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Abstract

This paper addresses computational prediction of protein structural classes. Although in recent years progress in this field was made,
the main drawback of the published prediction methods is a limited scope of comparison procedures, which in same cases were also
improperly performed. Two examples include using protein datasets of varying homology, which has significant impact on the prediction
accuracy, and comparing methods in pairs using different datasets. Based on extensive experimental work, the main aim of this paper is to
revisit and reevaluate state of the art in this field. To this end, this paper performs a first-of-its-kind comprehensive and multi-goal study,
which includes investigation of eight prediction algorithms, three protein sequence representations, three datasets with different homologies
and finally three test procedures. Quality of several previously unused prediction algorithms, newly proposed sequence representation,
and a new-to-the-field testing procedure is evaluated. Several important conclusions and findings are made. First, the logistic regression
classifier, which was not previously used, is shown to perform better than other prediction algorithms, and high quality of previously used
support vector machines is confirmed. The results also show that the proposed new sequence representation improves accuracy of the
high quality prediction algorithms, while it does not improve results of the lower quality classifiers. The study shows that commonly used
jackknife test is computationally expensive, and therefore computationally less demanding 10-fold cross-validation procedure is proposed.
The results show that there is no statistically significant difference between these two procedures. The experiments show that sequence
homology has very significant impact on the prediction accuracy, i.e. using highly homologous datasets results in higher accuracies. Thus,
results of several past studies that use homologous datasets should not be perceived as reliable. The best achieved prediction accuracy for
low homology datasets is about 57% and confirms results reported by Wang and Yuan [How good is the prediction of protein structural
class by the component-coupled method?. Proteins 2000;38:165–175]. For a highly homologous dataset instance based classification is
shown to be better than the previously reported results. It achieved 97% prediction accuracy demonstrating that homology is a major
factor that can result in the overestimated prediction accuracy.
� 2006 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Proteins consist of an amino acid (AA) sequence, which
is organized into three major types of secondary structures:
helices (� structure), strands (� structure), and coils. The
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first definition of protein structural classes is accredited to
Levitt and Chothia [1]. Based on their pioneering work four
structural classes of globular proteins are usually distin-
guished: (1) all-� class, which includes proteins with only
small amount of strands, (2) all-� class with proteins with
only small amount of helices, (3) �/� class with proteins
that include both helices and strands and where strands are
mostly parallel, and (4) � + � class, which includes pro-
teins with both helices and strands and where strands are
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mostly antiparallel. The knowledge of structural classes of
proteins is useful for the broader problem of protein struc-
ture prediction. For instance, the accuracy of secondary
structure prediction [2] and reduction of the search space
of possible conformations of the tertiary structure [3,4] can
be significantly improved by incorporating the knowledge
of structural classes. Another factor that motivates this re-
search is availability of the Structural Classification of Pro-
teins (SCOP) database [5]. This popular database contains
proteins that are manually annotated and classified into the
structural classes, which are used to perform numerous pro-
tein structure related studies. Final motivation comes from
substantial gap between number of protein for which struc-
ture is known and thus structural class can be assigned man-
ually (only about 30 000 proteins stored in the Protein Data
Bank) and the total number of currently known protein se-
quences (NCBI database contains well over 2 million pro-
teins). Thus, development of a reliable method for predic-
tion of structural classes for new and undetermined protein
sequences is of pivotal importance.

