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Characterizing and classifying regularities in protein structure is an important element in

uncovering the mechanisms that regulate protein structure, function and evolution. Recent
research concentrates on analysis of structural motifs that can be used to describe larger, fold-
sized structures based on homologous primary sequences. At the same time, accuracy of

secondary protein structure prediction based on multiple sequence alignment drops signif-
icantly when low homology (twilight zone) sequences are considered. To this end, this paper
addresses a problem of providing an alternative sequences representation that would improve
ability to distinguish secondary structures for the twilight zone sequences without using

alignment. We consider a novel classification problem, in which, structural motifs, referred to
as structural fragments (SFs) are defined as uniform strand, helix and coil fragments.
Classification of SFs allows to design novel sequence representations, and to investigate which

other factors and prediction algorithms may result in the improved discrimination.
Comprehensive experimental results show that statistically significant improvement in
classification accuracy can be achieved by: (1) improving sequence representations, and (2)

removing possible noise on the terminal residues in the SFs. Combining these two approaches
reduces the error rate on average by 15% when compared to classification using standard
representation and noisy information on the terminal residues, bringing the classification

accuracy to over 70%. Finally, we show that certain prediction algorithms, such as neural
networks and boosted decision trees, are superior to other algorithms.
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1. INTRODUCTION

Determining protein functions and their interactions
with other molecules, which primarily depend on
protein structure, is a fundamental step in under-
standing many biological processes. Proteins are
built out of folding units called domains, and at the
same time these domains include smaller building
blocks, called structural motifs (Boutonnet et al.,
1998; Unger and Sussman, 1993). Recent research
shows that relatively small structural motifs, which

usually consist of several a-helices and b-structures
that include hydrogen-bonded b-strands, can be
used to describe, classify and analyze protein struc-
ture (Szustakowski et al., 2005; Taylor, 2002). Sys-
tematic characterization and identification of the
structural motifs can help close the gap between
secondary protein structures and functional protein
folds, by providing building blocks that are assem-
bled into the domains and by using these blocks to
predict unknown structures from known sequences.
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The three dominant computational structure
prediction approaches include:

– Multiple-sequence alignment based methods.
Sequence alignment is used to predict structure
based on an observation that proteins with simi-
lar amino acid (AA) sequences have similar struc-
ture. In this case, for a given query sequence,
homologous sequences are found and the query
sequence�s structure is deduced based on the
known structure of the homologous sequences
(Altschul et al., 1997; Cuff and Barton, 2000;
Jones, 1999; Lin et al., 2005; Pollastri et al., 2002;
Rost and Sander, 2000). The sequence alignment
based methods provide superior results for the
prediction of the secondary structure (McGuffin
and Jones, 2003).

– Threading based methods. This approach com-
pares a query sequence with a library of known
folds. The comparison results in ,similarity�
scores, which are ranked, and the structural tem-
plate with the best score becomes the predicted
structure of the query sequence (Bowie et al.,
1991; Jones, 1992; Rost, 1996, 1997). The main
shortcoming of threading methods is that they
are unable to recognize previously unencountered
structures. In this case, threading methods will
still rely on the database of known folds, and pre-
dict the most similar structure from the database.
Recent research attempts to optimally combine
sequence alignment and threading techniques to
obtain more accurate fold predictions (Shan
et al., 2001; Skolnick et al., 2004).

– Fragment assembly based methods (Bujnicki,
2006). They are based on an observation that the
protein backbone structure can be accurately rep-
resented using short fragments taken from other
proteins (Kim et al., 2004; Rohl et al., 2004).
Another alternative are related hybrid methods,
which combine fragment assembly, lattice based
folding simulations and threading (Skolnick
et al., 2001; Zhang and Skolnick, 2004).A very
important aspect in case of the alignment-based
methods is sequence homology, or in other words
similarity between sequences, which is a result of
inheritance from a common ancestor. Homology
is defined as the percentage of amino acids in the
protein sequences that are identical after aligning
the sequence with other sequences from a given
dataset (gaps between consecutive amino acids
may be introduced during alignment, if neces-
sary). The underlying assumption of the multiple

alignment methods is that a minimum �30%
homology must exist between the query sequence
and the sequences that are used to deduce its
structure (Sander and Schneider, 1991). In 1999,
Rost coined the term twilight zone, which relates
to query sequences, which are characterized by
low, 20–30% homology with sequences that are
used to predict their structure (Rost, 1999). More
than 95% of all sequence pairs detected in the
twilight zone have different structures, which
makes it very difficult to perform high quality
structure prediction. To further illustrate this
point we compare three state accuracy of second-
ary structure prediction for homologous (>30%)
and twilight zone sequences. In case of highly
homologous sequences, i.e., when a query
sequence can be aligned with high confidence to a
set of sequences with known structure, the state-
of-the-art alignment-based secondary structure
prediction methods yield around 80% accuracy
(Petersen et al., 2000; Pollastri and McLysaght,
2005). At the same time, in a recent study where
twilight zone sequences were used, the state-of-
the-art prediction methods gave substantially low-
er accuracies (Lin et al., 2005), i.e., 67.6% for
PSIRED method (Jones, 1999), 67.4% for SSPro2
method (Pollastri et al., 2002), 66.4% for YA-
SPIN method (Lin et al., 2005), 65.4% for JNET
method (Cuff and Barton, 2000), and 65.0% for
PHDpsi method (Przybylski and Rost, 2002). To
this end, we concentrate on analysis of the
twilight zone sequences without applying the
multiple sequence alignment.

