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Abstract 
Relatively low success rates of the X-ray crystallography, which is the most popular method for solving 

proteins structures, motivate development of novel methods that support selection of tractable protein 

targets. This aspect is particularly important in the context of the current structural genomics efforts that 

allow for a certain degree of flexibility in the target selection. We propose CRYSpred, a novel in-silico 

crystallization propensity predictor that uses a set of 15 novel features which utilize a broad range of inputs 

including charge, hydrophobicity, and amino acid composition derived from the protein chain, and the 

solvent accessibility and disorder predicted from the protein sequence. Our method outperforms seven 

modern crystallization propensity predictors on three, independent from training dataset, benchmark test 

datasets. The strong predictive performance offered by the CRYSpred is attributed to the careful design of 

the features, utilization of the comprehensive set of inputs, and the usage of the Support Vector Machine 

classifier. The inputs utilized by CRYSpred are well-aligned with the existing rules-of-thumb that are used 

in the structural genomics studies. 

Key words: crystallization, crystallization propensity prediction, protein structure, structural genomics, 

target selection, X-ray crystallography. 



Introduction 
The knowledge of protein structure is essential to determine protein functions and interactions [1, 2], which 

in turn are used to gain insights into numerous biological processes, and to perform drug design [3]. The 

current methods that predict the tertiary structure from the protein sequence do not yet offer a sufficient 

degree of accuracy [4], and thus researchers rely on the availability of the structures that are solved 

experimentally. The most popular experimental approach is the X-ray crystallography, which according to 

the Protein Data Bank (PDB) [5] as of January 2011 was used to obtain 86.9% of the deposited protein 

structures. One of the biggest contributors who solve protein structures is the Structural Genomics (SG) 

initiative [6]. SG is an international effort that focuses on solving representative structures for unsolved 

protein families [7]. This approach is characterized by certain flexibility in choosing the representative 

proteins, concentrating on unsolved proteins that are of potential interest for the structural biology 

community [8]. Specifically, the Protein Structure Initiative (PSI), which includes a few major SG centers, 

focuses on selection of target proteins from large, structurally uncharacterized protein domain families and 

subfamilies in very large and diverse families with incomplete structural coverage [9]. Unfortunately, the 

X-ray crystallography is characterized by a significant rate of attrition and is among the most complex and 

least understood problems in structural biology [10]; only about 2-10% of the pursued protein targets yield 

diffraction-quality crystal structures [11]. A more recent study shows that the success rates at the SG 

centers are at about 4.6% [12]. Moreover, more than 60% of the costs of structure determination are 

consumed by the failed attempts [13]. In spite of the advances made in the context of protein crystallization 

[14], the production of high-quality crystals is one of the major bottlenecks in the X-ray crystallography-

based structure determination pipelines [15-17]. Fortunately, the flexibility in the target selection allows the 

SG centers to concentrate resources on the tractable proteins. This motivates the development of 

computational methods which predict the propensity of a given protein chain to provide the diffraction-

quality crystals. Such methods could save time and resources, since they would potentially reduce the 

amount of work spent on the failed attempts.  

The design of the crystallization propensity predictors requires historical information about both successful 

and unsuccessful crystallization attempts [18]. This information can be found in TargetDB [19] and 

PepcDB (Protein Expression Purification and Crystallization DataBase) [20] databases. TargetDB, which 

concentrates on providing details concerning successful crystallization attempts, was launched July 2001, 

and it builds upon the work on the PRESAGE database [21]. The PepcDB, which was established around 

2004, extends TargetDB and collects more detailed status information and experimental details for each 

step in the protein structure production pipeline. This database stores a complete history of the status of the 

experimental steps in each production trial, the current status, and stop conditions. The availability of the 

databases motivated several studies that investigated relations between different characteristics of proteins 

chains and the success of the crystallization [22]. In [18], the authors analyzed several protein 

characteristics, such as the presence of transmembrane helices, low-complexity regions, and coiled-coil 

regions. In [23], the team from the Joint Center for Structural Genomics discovered a few features which 

correlate with crystallization output, which include isoelectric point (pI), sequence length, average 

hydropathy, and the presence of low-complexity regions, signal peptides, and trans-membrane helices. 