The structural class assignment is currently performed
mostly manually on the basis of known secondary structure
and the annotated sequences are stored in SCOP. Over the
last two decades numerous computational prediction meth-
ods were proposed, starting from early works in 1980s [6,7],
through advancements made in 1990s [8–12], and finally to
the most recent methods [13–17]. Early methods were very
simple and were tested on very limited protein sets, which
resulted in their poor performance. On the other hand, re-
cent outbreak of methods results in mixture of results rang-
ing from relatively poor (about 50% accuracy) to almost
perfect (about 95% accuracy). These papers propose meth-
ods that are often tested on small datasets characterized by
different characteristics, such as sequence homology, which
is shown to have a significant impact on the prediction ac-
curacy. They usually do not perform reliable comparison
with other methods on common data, and sometimes use
improper procedures that boost the accuracy. Lack of truly
comprehensive study, which would summarize the field, ad-
dress the problem of testing standardization and point new
research directions is evident. An exception is a study done
by Wang and Yuan [13], which as a major result points
out accuracy limit of 60% when Bayesian classification and
composition vector based protein sequence representation is
used. Major weaknesses of this paper are inconsistent com-
parison with competitive methods, which was based on dif-
ferent and small datasets for different methods, focus on a
single prediction method, and controversies that followed
its release [18,19]. To this end, this paper describes a com-
prehensive and well defined multi-objective study that: (1)
tests eight prediction algorithms, which include methods
that were not used in the past, (2) investigates three test
procedures, i.e. resubstitution, 10-fold cross-validation and
jackknife, (3) studies impact of sequence homology on pre-
diction accuracy, and (4) proposes new representation of pro-
tein sequences, which is compared with two previously used

representations, i.e. composition vector and autocorrelation
functions.

2. Background and related work

2.1. Structural classes definitions

Structural class definitions were initially developed in
1980s and redefined multiple times since then, see Table 1.
The main differences were in the thresholds used to define
amount of strands for all-� proteins, and amount of helices
for all-� proteins. In 1986 Nakashima and colleagues de-
fined five structural classes [6]. This was followed in 1995
by Chou who proposed classification into again five classes,
but using different thresholds [20]. The change was due to
Nakashima’s classification, which set the thresholds for all-
� proteins and all-� proteins that were not large enough to
reflect the real features of the two structural classes. Chou
also defined content of the secondary structures using the
Dictionary of Secondary Structure of Proteins (DSSP) [21].
Another definition, which merges the � + � and the �/�
classes into so-called mixed class and thus considers only
four classes, was proposed by Eisenhaber and colleagues
in 1996 [22]. All above classifications consider irregular,
which are also called �, proteins that are small in numbers
and therefore are omitted from classification.

The threshold based classifications were deemed obsolete
in the late 1990s and were replaced by the manually per-
formed SCOP classification. SCOP database includes de-
scription of the structural and evolutionary relationships of
proteins from the Protein Data Bank (PDB) [24]. The SCOP
classifies proteins on multiple levels including structural
classes, but also as belonging to different families, super-
families and containing different domains. Domain is de-
fined as a structurally conserved part of a protein sequence,
and together with the entire sequences is currently a tar-
get of structure prediction. The SCOP’s classification does
not incorporate hardcoded rules for structural classes. Intu-
itively, it makes decisions based on structural elements that
are located in individual domains that constitute the pro-
tein. Researchers claim that the SCOP classification is more
“natural” and provides more reliable information to study
protein structural classes when compared to classification
based on the percentage amounts of the secondary struc-
tures [5,13,25]. The SCOP classification currently includes
11 classes [26]: (1) all-� proteins; (2) all-� proteins; (3)
�/� proteins; (4) � + � proteins; (5) multi-domain proteins;
(6) membrane and cell surface proteins; (7) small proteins;
(8) coiled coils proteins; (9) low resolutions proteins; (10)
peptides; and (11) designed proteins. Usually, only the first
four categories are considered for computational prediction
purposes as they include significant majority of the protein
sequences.

A number of other structural classification problems,
which are out of the scope of this paper, are also defined and
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Table 1
Structural class definitions

Reference Structural class Helix (�) amount Strand (�) amount Additional constrains and comments

[6] � proteins > 15% < 10%
� proteins < 15% < 10%
� + � proteins > 15% > 10% Contains dominantly antiparallel �-sheets
�/� proteins > 15% > 10% Contains dominantly parallel �-sheets otherwise
Irregular Otherwsie

[20] � proteins �40% �5%
� proteins �5% �40%
� + � proteins �15% �15% More than 60% antiparallel �-sheets
�/� proteins �15% �15% More than 60% parallel �-sheets
� proteins �10% �10%

[22,23] � proteins > 15% < 10%
� proteins < 15% > 10%
Mixed proteins > 15% > 10%
Irregular Otherwise

SCOP [5] � proteins N/A N/A Manual classification
� proteins
� + � proteins
�/� proteins
+7 other classes

investigated by the researchers. For instance, prediction of
the protein folds (SCOP families) is one of the areas of in-
tensive research that applies classification algorithms, such
as support vector machines, neural networks, regression,
etc. [27–30].