1.1. Motivation and goals

The current paper follows the theme of analyz-
ing small structural motifs in order to expedite pre-
diction of the overall protein topology for the
twilight zone sequences. We focus on the most basic
structural motifs: the individual a-helix, b-strand
and coil fragments. Understanding how to distin-
guish between these structural motifs and how each
of these basic building blocks of the protein struc-
ture can be represented and characterized with
respect to the protein sequence is fundamental to
advance our knowledge with respect to how higher-
level structural motifs, such as super-secondary
structures, domains and folds, are built. Here,
protein sequences are divided into three sets of
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structural fragments (motifs), defined as the longest
fragments of a primary sequence that correspond to
the same secondary structure. This investigation is
motivated by two important factors:

1. The 13% wide gap between the accuracies for
homologous and twilight zone sequences calls for
studies that would aim at the latter case. The
most recent contribution that analyzed structural
similarities for short motifs include proteins with
homology cut-off set at 95% (Szustakowski
et al., 2005). In contrast, we investigate structural
motifs at the secondary structure level for
sequences in the twilight zone.

2. The existing methods that investigate structural
motifs assume primary sequences as the input
information (Rohl et al., 2004; Szustakowski
et al., 2005; Taylor, 2002). In contrast, since our
paper concerns sequences with low sequence sim-
ilarity, we concentrate on developing alternative
sequence representation that is used as the in-
put.This research draws on ideas from related
structure prediction fields such as structural class,
secondary structure content and protein function
prediction, to develop a new, comprehensive and
improved representation of protein sequences
and to investigate which factors and prediction
algorithms result in improved discrimination
between the three secondary structures. Separate
classification models are built for a-helix,
b-strand, and coil fragments, and the classifica-
tion of a given fragment is cooperatively deter-
mined by the three classifiers.

The main goal of this paper is not to propose yet
another secondary structure prediction method, but
rather to investigate how to represent twilight zone
protein sequences in order to improve ability to dif-
ferentiate between the three secondary structures.
This work not only investigates a design of the
alternative representation, but it also considers
impact of other factors such as quality of the sec-
ondary structure information for terminal residues
of the structural fragments and usage of different
prediction algorithms. Results discussed in this
paper show that when using a simple sequence rep-
resentation based on AA propensities and similar
classification methods to those used in the second
generation secondary structure prediction methods
(Gibrat et al., 1987; Rost and Sander, 1994; Rost et
al., 1994) the prediction accuracy for the structural
fragments is about 65%. At the same time, improv-
ing the sequence representation and disregarding

terminal residues that are characterized by low
quality secondary structure information results in
significant improvements in accuracy. For the same
classification methods, an accuracy of over 70%
was achieved, reducing the error rates by 15%.
Also, some prediction algorithms are shown to pro-
duce superior prediction results, and thus selection
of a proper algorithm is an important consider-
ation.

2. MATERIALS AND METHODS

2.1. Protein secondary structure

The Dictionary of Secondary Structures of Pro-
teins (DSSP) (Kabsch and Sander, 1983) annotates
each AA in the primary sequence as belonging to
one of eight secondary structure states: H (alpha-
helix), G (3-helix or 310 helix), I (5-helix or p-helix),
B (residue in isolated beta-bridge), E (extended
strand), T (hydrogen bond turn), S (bend), and ‘‘_’’
(any other). Typically this annotation is reduced to
three states: a-helix (H that includes ‘‘H’’ and ‘‘G’’),
b-strand (E that includes ‘‘E’’ and ‘‘B’’), and coil (C
that includes remaining types) (Moult et al., 1997).
The assignment of the secondary structure is usually
performed in an automated fashion based on atom-
ic coordinates. To date, the most popular method
to assign the secondary structure is the DSSP
(Kabsch and Sander, 1983), although a number of
other methods, such as KAKSI, STRIDE,
XTLSSTR, PSEA, and SECSTR can be also used
(Martin et al., 2005).

2.2. Protein sequence representation

While some methods that analyze and predict
protein structure, including those based on the mul-
tiple alignments directly use the corresponding se-
quence, other methods first convert the sequence
into an attributes-based representation, e.g. protein
content and structural class prediction methods (Lin
and Pan, 2001; Wang and Yuan, 2000). The attri-
bute-based representation provides a viable alterna-
tive to improve secondary structure prediction for
the twilight zone proteins, which by definition are
characterized by relatively high sequence dissimilar-
ity. Additionally, usage of an attribute representa-
tion for transforming protein sequences (or
fragments) of different length into attribute vectors
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of the same length, allows the analyst to use stan-
dard machine learning and data mining methods for
prediction. The main drawback of these methods is
that the existing attribute representations of pro-
teins are inadequate.