More recent studies [24-26] added several additional factors, such as sequence conservation across 

organisms, the presence of charged residues, the number of protein binding partners, and the amount of 

intrinsic disorder. The above studies demonstrate that the propensity of a given protein to crystallize is 

predictable from the sequence and they motivated the development of several predictors. 

In 2006, the first machine learning-based predictor, called SECRET, was proposed [27]. In the same year, 

Overton and Barton developed the OB-Score, which is a normalized scale for SG target ranking that is 

based on only two features: pI and hydrophobicity [28]. In the following years several other methods have 

been proposed including CRYSTALP [29], ParCrys [30], XtalPred [13, 31], CRYSTALP2 [32], MetaCrys 



[33], PXS [34], SVMCrys [35], and MCSG-Z score [36]. Some of these methods, including OB-Score and 

XtalPred, were already utilized by the SG centers. We note that while majority of these methods were 

designed using data generated by multiple SG centers (i.e., data coming from the TargetDB and PepcDB), 

the PXS and MCSG-Z score were developed based on data coming from one SG center and thus they may 

not generalize to other centers or to applications by structural biologists. This is also why we do not include 

the latter two methods in our comparative analysis. Details concerning the above crystallization propensity 

predictors can be found in a recent review [12]. 

The current methods are based on a limited set of simple features (including SECRET, CRYSTALP, 

CRYSTALP2, OB-Score, and ParCrys) which include distribution of amino acid (AA) in the input chain, 

average hydrophobicity and isoelectric point, or use a relatively simple model (including XtalPred and OB-

Score) to generate predictions. The only exception is the SVMCRYS predictor which uses a Support 

Vector Machines (SVM) [37] classifier and a more comprehensive feature set that includes predicted 

secondary structure. In this work, we explore a few new aspects which are potentially relevant in the 

context of the crystallization process to build an improved predictor of the crystallization propensity. First, 

we perform a comprehensive search of the AA properties from the AAindex database [38] to find which of 

these indices are relevant for the prediction of the crystallization propensity. Second, as shown in [39, 40], 

the characteristics of the residues which are located on the surface of the protein are more informative than 

the characteristics of all constituent residues. Therefore, we hypothesize that the use of the relevant AA 

properties from the AAindex database, such as charge, hydrophobicity, propensity to form certain 

secondary structures, for solvent exposed and for buried residues, which are annotated base on the 

predicted solvent accessibility [41], would improve predictions. Finally, our method effectively combines 

multiple inputs, which include the sequence, the AA indices, and the predicted disorder and solvent 

accessibility to provide predictions characterized by success rates that improve over the rates obtained by 

the existing crystallization propensity predictors. 

Materials and Methods 

Datasets 

We employed three datasets which were recently introduced in [30], and one from [32]. These datasets 

were produced using the TargetDB and PepcDB using procedure developed in [30]. We designed our 

method based on five-fold cross validation on the FEAT dataset [30], which is composed of 1456 proteins 

sequences, with 728 crystallizable (C) and 728 non-crystallizable (NC) chains; this dataset was also used to 

design several recent crystallization propensity predictors, such as ParCrys, CRYSTALP2, and SVMCrys. 

Our method was tested on an independent TEST dataset (144 chains with 72 C and 72 NC) which is 

characterized by low sequence similarity with the chains in the FEAT dataset [30]. Similarly to work in 

[30], we also performed tests on the TEST-RL dataset (86 chains with 43 C and 43 NC), which is also is 

characterized by low sequence similarity with the chains in the FEAT dataset and which includes sequences 

with restricted length. We note that the chains that are included in these two test datasets, TEST and TEST-

RL, share similarity to the sequences in the training datasets in the [30], which include the FEAT dataset, 

that is below the ’similar structure’ thresholds defined in [42]. The values of these thresholds are dependent 

on the length of the sequence and they are at about 25%. The similarity was measured using PSI-BLAST 

and a given chain was eliminated if the similarity exceeded the threshold in any of the PSI-BLAST 

iterations. Chains in the TEST-RL dataset have length between 46 and 200 residues, which enables 

comparison against SECRET and CRYSTALP as these two methods can only predict proteins with < 200 