2.2. Related work

Prediction of the protein structural classes is usually per-
formed as a two step procedure. First, sequences of differ-
ent length are represented by a fixed length feature vec-
tor and next the feature values are fed into a classification
algorithm. Early prediction methods used simple compo-
sition vector based sequence representation and threshold
based class definitions, and applied discriminant analysis
with different distance measures. The composition vector is
a 20-dimensional vector, which represents the occurrence
frequencies of the 20 AAs. Example distance measures in-
clude Euclidean distance [6], Hamming distance [7], and
Mahalanobis distance [10]. Next generation of the predic-
tion methods used more complex classification algorithms,
and the same composition vector based representation. Ex-
amples include algorithms based on the maximum compo-
nent coefficient principle [8], least correlation angle algo-
rithm [31], fuzzy clustering [32], artificial neural network
[9,11,12], vector decomposition [22], component coupled
geometric classification algorithm [25], Bayesian classifica-
tion [13], and most recently support vector machines [15].
The most noticeable progress among these algorithms was
done by including the coupling effect among different AA
components [3,25]. Recent works improve structural class
prediction by using alternative sequence representation. Ex-

amples include auto-correlation functions based on non-
bonded AA energy [33], polypeptide composition [16,34],
and functional domain composition [17].

Detailed comparison of recent prediction methods, which
includes information about classification algorithms, repre-
sentations, class definitions, and accuracy of the prediction,
is given in Table 2. The table also provides details about
datasets used for testing, including the corresponding se-
quence homology, size and inclusion of domains.

Analysis of the above table reveals that the prediction al-
gorithms were tested on often very small datasets character-
ized by unknown and most likely high sequence homology,
which is shown to have significant impact on the prediction
accuracy. They usually did not perform reliable compari-
son with other algorithms on common datasets, and in some
cases used incorrect procedures that boosted the accuracy.
Detailed discussion of these issues follows.

2.3. Important factors related to structural class prediction

2.3.1. Evaluation
Quality of prediction (classification) of sequences into

structural classes is measured using two tests: resubstitution
and jackknife. The resubstitution tests the prediction on the
training data, while jackknife is a leave-one-out test pro-
cedure, which also can be seen as n-fold cross-validation
where n is the number of data points. Although it is com-
monly recognized that resubstitution test leads to unrealisti-
cally high accuracies, traditionally this results is still being
reported. In contrast, the jackknife test is perceived as very
rigorous and reliable to evaluate classification accuracy and
generalization abilities of the tested algorithms [3,25,33–35].
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Table 2
Comparison of state-of-the-art structural class prediction methods

Classification algorithm Representation Classes Dataset Classification accuracy

Size Homology Domains Reference Resub Jackknife Reference

Vector decomposition AA compos. vector 3 classes [22,23] 260 Unknown No [22,23] 60.8 57.7 [22,23]
471 Unknown No 58.2 57.3

Geometric classification AA compos. vector 4 classes SCOP 359 Unknown, Yes [25] 94.3 84.1 [25]
but homologous

Component coupled AA compos. vector 4 classes SCOP 359 Unknown, Yes 94.4 84.7 [33]
geometric classification but homologous

Auto-correlation 4 classes SCOP 359 Unknown, Yes 96.7 90.5
functions but homologous

Bayes classification AA compos. vector 4 classes [6] 131 Unknown No [6] 99.2 42.7 [13]
4 classes [20] 120 Unknown No [20] 100 53.3
3 classes [22,23] 260 Unknown No [22,23] 86.5 62.7