Researchers have recognized that sequence rep-
resentation based on the commonly used composi-
tion vector is not sufficient for prediction purposes,
and therefore alternative representations have been
sought (Cai et al., 2002; Chou and Cai, 2004; Dub-
chak et al., 1997; Kurgan and Homaeian, 2005; Lin
and Pan, 2001; Luo et al., 2002; Ruan et al., 2005;
Zhang et al., 2001). This paper draws on numerous
recent studies to define a comprehensive set of attri-
butes to represent sequences that constitute struc-
tural fragments. The attributes used in our
representation are presented in Table 1. We also

perform attribute selection to select a subset of
attributes that are the most relevant to describe the
structural fragments.

2.3. Problem definition

A structural fragment (SF) is defined as the
longest fragments of a primary sequence that cor-
respond to the same secondary structure. The
motivation to select such short structural motifs,
in contract to prior studies, in which structural
motifs were composed of small arrangements of
few secondary structures (usually few helices and
strands) (Szustakowski et al., 2005; Taylor, 2002),
comes from the low homology assumption. While
the overall sequence may be in the twilight zone,

Table 1. Attribute representations for a protein sequence; 1 (Lin and Pan, 2001), 2 (Muskal and Kim, 1992), 3 (Syed and Yona, 2003), 4

(Eisenhaber et al., 1996), 5 (Zhang et al., 1998), 6 (Zhang et al., 2001), 7 (Wang and Yuan, 2000), 8 (Luo et al., 2002), 9 (Cai et al.,

2003), 10 (Ganapathiraju et al., 2004), 11 (Nelson and Cox, 2000), 12 (Wang et al., 2000), 13 (Yang and Wang, 2003), 14 (Hobohm and

Sander, 1995), 15 (Ruan et al., 2005); the attributes are normalized with respect to the sequence length

Attribute set name Description Motivation References (prediction task)

Length # of residues in the primary

sequence

May be related to content

hydropho-bicity Average and accumulated average

hydrophobicity computed using

Eisenberg�s (Cornette, 1987) and

Fauchere-Pliska�s (Fauchere and

Pliska, 1983) hydrophobic indices

Hydrophobic force is one of the

strongest determinant factors of a

protein structure

1,6 (content)

Molecular weight Sum of molecular weights (Black

and Mould, 1991) of neutral, free

AAs

May be related to content and

function

2 (content) 3 (function)

Composition vector Normalized composition percent-

age of each AA in the primary

sequence

Used in most content & structural

class prediction methods

1,4,5,6 (content) 7,8,9

(struct class)

Composition moment vector 1st order composition vector,

combines position and composi-

tion AAs in the sequence

Supplementing composition with

position was shown to improve

content prediction

15 (content)

Auto-correlation Autocorrelation value computed

using Fauchere-Pliska�s hydropho-

bic index

Reflects profile of hydrophobic

values along the primary sequence

1,5,6 (content)

Electronic group Divides AAs into neutrals, electron

donors or acceptors

Electrostatic forces stabilize struc-

ture

10 (structure)

R group Combines hydropathy, molecular

weight and pI

May be related to structure and

content

11 (structure /content)

Exchange group Some AAs can be substituted by

other without impact on the struc-

ture

Represents conservative replace-

ments through evolution

12 (family) 13 (structure)

Hydrophobic group Divides AAs into hydrophobic and

hydrophilic

The same as for hydrophobicity 2,14 (function)

Other groups Considers the following classes:

charged, polar, aromatic, small,

tiny, bulky, and polar uncharged

May be related to function 3,14 (function)

Chemical group 19 chemical groups that compose

the side chains of the AAs

May be related to structure 10 (structure)
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its short segments are likely to exhibit higher de-
gree of homology. Additionally, this definition of
structural motifs allows us to study impact of the
quality of secondary structure assignment for ter-
minal residues of SFs, which is a common prob-
lem for the secondary structure assignment
methods (Martin et al., 2005). To illustrate the
SF definition, we consider the primary sequence
and the secondary structure derived using DSSP
based on NMR 2D homonuclear technique for
Mediterranean mussel defensin MGD-1 protein
(protein ID 1FJN) from the Protein Data Bank
(PDB)(Berman et al., 2000):

GFGCPNNYQCHRHCKSIPGRCGGYCGG
WHRLRCTCYRCG
CCCCCCHHHHHHHHHHCCCCCEEEECC
CCCCCEEEECCC

The corresponding SFs for a-helix are NY-
QCHRHCKS, for b-strand are GGYC and CTCY,
and for coil are GFGCPN, IPGRC, GGWHRLR,
and RCG.

Structural fragment prediction is defined as
prediction of secondary structure for a given pri-
mary sequence fragment based on models inferred
from SFs for which the corresponding structure is
known; see Fig. 1. Solid lines denote how the mod-
els are generated, while dotted lines show how they
are used to perform prediction.