AAs. We also compare our predictor with the other methods on a more recent and larger test dataset with 

2000 proteins (hereafter TEST-NEW with 1000 C and 1000 NC chains), which was introduced in [32] and 

which does not implement any restrictions on the sequence identity with respect to the training dataset. The 

TEST-NEW set is used to assess the quality of predictions for newer targets, i.e., it includes targets that 



were included in the TargetDB and PepcDB after the FEAT, TEST, and TEST-RL datasets were 

developed.  

Quality Measures and Evaluation Protocols 

We performed the evaluation at the protein level for binarized predictions (predicted class crystallizable vs. 

non-crystallizable) and predicted propensity of crystallization. For the binarized prediction we report the 

accuracy and Matthews’s Correlation Coefficient (MCC), whereas for propensity predictions we provide 

ROC curves and the corresponding Areas Under the Curve (AUC). These measures are consistent with 

measures used in prior studies [30, 32, 33, 35]. The accuracy is the number of correct predictions divided 

by the total number of the test sequences. Given that the TP is the number of true positives (crystallizable 

protein predicted as being crystallizable), FP is the number of false positives (non-crystallizable predicted 

to be crystallizable), TN is the number of true negatives (non-crystallizable, predicted as non-

crystallizable), and FN is the number of false negatives (crystallizable predicted as non-crystallizable), the 

accuracy is defined as: 

100∗
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+
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The MCC values range between -1 and 1, where 0 represents random correlation, and bigger positive 

(negative) values indicate better (lower) prediction quality. This measure is defined as: 
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The Receiver Operating Characteristic ROC curve represents the relationship between the true positive 

(TP) and false positive (FP) rates when the confidence scores from the predictors are thresholded and the 

threshold values are varied. This allows comparing prediction qualities under different TP and FP rates. 

Besides visualizing the ROC curves, we also compute the AUC to quantify the predictive quality. 

The design of our predictor was performed using five-fold cross validation on the FEAT dataset; this helps 

to obtain a robust method which is not over-trained (over-fitted) to the training dataset. In the five-fold 

cross validation we divide the dataset at random into five equal size subsets (folds), and use one fold as a 

test set and the others four folds as a training set; the experiment is repeated five times, each time a 

different fold is chosen to be the test fold. This methodology is consistent with the design protocols used in 

this area. In addition, for each assessment we repeated the cross validation (each time at random selecting 

different five folds) several times to compute mean MCC values; the mean is first computed over each set 

of five test folds and then averaged over the repetitions. The cross validations were repeated for as long as 

the coefficient of variation (the ratio of the standard deviation to the mean) was below 0.02, or for a 

maximum of five times. Once the design process is completed, we computed our prediction model using 

the FEAT dataset, and we tested our model and compared it against the existing predictors using the TEST, 

TEST-RL, and TEST-NEW dataset. This is consistent with the test protocols used in prior studies [30, 32, 

33, 35]. 

Architecture of the Predictor 

The input protein sequence is first converted into a numerical feature vector. These features are based on 

the information extracted from the protein chain and the solvent accessibility and disorder predicted from 

the sequence. The feature vector is inputted into an SVM model that outputs the predicted class 

(crystallizable vs. non-crystallizable) and the predicted crystallization propensity. The design includes 

formulation of the input features, selection of the relevant features, and parameterization of the SVM 

classifier. 



Features 

We explore a wide range of AA indices from the AAIndex1 database [38] and we combine them with the 

solvent accessibility predicted using SPINE [43]. We define a given residue as solvent exposed if its 

predicted relative solvent accessibility > 0.25; otherwise we assume that the residue is buried. We 

investigate total of 531 AA indices; we exclude the indices that have missing values for any of the 20 AAs. 

We also include features which are based on the disorder predicted with DISOPRED2 [44]. 

