and biochemists with
limited bioinformatics expertise who would benefit from the
easy-to-use web server or stand-alone GUI versions, and
experienced programmers and bioinformaticians who may
prefer to use the CLI interface. Moreover, iFeatureOmega
supports processing DNA, RNA, protein and ligand data,
integrates many feature sets, and uses a broad array of algo-
rithms to analyze and display the resulting features and sta-
tistical information. Nearly all plots and graphics that are
included in iFeatureOmega are interactive, allowing users
to conveniently select and filter relevant data and setup the
plot area.

The iFeatureOmega web server can be found
at http://ifeatureomega.erc.monash.edu. The stan-
dalone versions can be obtained from https:
//github.com/Superzchen/iFeatureOmega-GUI/ and
https://github.com/Superzchen/iFeatureOmega-CLI/; we
distribute them under the Massachusetts Institute of
Technology (MIT) licence. Given the significant uptake
of our much more limited iFeature platform, we believe
that iFeatureOmega will enjoy even more wide-spread use
as an effective and accessible tool for the extraction and
analysis features from molecular data sets. Our platform
can be applied to molecular data across different organisms
(microbes, plants and animals) and scales (protein families,
cell, tissues, whole genomes).

DATA AVAILABILITY

Three data sets used to demonstrate the utility of iFeature-
Omega are publicly accessible. Specifically, the protein-zinc
binding data set was produced by Passerini et al. (82)
and is accessible at https://github.com/Superzchen/
iFeatureOmega-GUI/blob/main/data/Passerni dataset.zip;
the lncRNA and mRNA sequence datasets were
produced by Han et al. (83) and is accessible at
https://github.com/HAN-Siyu/LncFinder/blob/master/
Data/Datasets/Mouse.zip; the adenosine A2A receptor
dataset were produced by Liu et al. (84) and is accessible at
https://github.com/Superzchen/iFeatureOmega-GUI/blob/
main/data/A2A datasets.zip.

CODE AVAILABILITY

The iFeatureOmega web server is freely accessible via http:
//ifeatureomega.erc.monash.edu, and the stand-alone ver-
sions of the platform can be downloaded at https://github.
com/Superzchen/iFeatureOmega-GUI/ and https://github.
com/Superzchen/iFeatureOmega-CLI/ under the MIT Li-
cense.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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