We emphasize that this paper is not concerned
with how these SFs are extracted from a sequence in
order to perform secondary structure prediction, but
we rather use this classification problem to propose
novel sequence representation and to investigate how
using certain prediction algorithms can help to im-
prove our ability to distinguish between different sec-
ondary structures. This, in turn, can help to better
characterize these structural motifs and ultimately
improve analysis of the overall protein topology.

For the SF prediction problem, the attribute
representation discussed in section 2.2 was supple-
mented with the following two attributes:

– number of duplicates, which is the number of
occurrences of a given SF among all SFs for the
same secondary structure, e.g. how many time the
GFGCPN fragment appears among the coil frag-
ments in the training database. Higher values
provide higher confidence that the SF is associ-
ated with a given secondary structure

– relative position, which approximates the position
of a given structural fragment in the primary AA
sequence. Each protein sequence was divided into
four quarters, and the relative position corre-
sponds to the quarter within which the majority
of the structural fragment is contained, e.g. rela-
tive position of the GFGCPN fragment is equal
to 1 since the fragment in contained in the first
quarter of the 1FJN sequence. This attribute rep-
resents the relationship between SF positions with
respect to the sequence termini.

2.4. Data preparation

Since the SF prediction task was not consid-
ered in past research and we specifically aim at ana-
lyzing the twilight zone sequences, we first create a
suitable database of SFs. The data was extracted
from the PDB, August 12, 2004 release. For pro-
teins with multiple chains, the last chain was
selected. Next, the proteins were filtered to elimi-
nate errors and inconsistencies. Proteins with miss-
ing primary or secondary sequences, with sequence
length<5, with sequences containing unknown or
incorrect residues, with helices of length<3, and
with strands of length<2 were filtered out. After
filtration, 5834 proteins remained. Among them, a
subset of 539 high quality twilight zone proteins
was selected using the 25% PDB SELECT list
(Hobohm and Sander, 1994). The 25% PDB SE-
LECT list includes only high quality low homology
proteins, i.e. proteins scanned with high resolution
and with about 25% sequence identity. The primary
sequences for the 539 proteins were divided into

 

 model of coil SFs 
 model of strand SFs
 model of helix SFs 

database of SFs with 
known secondary 

structure state 

primary sequence fragment with 
unknown secondary structure state 

attribute 
 representation

prediction 
algorithm 

SFs 
represented 
by attributes

classification predicted structural class (state)  
for the query sequence fragment 

Fig. 1 Diagram of the structural fragment prediction task.
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SFs, which were further converted into attribute
representation and grouped by their corresponding
secondary structure label. In each set duplicates and
inconsistent SFs were counted and removed, and
helix SFs of length £ 3, and strand and coil SFs
of length £ 2 were eliminated to improve quality of
the data (this was necessary due to the division of
filtered proteins into SFs). A total of 7056 SFs were
generated. A more detailed description of the filter-
ing procedure can be found in (Kurgan and Kedari-
setti, 2005).

We then created several datasets to explore
specific goals (described later) related to the SF
classification problem, as follows (the corresponding
number of SFs is given in brackets):

– D (7056), which includes all SFs,
– D-2 (5284), D-4 (3590) and D-6 (2557), which in-

cludes all SFs, but with 2, 4, or 6 terminal resi-
dues removed in the SFs (1, 2, and 3 residues are
removed on each side),The distribution of helix,
strand, and coil SFs for each dataset is shown in
Figure 2.

For example, our procedure would divide the 1FJN
protein, shown earlier, and insert the resulting SFs
into our datasets as in Table 2. Since the 1FJN pro-
tein contains relatively short SFs, no fragments for
datasets D-l and D-vl were extracted.

2.5. Prediction algorithms

SF prediction can be performed using a wide
range of prediction algorithms (classifiers). In this
paper eight algorithms were considered. These may
be divided into black-box algorithms, which gener-
ate a model that cannot be interpreted by a user,

and white-box algorithms, which generate an inter-
pretable model. The latter are further divided into
rule-based, decision trees and probabilistic algo-
rithms. Representative prediction algorithms for
each of the categories are used (see Table 3). For
the Naı̈ve Bayes algorithm, attribute values were
discretized using equal-frequency discretization.

2.6. Detailed goals related to structural fragment

prediction

The general problem of SF prediction was used
to address a number of specific goals related to how
the three secondary structures (and thus the corre-
sponding structural motifs) can be distinguished
based on the primary sequences represented using a
comprehensive set of attributes described in section
2.2:

– GOAL 1: Investigate the quality of different pre-
diction algorithms.

– GOAL 2: Investigate if terminal residues in the
SFs suffer from decreased reliability of the sec-
ondary structure classification by discarding these
residues and investigating the differences in pre-
diction accuracy. This goal directly addresses the
question of ill-defined secondary structures for
terminal residues of SFs, which are generated by
the secondary structure assignment methods
(Martin et al., 2005)

– GOAL 3: Selection of an optimal attribute repre-
sentation. The comprehensive representation con-
sisting of all attributes described in section 2.2
was used to select an optimal subset of attributes.
This subset was compared with the most com-
monly used composition vector representation
and with the original set of all attributes.Dataset
D was used to address goal 1, datasets D, D-2,
D-4, and D-6 for goal 2.2, and finally datasets D
and D-6 for goal 3. In the next section, experi-
mental results in support of each the defined
goals are presented.