We used each of the 531 AA indices to compute the following three values (which results in 1593 

features): 

• {AAIndex} – sum of the index value for each residue divided by the sequence length (531 

features) 

• {AAIndex}_exp – sum of the index value for residues predicted as solvent exposed divided by the 

number of the exposed residues (531 features) 

• {AAIndex}_bur – sum of the index value for residues predicted as buried divided by the number 

of the buried residues (531 features) 

The 7 features generated using the predicted disorder include: 

• DIS_RES – number of the predicted disordered residues divided by the sequence length (1 feature) 

• DIS_MAX{_norm} – the length of the longest predicted disordered region (either normalized with 

respect to the sequence length or not) (2 features) 

• DIS_AVG{_norm} – the average length of the predicted disordered regions (either normalized 

with respect to the sequence length or not) (2 features) 

• DIS_REAL – sum of predicted disordered scores for each residue, divided by the sequence length 

(1 feature) 

• DIS_SEG – number of predicted disordered regions (1 feature). 

Since many of the above 1600 features are likely irrelevant or weakly-relevant to the prediction of the 

crystallization propensity, we used a simple wrapper-based filter to remove these features. We ranked each 

feature according to its MCC value, based on the five-fold cross fold validation on FEAT dataset with the 

Flexible Naïve Bayes classifier [45] using this feature as the only input. We selected this classifier since it 

allows for quick computation of the MCC value, while we had to compute 1600*5 = 8000 experiments.  

We use the MCC value for the isoelectric point, which equals 0.286 and which is one of the features that 

are known to affect the crystallization [23], as a cut-off threshold, i.e., the features with the MCC values < 

0.286.were filtered out. Consequently, we selected 161 features that have the MCC values between 0.286 

and 0.415. 

Parameterization and Feature Selection 

We used WEKA workbench [46] to design the proposed predictor. We use the SVM, which is among the 

top 10 data mining algorithms [47] and which was previously shown to provide accurate predictions for the 

crystallization propensity [35], outer membrane proteins [48], disordered residues [49], catalytic residues 

[50], and RNA-binding residues, to name just a few. The SVM requires parameterization, which includes 

selection of a suitable kernel function (including setting parameters of this function), and the selection of 

the value of the complexity constant C. We tried 3 popular kernel functions including Radial Basis 

Function (RBF), Polynomial kernel (POLY), and normalized polynomial kernel (NPOLY). For each 

kernel, we tuned its parameter including gamma for RBF and exponent for the latter two kernels. 

Consequently, we tuned two parameters for each kernel type, C and gamma for RBF, and C and exponent 

for both polynomial kernels. The parameterization was performed using grid search based on the five-fold 

cross validation on the FEAT dataset to maximize the MCC values, where the considered values of the 

SVM parameter were: C ∈{0.5, 1, 2.5, 5, 7.5, 10, 15 ,20, 25, 30}, gamma = g*10
e
, where g ∈{0.01, 0.025, 



0.05, 0.075} and e ∈{0, 1, 2}, and exponent = 0.5+ 0.25*i, where i ∈ {0, 1, .., 10} (except exponent = 1 for 

NPOLY kernel since this value is prohibited). We first parameterized each of the 3 kernels using the 161 

features; these parameters were used to perform feature selection. Upon completion of the features 

selection, we parameterized the 3 kernels again using the corresponding selected feature sets. 

Table 1 Summary of results for the wrapper-based feature selection, which are based on the five-fold cross 

validation on the FEAT datasets, for the three considered classifiers, i.e., SVM models that use three kernel 

types including Radial Basis Function (RBF), Polynomial kernel (POLY), and normalized polynomial 

kernel (NPOLY), and two search methods, the best first and the greedy stepwise. The results are sorted in 

the descending order according to the MCC values. 