471 Unknown No 79.6 66.7
4 classes SCOP 1189 40% Yes [13] 63.8 53.8

675 30% Yes 66.7 48.0
Discriminant analysis AA and polypeptide 4 classes SCOP 1054 40% Yes [34] 91.7 75.2 [34]

compos. vector
AA compos. vector 4 classes SCOP 1054 40% Yes 66.2 55.8

Information discrepancy polypeptides 4 classes SCOP 359 Unknown, Yes [25] — 95.8 [16]
based classification but homologous

4 classes SCOP 1401 30% Yes [16] – 75.0
Support vector machines AA compos. vector 4 classes SCOP 359 Unknown, Yes [25] 93.0 95.2 [15]

but homologous
AA compos. vector 7 classes SCOP 1601 Unknown, Yes 87.0 84.1

but homologous
Intimate sorting classification AA compos. vector, 7 classes SCOP 2230 20% Yes [17] — 98.8 [17]

functional domain
composition

Although we do not argue that the jackknife test is reli-
able, at the same time it is computationally very expensive.
Recent chapter written by Rost and Sander, experts in pro-
teins structure prediction, discusses the issue by stating that
“. . .a misunderstanding is often spread in the literature: the
more separations (the larger n) the better. However, the ex-
act number of n is not important provided the test set is rep-
resentative and comprehensive and the cross-validation re-
sults are not misused to again change the parameters” [36].
To this end, we argue that n-fold cross validation can be
substituted by 10-fold cross-validation, which is commonly
used to test classification algorithms and is computationally
much less demanding. At the same time, we should make
sure that algorithm parameters are not adjusted to take ad-
vantage of a too low number of folds, i.e. for a 2-fold cross-
validation the overfitting is much easier to achieve than for
the 10-fold cross-validation. Using 10 instead of n folds al-
lows to ease experimental comparison of different prediction
algorithms, and thus to possibly establish better standards
when it comes to comprehensiveness of future experimental
studies.

2.3.2. Sequence homology and prediction accuracy
Sequence homology is one of the main factors that signif-

icantly impact prediction accuracy. Homology is defined as

the percentage of AAs in the protein sequence that are iden-
tical after aligning the sequence with other sequences from a
given dataset (gaps between consecutive AAs may be intro-
duced during alignment, if necessary). Although homology
is known to impact the prediction accuracy, no standards are
imposed when it comes to performing tests. Just as an ex-
ample, one of the most often used test datasets, i.e. datasets
of 359 sequences, is highly homologous and thus the cor-
responding results show over 80% accuracy (shown in bold
in Table 2), while low accuracies of often about 50% are
shown for sets of low homology sequences (shown in ital-
ics in Table 2). Additionally, according to the classification
in SCOP, all protein domains with more than 30% homol-
ogy belong to the same protein family and should be classi-
fied as the same structural class. Prediction of the structural
class of a new protein sequence or domain, which is homol-
ogous 30% or more to a protein of known structure, can be
performed using sequence alignment. Therefore, some re-
searchers state that the prediction method should aim only
at proteins with lower than 30% homology [13].

Despite a few cases where high prediction accuracy for
low homology sets is achieved, in general Wang and Yuan
have shown that prediction of the four SCOP classes us-
ing Bayesian classification and composition vector based
sequence representation is limited to about 60% [13].
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Although these results were considered controversial by
some researchers [18,19], they show that low accuracy
should be expected, especially that the authors claim that
their algorithm is one of the most powerful. There are three
results shown in Table 2 using underscore that require more
detailed attention:

• In the [33] a large low homology dataset was used and
accuracy of 75.2% was achieved when composition of
custom computed polypeptides was used, but the authors
did not follow common standards during the tests. The
polypeptides were computed using the entire dataset and
then applied in the jackknife manner, which means that
information about the tested protein was used to perform
its prediction.