0

20

40

60

80

100

D

D
-2

D
-4

D
-6datasets

% H % E % C

Fig. 2 Distribution of the helices (H), strands (E), and coils (C)

for the considered datasets; dataset D includes all SFs, datasets

D-2, D-4 and D-6 include SFs with 2, 4, and 6 terminal residues

removed, respectively.

Table 2. Results of dividing 1FJN protein and inserting the

resulting SFs into datasets D, D-2, D-4 and D-6

Dataset Structural fragments

D GFGCPN, NYQCHRHCKS, IPGRC, GGYC,

GGWHRLR, CTCY, RCG

D-2 FGCP, YQCHRHCK, PGR, GWHRL

D-4 QCHRHC, WHR

D-6 CHRH
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2.7. Testing and evaluation

To ensure statistical validity, experiments were
performed using 10-fold cross validation, in which
the original dataset is partitioned into 10 subsets.
Of the 10 subsets, 1 is retained to test the prediction
model, and the remaining 9 are used to generate the
model. The cross validation process is repeated 10
times, with each of the 10 subsets used exactly once
as the test data. The results from these 10-folds are
averaged to produce a robust estimate of the qual-
ity of the model. The models were validated using
accuracy, sensitivity and specificity, which are stan-
dard measures defined based on a confusion matrix
that is shown in Table 4.

The accuracy is defined as ratio between the
number of correct predictions and the total number
of predictions: accuracy ¼ aþeþi

aþbþcþdþeþfþgþhþi.

The sensitivity is the ratio between the correct
and all predictions for a given secondary structure
(H, E, and C): sensitivityH ¼ a

aþbþc, sensitivityE
¼ e

dþeþf, sensitivityC ¼ i
gþhþi.

The specificity is the ratio between the correct
and all predictions for fragments that should
be excluded for a given secondary structure:

specificityH ¼ eþfþhþi
dþeþfþgþhþi, specificityE ¼ aþcþgþi

aþbþcþgþhþi,

specificityC ¼ aþbþdþe
aþbþcþdþeþf.

We report the average, over the 10-folds, accu-
racy and weighted, by the relative number of SFs
that belong to the three secondary structures, aver-
age sensitivity and specificity. The accuracy gives
only an overall evaluation, while a high confidence
can be placed for results that give high values for
all three measures (Cios and Moore, 2002).

3. RESULTS

Over 300 experiments were performed using the
four datasets and the comprehensive sequence rep-
resentation that includes all attributes listed in sec-
tion 2.2 to represent SF sequences. Results report
average accuracy and standard deviations. For all
prediction algorithms (except the proprietary imple-
mentation of SLIPPER that does not report the
confusion matrix) weighted average sensitivity and
specificity were computed to give further insights.
The results are summarized in Table 5.

3.1. GOAL 1: prediction algorithm selection

The average accuracy over all eight-prediction
algorithms for D dataset is 68.5%. The eight algo-
rithms were ranked using average accuracy. MLP is
the most accurate and bC5.0 is the second best, (see
Fig. 3). Average, over the four datasets, accuracy,
sensitivity and specificity results from Table 5 also
indicate that MLP and bC5.0 are superior. Based
on the paired t-test with 5% significance level, MLP
is significantly more accurate than all algorithms
except bC5.0. All of the algorithms demonstrated
good specificity (all above 79%, average of 81%),
indicating few false positives. The sensitivity values,

Table 3. Representative algorithms used to perform structural fragment prediction

Algorithm type Algorithm name Reference

Black-box Multiple layer perceptron

neural network (MLP)

(Hornik et al., 1989)

White-box Rule-based RIPPER (RIP) (Cohen, 1996)

SLIPPER (SLI) (Cohen and Singer, 1999)

Decision trees ID3 (Quinlan, 1986)

CART (Breiman et al., 1984)

C5.0 (RuleQuest, 2003)

bC5.0 (C5.0 with boosting) (RuleQuest, 2003)

Probabilistic Naı̈ve Bayes (NB) (Duda and Hart, 1973)

Table 4. Confusion matrix for the SF prediction

Actual structure Predicted structure

Helix (H) Strand (E) Coil (C)

Helix (H) a b c

Strand (E) d e f

Coil (C) g h i

a, e and i are # of correct predictions for helix, strand, and coil

fragments, respectively; b is the number of incorrect predictions

where helix fragment is identified as strand, c is the number of

incorrect predictions where helix fragments is identified as coil, etc.
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however, are relatively lower, averaging 69%. This
means that the algorithms generate very selective
models, which could be further improved by relax-
ing some constraints (e.g. pruning) to shrink the
gap between sensitivity and specificity and thus
increase accuracy.