Feature selection method Results on the FEAT dataset 

Classifier Search method 

# of selected 

features Accuracy MCC 

SVM_NPOLY Best First 15 78.5 0.572 

SVM_NPOLY Greedy stepwise 15 77.8 0.558 

SVM_RBF Best First 17 77.6 0.554 

SVM_POLY Best First 21 77.3 0.548 

SVM_RBF Greedy stepwise 15 77.2 0.546 

SVM_POLY Greedy stepwise 15 76.9 0.538 

 

Table 2 Comparison of predictive quality between the proposed CRYSpred method and the existing 

crystallization propensity predictors including ParCrys, OB-Score, XtalPred, CRYSTALP, CRYSTALP2, 

SECRET, and SVMCrys. The evaluation is computed based on three independent test datasets, TEST, 

TEST-RL and TEST-NEW. The CRYSpred was trained on the FEAT dataset, whereas the results for the 

ParCrys, OB-Score, XtalPred, CRYSTALP, CRYSTALP2 and SECRET were obtained from the web 

servers, and for the SVM-CRYS using the author-provided standalone application. The SVM-CRYS and 

CRYSTALP do not produce crystallization propensity scores (they only generate binary predictions) and 

thus we could not compute their AUC values. The SECRET and CRYSTALP could be tested only on the 

TEST-RL dataset since they predict only for sequence < 200 residues. The results on each dataset are 

sorted in the descending order according to the MCC values and the best results for each quality index and 

each dataset are shown in bold font. 

Dataset Method Accuracy MCC AUC 

CRYSpred 79.9 0.60 0.85 

XtalPred
 

79.2 0.58 0.83 

CRYSTALP2
 

75.7 0.52 0.79 

ParCrys 71.5 0.45 0.75 

TEST 

OB-Score 64.6 0.32 0.68 

CRYSpred 80.2 0.60 0.86 

ParCrys 79.1 0.58 0.84 

XtalPred
 

76.7 0.54 0.82 

CRYSTALP2 69.8 0.40 0.72 

OB-Score 69.8 0.40 0.71 

SECRET 58.1 0.16 0.58 

TEST-RL 

CRYSTALP 46.5 -0.07 N/A 

CRYSpred 73.4 0.47 0.78 

ParCrys
 

70.6 0.43 0.75 

SVMCrys 70.4 0.43 N/A 

XtalPred
 

70.0 0.40 0.76 

TEST-NEW 

CRYSTALP2
 

69.3 0.39 0.74 



The feature selection was performed based on the wrapper approach, with the 3 SVMs that are based on the 

3 kernels parameterized using the 161 features, in which we utilized two search techniques: the best first 

search and the greedy stepwise search. The objective of both search types was to select a set of features that 

maximizes the MCC value, which is computed based on five-fold cross validation on the FEAT dataset. 

We generated total of 6 features sets (2 search procedures for each of the 3 kernel types). The results from 

the five-fold cross validation on the FEAT dataset for the six selected feature sets are summarized in Table 

1. We observe that the six considered configurations provide relatively similar predictive performance. The 

MCC values range between 0.54 and 0.57 and the number of selected features is between 15 and 21. The 

best performing model utilizes SVM with the NPOLY kernel along and 15 features selected using the best 

first search-based feature selection. This configuration, for which C = 25 and exponent = 2.75, was selected 

to implement the proposed CRYSpred method. 

Results and Discussion 

Comparative Study 

Our CRYSpred was trained on the FEAT dataset and tested on the three independent (from the FEAT 

dataset) tests datasets: TEST, TEST-RL, and TEST-NEW. We compare our model with the OB-Score, 

ParCry, CRYSTALP2, and XtalPred methods on the TEST, TEST-RL and TEST-NEW dataset. We also 

compare with SECRET and CRYSTALP on the TEST-RL dataset (these two latter methods predict only 

for sequence with less than 200 residues and thus they could not be tested on the other two test sets) and 

with the SVMCrys on the largest TEST-NEW dataset. We do not include the results from the SVMCrys on 

the TEST and TEST-RL datasets since we believe that these predictions were overfitted into these datasets, 

i.e., the authors report the accuracy of 89.5% on the TEST-RL dataset and 86.8% on the TEST dataset 

which are substantially higher that the 77.4% accuracy that this method obtained on the training FEAT 

dataset [35]. We note that the XtalPred generates one of five crystallization propensity classes, including 

optimal, suboptimal, average, difficult, and very difficult, whereas our test datasets classify each chain into 

one of the two classes, crystallizable and non-crystallizable. Therefore, we mapped the output of XtalPred 

into the two classes as follows: the optimal, suboptimal, and average classes are assumed to be predicted as 

crystallizable, while the difficult and very difficult classes as the non-crystallizable. This mapping was 

previously shown to result in a favorable prediction quality when considering the two classes [32]. The 

results are presented in Table 2. The corresponding ROC curves obtained for the top four predictors, 