• Another prediction method achieved almost perfect,
98.8%, accuracy on a large non-homologous dataset [17].
Again, an improper procedure was used to boost the
results. The sequence representation included functional
domain decomposition, which consists of about 7800
features. Majority of them denote close similarity of one
or more out of 7785 functional domains with the tested
sequence. High accuracy of results is a result of high
homology between the functional domains and the tested
sequences, which again means that the information about
the test sequences (in terms of the structural domains
similar to the tested sequences) was used when evaluating
the results on the test data.

• A large non-homogenous dataset was used and accuracy
of 75% was achieved in [16]. Based on the published pa-
per, we believe that this result is due to application of a
novel information discrepancy based classification and a
polypeptide based sequence representation. At the same,
the authors used a highly dimensional representation that
includes 8000 features, while the aim of this paper is to use
representations that incorporate relatively small number
of features. Additionally, our recent analysis revealed that
the high accuracy was achieved by improper implementa-
tion. Similarly as in the previous two cases, information
about the test sequences, including the to-be-predicted
class, was used during the test. Our reimplementation of
this method that closely follows the paper and avoids the
implementation pitfalls shows about 63% accuracy for the
same dataset.

In short, we conclude that high accuracy is due to high ho-
mology or improper procedures. In this paper we aim to
verify prediction accuracy when multiple different classifi-
cation algorithms are used on two different large and low
homology datasets. The results are verified against the find-
ings of Wang and Yuan [13] and results published in [16].

2.3.3. Classification algorithms
The analysis of Table 2 reveals that although several dif-

ferent classification algorithms were used, many other algo-

rithms were never tried. This particularly applies to machine
learning algorithms, and includes decision trees, rule based,
and regression based algorithms. Also, no previous study
applied several algorithms simultaneously on the same data
to directly compare their quality. The published studies per-
formed comparison on different datasets for different pairs
of algorithms and therefore no reliable and comprehensive
comparison between different methods can be performed. To
this end, this paper uses three datasets to comprehensively
compare quality of eight classification algorithms. Detailed
description of the selected classification algorithms is pro-
vided later in the paper.

2.3.4. Sequence representation
One of the first results that hinted a possible sequence

representation was that the structural class is related to
the AA composition of the corresponding sequence [6].
Since then composition vector was used in numerous pro-
tein structure studies, including structural class, content,
and structure predictions [13,15–17,22,23,25,33,34,37–43].
Therefore most of the existing structural class prediction
methods are based on the composition vector. However,
researchers also pointed out that the AA composition does
not sufficiently utilize the sequence information [8,33,44]
and some controversies over predictive accuracies of the
methods based on composition vector arose in the past
years [14,18,19,22,24,45]. The best prediction accuracies
for low homology datasets when composition vector is used
are about 55%, see results for [13,16,34] in Table 2.

The only other successfully applied representations are
based on polypeptides [16] and auto-correlation functions
computed for individual AA [33]. This paper studies an al-
ternative approach, which does not use polypeptides due to
their large number, but introduces a new comprehensive rep-
resentation based on characteristics of individual AAs. It in-
cludes composition vector and other features that are related
to position of AAs in the sequence, their hydrophobicity,
chemical composition and weight. This comprehensive rep-
resentation is compared with the composition vector and the
auto-correlation functions.

3. Methods and goals

Based on a comprehensive experimental study this paper
aims to address factors related to prediction algorithms, ho-
mology, sequence representation and test procedures. First,
a detailed description of the considered experimental sce-
nario is given, and next specific goals are defined.

3.1. Experimental scenario

This paper performs comprehensive experimental com-
parison of different prediction algorithms using datasets of
low-homology, different sequence representations and test
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procedures. We start with a detailed description of the con-
sidered datasets.