3.2. GOAL 2: impact of terminal residues on

prediction accuracy

We compare the predictive accuracy of data-
set D against D-2, D-4 and D-6 to determine if
terminal residues in the SFs have a detrimental
effect on the reliability of SF structure prediction
(see Fig. 4). The four datasets use all SFs, but
with some terminal residues removed. The results
show that, for all prediction algorithms, the pre-
diction accuracy improves when deleting residues
at the edges of SFs. The average, over the eight
classifiers, accuracy increases by 0.6–2.2% when
the terminal residues are removed. The same
trend is also true for the best performing algo-
rithms, i.e., 2.4% and 1.7% improvement when
deleting three residues is achieved for MLP and
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bC5.0, respectively. A paired t-test with 5% sig-
nificance level was performed to investigate if the
differences in accuracy are significant. The results
for all three datasets with removed residues are
significantly more accurate than the results
obtained with dataset D. At the same time, the
results for dataset D-6, which incorporated the
most aggressive removal of terminal residues, are
significantly more accurate at the 0.5% signifi-
cance level than results for all three other datasets
(D, D-2 and D-4). This indicates that there is a
negative impact on the reliability of predictions
when residues at SF edges are kept. In other
words, the quality of the secondary structure
assignment for the terminal residues is worse
when compared with the residues located inside
the SFs, which agrees with (Martin et al., 2005).

3.3. GOAL 3: attribute representation of protein

sequences

We have conducted over 3000 experiments
using the D and D-6 datasets, three representative
prediction algorithms (ID3, MLP, and NB), and
10-fold cross validation tests. The goal is to find a
subset of the attribute representation described in
section 2.2 that still yields comparably good predic-
tion accuracy. Attribute selection was performed
iteratively, where in each step, each of the attribute
sets was individually tested, and the best one was

selected. The first iteration resulted in selection of
the composition moment vector. The second best
attribute set was the composition vector, which
gave 0.5% and 0.2% lower accuracy for datasets D
and D-6, respectively. During the second and third
iterations chemical group and autocorrelations
based on hydrophobicity were selected; see the sum-
mary of results in Table 6. The results show average
accuracy over the three algorithms for both data-
sets, how many times each of the attribute sets gave
the best results, and relative rank for each of the
attribute sets.

The selection process was stopped after the
third iteration since the selected attribute sets were
already comparable in accuracy to using all attri-
butes, i.e. average accuracy for the selected three
attribute sets was only 0.7% and 0.3% lower than
average accuracy for the same three algorithms
when all attributes were used for datasets D and D-6,
respectively. The attribute set rank in all iterations
shows that composition vector and electronic group
also contribute to improved accuracy. For virtually
all experiments the hydrophobicity attribute set
computed using Fauchere�s index was superior to
Eisenberg�s index. The composition moment vector
gave on average better results than the commonly
used composition vector, which confirms results in
(Ruan et al., 2005). The chemical group was also
recently shown to increase accuracy of protein
structural class prediction (Kurgan and Homaeian,
2006). In short, the results show that only a handful

Table 6. Attribute set selection results (selected attribute sets are in grey); 1 (SF length), 2 (# duplicates), 3 (relative position), 4 (Eisen-

berg�s hydrophobicity), 5 (Fauchere�s hydrophobicity), 6 (mol weight), 7 (comp vector), 8 (comp moment vector), 9 (autocorrelation), 10

(electronic gr), 11 (R gr), 12 (exchange gr), 13 (hydrophobic gr), 14 (other gr), 15 (chemical gr); ‘‘avg accuracy D’’ and ‘‘avg accuracy

D-6’’ is the average accuracy over the three algorithms (ID3, MLP and NB) for datasets D and D-6, respectively (values in bold denote

the best results); ‘‘avg’’ is the average accuracy over the attribute sets; ‘‘# times best’’ shows how many times using the corresponding

attribute set gives the best, over the eight algorithms, accuracy (6 best results are recorded in total for each iteration – 2 datasets and 3

algorithms); ‘‘rank’’ denotes relative rank for each attribute sets in each iteration

iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Avg

1 Avg accuracy D 48.0 44.3 46.3 50.7 53.2 45.3 65.1 65.6 58.3 57.2 53.3 54.0 44.6 55.0 62.6 53.6

Avg accuracy D-6 49.8 44.8 44.4 47.8 54.5 51.9 69.2 69.4 58.6 62.2 60.0 62.4 54.6 57.2 68.1 57.0

# times best 0 0 0 0 0 0 3 3 0 0 0 0 0 0 0

Rank 12 14 15 11 9 13 2 1 5 4 7 6 10 8 3

2 Avg accuracy D 66.1 65.3 65.2 65.4 66.1 65.6 66.0 N/A 66.4 66.3 65.1 65.5 65.7 64.8 66.6 65.7

Avg accuracy D-6 69.7 68.9 68.1 68.1 69.4 68.4 70.0 N/A 68.3 69.5 68.7 69.8 69.0 68.5 70.3 69.0