ParCrys, XtalPred, CRYSTALP2, and CRYSpred, are shown in Figure 1. We note that the SVM-CRYS 

and CRYSTALP do not generate the crystallization propensity values, and thus we could not generate the 

ROC curves and compute AUC for these two methods. We also did not include the ROC curves for the 

OB-Score and SECRET since these methods obtain lower AUC values, see Table 1. 

The CRYSpred outperforms the other solutions in both the binary predictions (based on the MCC and ACC 

scores) and the real-valued crystallization propensities (based on the AUC values) on the three test datasets. 

The MCC and AUC values offered by our method are around 0.6 and 0.85, respectively, for the older two 

datasets (TEST and TEST-RL), and they equal 0.47 and 0.78 for the newer and larger TEST-NEW dataset. 

The AUC scores and the corresponding ROC curves show that CRYSpred works on average better than the 

ParCrys and XtalPred methods, and that these improvements hold for the majority of the range of the TP- 

and FP-rates, see Figure 1. We note that our method improves over the second-best ParCrys on the newer 

TEST-NEW dataset by 2.8% in accuracy, 0.04 in MCC, and 0.03 in AUC. The accuracies on the TEST-

NEW dataset are lower by around 6% for the CRYSpred and 9% for second-best ParCrys, when compared 

with the results on the TEST and TEST-RL datasets. This drop in the quality of the predictions could be 

explained by the fact that the TEST-NEW set includes newer data. Consequently, recent advances in the 

crystallization protocols [52, 53], which potentially enable crystallization of previously non-crystallizable 

proteins, would confuse the results generated by the prediction models that were established using older 



data. This motivates development of new crystallization propensity predictors which would utilize newer 

data in order to keep up with the dynamic nature of the modern crystallization pipelines. 

 

Figure 1 The ROC curves for the ParCrys, XtalPred, CRYSTALP2, and CRYSpred computed on the TEST 

(top left panel), TEST-RL (top right panel), and TEST-NEW (bottom panel) datasets. 

Factors Related to Prediction of Crystallization Propensity 

CRYSpred uses 15 features which are summarized in Table 3 and which quantify several structural 

characteristics of proteins. The table includes the biserial correlation coefficients between the values of our 

features and the outcomes (annotations of crystallizable and non-crystallizable chains) on the FEAT 

dataset. The sign and the magnitude of these correlations indicate the direction and the strength of the 

relation between a given features and the outcomes. We observe a strong presence of information derived 

from the charge-based AA indices, which agrees with previous observation made in [24], and from the 

hydrophobicity-based AA indices, which concurs with the observations in several related studies [24, 28-

30, 32, 36]. The feature set uses two AA indices that describe AA composition, which was also used in 

several prior methods that predict crystallization propensity [13, 30, 32, 34]. We hypothesize that the 

reason why we use three AA indices that quantify propensity for the alpha helix conformation is that 

membrane spanning regions in protein structure are often implemented with alpha helices, and this 



information was previously found useful for the crystallization prediction [23, 18, 26]. Our method also 

utilizes features derived from the predicted disorder, which agrees with the findings in [13, 25], and 

information concerning the predicted solvent accessibility, which was shown to be important in [39, 40]. 

Overall, the features utilized by CRYSpred are intuitive, physically reasonable, and their selection is 

supported by the fact that they were investigated in relevant prior studies. Our main contribution is to 

efficiently combine these relevant factors to generate high quality predictions of the crystallization 

propensity. 

Table 3 Summary of the selected 15 features used in the CRYSpred method along with their MCC values 

obtained by the Flexible Naïve Bayes classifier and biserial correlation on the FEAT dataset (see the 

“Features” section for more details). The features are sorted in the descending order according to the MCC 

values. The “Feature name” uses identifiers of the corresponding AA indices from the AAindex database. 