# times best 1 0 0 0 0 0 0 N/A 2 0 0 0 0 0 3

Rank 4 9 13 12 5 10 2 N/A 7 3 11 6 8 14 1

3 Avg accuracy D 67.6 66.8 66.4 66.2 66.9 66.4 67.0 N/A 67.7 66.9 66.4 66.5 66.8 66.6 N/A 66.8

Avg accuracy D-6 70.0 70.2 70.2 69.9 69.8 69.5 70.9 N/A 70.4 70.2 69.3 70.0 70.0 69.5 N/A 70.0

# times best 1 1 0 0 1 0 0 N/A 2 1 0 0 0 0 N/A

Rank 3 5 8 10 7 12 2 N/A 1 4 13 9 6 11 N/A
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of attributes are needed to distinguish between the
three types of SFs, but at the same time those
‘‘best’’ attributes are different than the commonly
used attribute representations. As such, the results
provide useful guidelines to develop sequence repre-
sentations for the twilight zone proteins.

Additionally, prediction accuracies when using
(1) all attributes, (2) the selected subset consisting
of composition moment vector, chemical group, and
hydrophobic autocorrelations (3) the most com-
monly used representation including the composi-
tion vector, were compared. Experiments were
performed using all eight algorithms, and two data-
sets previously mentioned (see Table 7). Our results
show that on average 3.2%, 2.6% and 2.2% accu-
racy was gained by removing the terminal residues
when using the composition vector only, the se-
lected best attributes and all attributes, respectively.
The 1.9% and 2.5% improvement in accuracy was
obtained when the selected best attributes were used
instead of the composition vector for the D-6 and
D datasets, respectively. The combined improve-
ment, when both best proposed sequence represen-
tation is used and the terminal residues are
removed, equals 5.1%, which translates into reduc-
tion of the error rate by 15% (from 35% to 30%).
Similar improvements are observed for the best per-
forming algorithms, i.e., MLP and bC5.0. The sig-
nificance of the differences in accuracy over the
eight algorithms was investigated using a paired t-
test. For both datasets using the selected best attri-
butes gives significantly better accuracy at the
0.05% significance level when compared with the
commonly used composition vector. Similarly, when
all attributes are used the accuracy is significantly
better at the 0.05% and 0.5% levels when compared

to composition vector for the D and D-6 datasets,
respectively. This demonstrates that improved se-
quence representation helps to obtain statistically
significant improvements in prediction of secondary
structure for the SFs.

4. DISCUSSION

The paper studies regularity among twilight
zone protein structures at the level of structural
fragments (SFs), which are defined as structural
motifs that correspond to the longest fragments of a
primary sequence that correspond to the same sec-
ondary structure. SFs are the basic building blocks
of larger scale and more complex protein structures,
such as super secondary structures, basic forms and
domains (Szustakowski et al., 2005; Taylor, 2002).
The main goal was to answer two questions: first,
how to represent protein sequences to better differ-
entiate between different SFs (secondary structures),
and second, what algorithms should be considered
to improve this ability and if structure prediction
for terminal residues in the SFs suffers from
decreased reliability?

Based on comprehensive experimental studies,
our results provide several interesting insights into
characterization of the SFs. First, terminal residues
are characterized by decreased quality of the sec-
ondary structure assignment when compared with
the residues located inside the SFs. We have shown
that removing these residues results in significant
improvement in discrimination between the second-
ary structures. Second, the SFs should be described
by a carefully designed set of attributes to allow for
better differentiation between the three secondary

Table 7. Comparison of prediction with different attribute representations; dataset D includes all SFs and dataset D-6 includes SFs with

6 terminal residues removed; ‘‘average’’ is the average accuracy over the eight algorithms

Prediction algorithm Attribute representations for dataset D-6 Attribute representations for dataset D

Composition

vector

Selected best

attributes

All

attributes

Composition

vector

Selected best

attributes

All

attributes

MLP 71.3 73.3 75.0 68.0 70.9 72.6

RIP 69.6 70.8 71.2 65.0 67.6 68.8

SLI 67.2 69.7 70.5 62.8 66.1 67.6

ID3 67.2 69.4 69.5 63.6 65.6 66.7

CART 66.6 69.3 70.1 64.0 67.1 67.6

C5.0 67.1 68.6 68.0 64.1 66.4 66.5

bC5.0 69.9 72.5 73.7 68.5 70.8 72.0

NB 68.5 68.6 67.7 65.3 66.7 65.8

Average 68.4 70.3 70.7 65.2 67.7 68.5
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structures. The results show that attribute-based
representations of a sequence corresponding to SF
should include the composition moment vector,
chemical group, hydrophobic autocorrelation, com-
position vector and electronic group information.
These attributes describe the composition and loca-
tion of AA that constitute the SF�s sequence, the
composition of individual chemical groups in the
AA�s side chains, and finally the hydrophobicity
profile of the SF sequence. The experiments show
that based on this information, over 70% of the
SFs can be correctly classified into their correspond-
ing secondary structure. Finally, we show that some
prediction algorithms, such as neural networks and
boosted decision trees, generate significantly better
results than some other methods. Therefore, selec-
tion of a suitable prediction method will result in
better quality of the SF models.

The characterization of the structural motifs
was performed for low homology (twilight zone) se-
quences. It provides useful insights for the difficult
problem of secondary structure prediction for such
sequences. Additionally, the procedures described in
this paper are not dependent on the sequence align-
ment and thus are complementary to the current
mainstream secondary structure prediction methods.
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Leipzig 334–345.

Kurgan, L., and Kedarisetti, K. (2005) Proc of Symposium on
Human-Centric Computing. Canada: Banff 26–36.

Kurgan, L., and Homaeian, L. (2006). Pattern Recognition 39:(12),
2323–2343.

Lin, Z., and Pan, X-M. (2001). J. Protein Chem. 20:(3), 217–220.
Lin, K., Simossis, V. A., Taylor, W. R., and Heringa, J. (2005).

Bioinformatics 21:(2), 152–159.
Luo, R., Feng, Z., and Liu, J. (2002). Eur. J. Biochem. 269: 4219–

4225.
Martin, J., Letellier, G., Marin, A., Taly, J., Brevern, A.de, and

Gibrat, J. (2005). BMC Struct. Biol. 5: 17.
McGuffin, L., and Jones, D. (2003). Proteins 52:(2), 166–175.
Moult, J., Hubbard, T., Bryant, S., Fidelis, K., and Pedersen, J. T.

(1997). Proteins 29: 2–6.
Muskal, S. M., and Kim, S-H. (1992). J. Mol. Biol. 225: 713–727.
Nelson, D., and Cox, D. (2000) Lehninger Principles of Biochem-

istry. 3New York: Worth.
Quinlan, J. R. (1986) Mach. Learn. 1: 81–106.
Petersen, T., Lundegaard, C., Nielsen, M., Bohr, H., Bohr, J.,

Brunak, S., Gippert, G., and Lund, O. (2000). Proteins 41: 17–
20.

Pollastri, G., Przybylski, D., Rost, B., and Baldi, P. (2002).
Proteins 47: 228–235.

Pollastri, G., and McLysaght, A. (2005). Bioinformatics 21:(8),
1719–1720.

Przybylski, D., and Rost, B. (2002). Proteins 46: 197–205.
Rohl, C. A., Strauss, C. E., Misura, K. M., and Baker, D. (2004).

Method. Enzymol. 383: 66–93.
Rost, B, Sander, C., and Schneider, R. (1994). J. Mol. Biol. 235:

13–26.
Rost, B., and Sander, C. (1994). Proteins 19:(1), 55–72.
Rost, B. (1996) Method. Enzymol. 266: 525–539.

473Structural Motifs in Twilight Zone Proteins



Rost, B. (1997) J. Mol. Biol. 270: 1–10.
Rost, B. (1999) Protein Eng. 12: 85–94.
Rost, B., and Sander, C. (2000). In: Webstar, D., (ed.), Protein

Structure Prediction: Methods and Protocols, Human Press
Clifton, pp.71–95.

Ruan, J., Wang, K., Yang, J., Kurgan, L., and Cios, K. (2005).
Artif. Intell. Med. 35:(1–2), 19–35.

RuleQuest Research (2003). C5.0 rule learner at www.rule-
quest.com/see5-info.html.

Sander, C., and Schneider, R. (1991). Proteins 9: 56–68.
Shan, Y. B., Wang, G. L., and Zhou, H. X. (2001). Proteins 42:

23–37.
Skolnick, J., Kolinski, A., Kihara, D., Betancourt, M. R.,

Rotkiewicz, P., and Boniecki, M. (2001). Proteins 5: 149–156.
Skolnick, J., Kihara, D., and Zhang, Y. (2004). Proteins 56: 502–

518.
Syed, U., and Yona, G. (2003). In: Proc of Annual Conference on

Research in Computational Molecular Biology (RECOMB
2003), Berlin, Germany, pp. 224–234.

Szustakowski, J., Kasif, S., and Weng, Z. (2005). Bioinformatics
21:(Suppl.2), ii66–ii71.

Taylor, W. (2002) Nature 416:(6881), 657–660.
Unger, R., and Sussman, J. (1993). J. Comput. Aid. Mol. Des. 7:(4),

457–472.
Wang, Z-X., and Yuan, Z. (2000). Proteins 38: 165–175.
Wang, J., Ma, Q., Shasha, D., and Wu, C. (2000). In: Proc of the

6th ACM SIGKDD Inter. Conf. on Knowledge Discovery and
Data Mining, Boston, MA, pp. 305–309.

Yang, X., and Wang, B. (2003). In: Proc of the 8th ACM
SIGMOD workshop on Research issues in Data Mining and
Knowledge Discovery, San Diego, CA, pp. 80–87.

Zhang, C. T., Lin, Z., Zhang, Z., and Yan, M. (1998). Protein Eng.
11:(11), 971–979.

Zhang, Z. D., Sun, Z. R., and Zhang, C. T. (2001). J. Theor. Biol.
208: 65–78.

Zhang, Y., and Skolnick, J. (2004). P. Natl. A. Sci. 101: 7594–7599.

474 Kurgan and Kedarisetti



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