MCC 
Biserial 

correlation 
Feature name Description Feature type 

0.397 0.349 NAKH900113 Average value of AA index describing AA composition AA composition 

0.368 0.386 KUMS000103 
Average value of AA index describing distribution of 

AAs in the alpha-helices in thermophilic proteins 

Secondary 

structure 

0.367 0.390 KUMS000104 
Average value of AA index describing distribution of 

AAs in the alpha-helices in mesophilic proteins 

Secondary 

structure 

0.360 -0.417 GRAR740101 Average value of AA index describing AA composition AA composition 

0.347 -0.336 DIS_MAX_norm 
The length of the longest predicted disordered region 

divided by the sequence length 
Disorder 

0.343 0.361 QIAN880103_exp 
Average value of AA index describing weights for alpha-

helices 

Secondary 

structure 

0.325 -0.232 PARJ860101 Average value of AA index describing HPLC parameter Hydrophobicity 

0.315 0.129 WERD780101 
Average value of AA index describing  propensity of 

AAs to be buried 

Solvent 

accessibility 

0.312 -0.272 DIS_REAL 
Sum of predicted disorder scores for each residue 

divided by the sequence length 
Disorder 

0.309 0.183 BIOV880101 
Average value of AA index describing solvent 

accessibility of AAs 

Solvent 

accessibility 

0.307 0.116 BAEK050101 Average value of linker index Disorder 

0.307 0.289 COWR900101 Average value of hydrophobicity index Hydrophobicity 

0.299 -0.322 CHAM830108 
Average value of AA index describing a parameter of 

charge transfer donor capability 
Charge 

0.299 0.287 FAUJ880112_bur 
Average value of AA index describing negative charge 

for buried AAs 
Charge 

0.292 0.205 FAUJ880112 Average value of AA index describing negative charge Charge 

 

Case Studies 
We present three case studies to demonstrate how the features selected in this study can contribute to an 

improved prediction of the crystallization propensity. We choose three crystallizable proteins from the 

TEST_NEW dataset (PDB ids: 3DBO, 3I59 and 3IHU) that were correctly predicted by CRYSpred but 

predicted as non-crystallizable by the other methods, except for the 3I59 and 3IHU proteins that were 

correctly predicted by the SVMCRYS and XtalPred, respectively. Table 4 summarizes the input feature 

values and the predicted crystallization propensities by the CRYSpred, SVMCRYS, CRYSTALP2, 

ParCrys, OB-Score, and XtalPred methods for these targets.  

 



Table 4 Values of input features and predicted crystallization propensities for three selected protein targets 

(PDB ids: 3DBO, 3I59 and 3IHU). Features values were normalized using min-max method and the 

maximal/minimal values of a given feature on the FEAT dataset. Values of the average hydropathy score 

and pI were taken from TargetDB and the value of the instability index was taken from the XtalPred 

predictions. The crystallization propensities are used to predict whether a given chain is crystallizable using 

a cut-off value that for the CRYSpred and CRYSTALP 2 is 0.5, for ParCrys is 3564600, for OB-Score is 

0.809, and for XtalPred is 3. The XtalPred generates five propensities including optimal, suboptimal, and 

average which are assumed as the crystallizable, and the difficult and very difficult which are considered as 

the non-crystallizable The SVMCRYS does not produce the propensity scores. 

  3DBO 3I59 3IHU 

NAKH900113 0.263 0.211 0.219 

KUMS000103 0.574 0.679 0.472 

KUMS000104 0.576 0.695 0.482 

GRAR740101 0.151 0.250 0.176 

DIS_MAX_norm 0.030 0.042 0.136 

QIAN880103_exp 0.412 0.667 0.470 

PARJ860101 0.277 0.482 0.181 

WERD780101 0.582 0.422 0.688 

DIS_REAL 0.017 0.019 0.077 

BIOV880101 0.688 0.516 0.788 

BAEK050101 0.532 0.407 0.637 

COWR900101 0.688 0.588 0.736 

CHAM830108 0.245 0.192 0.405 

FAUJ880112_bur 0.241 0.188 0.040 

15 features used by CRYSpred 

FAUJ880112 0.226 0.558 0.166 

Avg. Hydropathy Score -0.431 -0.271 -0.209 

pI Value 11.9 10.2 9.1 
Features relevant to crystallization 

success that are used by other 

methods Instability Index 77.03 43.45 38.41 

CRYSpred C (0.580) C (0.747) C (0.705) 

SVMCRYS N (n/a) C (n/a) N (n/a) 

CRYSTALP2 N (0.329) N (0.380) N (0.407) 

ParCrys N (192000) N (2080000) N (3360000) 

OB-Score N (-2.79) N (-4.11) N (-2.22) 

Crystallization propensity 

predictions for a given predictor in 

the format: 

binary prediction (propensity value) 

where C stands for crystallizable 

and N for non-crystallizable XtalPred 
N (very 

difficult) 
N (difficult) C (average) 

 

The considered targets have high pI and low average hydrophaty values. These values produce a low OB-

Score which suggests difficulties with the crystallization [28]. The pI and hydrophaty values are also most 

likely responsible for the incorrect predictions from the ParCrys and CRYSTALP2 methods, and have, 

along with the high values of the instability index, strong impact on the predictions generated by the 

XtalPred. The correct XtalPred prediction for 3IHU has low confidence (the average propensity value). The 

factor that resulted in reducing the propensity to average, when compared with the very difficult and 

difficult propensities generated for the 3DBO and 3I59 chains, is the fact that the 3IHU protein has a 

relatively large number of homologs, equal 8, to the targets with solved structures. Considering the features 

used by CRYSpred, the three targets are characterized by high values of indices describing secondary 

structures (including KUMS000103, KUMS000104, and QIAN880103_exp features) and solvent 

accessibility (including WERD780101 and BIOV880101) and low values of the disorder content related 

features (including DIS_MAX_norm and DIS_REAL features). We observe that the KUMS000103, 

KUMS000104, QIAN880103, WERD780101 and BIOV880101 features have positive correlations with the 

outcomes (the annotation of the crystallizable and non-crystallizable chains), see Table 3, which means that 

their high positive values indicate higher likelihood of successful crystallization. On the other hand, the 

DIS_MAX_norm and DIS_REAL features have negative correlations with the outcomes, see Table 3, 



which is why their lower values are indicative of the successful crystallization. Moreover, in spite of the 

low average hydropathy score, which is unfavorable for the successful crystallization, the values for the 

hydrophobicity-based indices which are used in the CRYSpred, i.e., the relatively low values for the 

PARJ860101 feature that has negative correlation with the outcomes and the high values of the 

COWR900101 feature that is positively correlated with the outcomes, suggest that these targets are 

crystallizable. Finally, the relatively low values for the features describing AA content (GRAR740101) and 

charge (CHAM830108), which have negative correlations with the outcomes, see Table 3, suggest that the 

input chains are feasible crystallization targets. The values of the remaining features overall do not agree 

with the observations on training dataset; however the SVM classifier that we apply compensates for these 

discrepancies and produces correct predictions for all three targets. 

Conclusions 
We propose a novel in-silico method for the crystallization propensity prediction, CRYSpred. Our method 

outperforms the existing predictors on three test datasets. CRYSpred improves accuracy over the second 

best ParCrys method by about 3% for the largest test set that includes new crystallization targets. Our 

method uses the SVM classifier and a set of fifteen novel features which quantify information about AA 

composition, hydrophobicity, charge, propensity of AAs to form helical conformation, and the predicted 

solvent accessibility and disorder. The features used by the CRYSpred are well-grounded in the prior 

studies that investigated factors related to the propensity for protein crystallization. We observe that the 

predictive qualities obtained for the newer test data are lower, which motivates continuing development of 

new predictors which would accommodate for the new advances in the crystallization protocols. Since 

user-friendly and publicly accessible web-servers represent the future direction for developing practically 

more useful predictors [54], we shall make an effort in our future work to provide a web-server for the 

method presented in this paper. 
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