3.1.1. Datasets
The datasets include two previously used sequences sets,

i.e. the 359 sequences datasets [25] and 1189 sequences
dataset [13]. Although the first dataset (denoted as 359) is
relatively small, it was the most extensively used in the past
studies. It includes 359 highly homologous domains and
sequences. The CD-HIT program, which clusters protein
databases at given sequence homology threshold, was used
to estimate homology of this dataset [46,47]. This program
is used by UniProt, PDB, EBI, and TIGR to filter highly
homologous sequences. The results show that among the 359
sequences only 214 are below 100% homology threshold,
clearly indicating that over 100 sequences in the dataset are
virtually identical. Running CD-HIT with 95%, 80%, 60%
and 40% homology threshold reveals that only 143, 133, 132,
and 127 sequences below the respective homology threshold
can be found. Due to the high homology this set is not used
to show true classification accuracy, but rather to investigate
the impact of homology on estimation of the classification
accuracy.

The second set contains sequences with low 40% homol-
ogy (denoted as 1189), and is selected due to its prior ap-
plication in the most comprehensive study of the structural
class prediction methods. The original 1189 dataset was pro-
cessed and filtered using the latest, 1.67, version of SCOP,
and PDB release as of February 2005. As a result a dataset
with 1092 domains and sequences was created. The main
problems with the original dataset include conflicting do-
main ranges for 298 domains, which were replaced with
265 domains. This was due to some PDB sequences that
do not have multiple domains in SCOP anymore, and that
now have fewer domains in SCOP than at the time when
the original dataset was created. The replacements were per-
formed by selecting the same proteins with the closest do-
main range. Also, 55 domains had illegal symbols in their
primary structures, 24 domains were indexed out of the cor-
responding protein sequences, and 18 PDB sequences were
obsolete and either replaced with the new sequences or re-
moved from the set. Finally, new version of the SCOP re-
classifies 18 domains from the original dataset into SCOP
classes 4–7, which are not considered for prediction. The fi-
nal set includes 223 all-�, 294 all-�, 334 �/�, and 241 �+�
domains and sequences.

Additionally, a new larger dataset with low homology se-
quences is created and used to perform experiments. The
dataset is selected based on the 25% PDBSELECT list [48],
which is about 15 times smaller than the PDB and includes
only high quality non-homologous proteins, i.e. proteins
scanned with high resolution and with low on average 25%
homology (the homology ranges between 22% and 45%).
Using PDB release as of February 2005, 2340 sequences and
domains were extracted based on 25% PDBSELECT list.

Among them 443 are all-�, 443 are all-�, 346 �/�, and 441
� + �, while for the remaining sequences the SCOP classes
are missing or belong to the other seven SCOP classes. The
final 25PDB dataset (denoted as 25PDB) contains 1673 pro-
teins and domains.

These two low homology datasets are used to provide
two independent sources of experimental results to evaluate
classification accuracy. In order to enable other researchers
to use these datasets, lists of all sequences and domains
that constitute the 25PDB and 1189 datasets are given in
Appendix A.

3.1.2. Representation
The paper also proposes a novel representation that in-

cludes variety of features related to AA composition, po-
sition, hydrophobicity, weight, and chemical composition
including:

• composition vector (denoted as A) due to its extensive
prior use;

• first order composition moment vector (denoted as B),
which was successfully used for the protein secondary
content prediction [43,49];

• autocorrelation functions based on the Oobatabe–Ooi AA
energy index (denoted as C) [50], which were used for
structural class prediction [33];

• autocorrelation based on the cumulative Eisenberg’s hy-
drophobicity index (denoted as D) [51], which was suc-
cessfully used for the protein secondary content prediction
[40];

• chemical group composition (denoted as E), which was
used for the protein structure prediction [42] and for the
protein secondary content prediction [49];

• and the sequence molecular weight (denoted as F ), which
was used for the protein content prediction [49,52].

The above features were selected based on their prior suc-
cessful application in protein structure prediction. The com-
position vector and composition moment vector are defined
based on the count and position of AAs in the sequence [43]

x
(k)
i =

∑ci

j=1n
k
ij

∏k
d=0(N − d)

,

where i = 1, 2, . . . , 20 is the AA index, k is the order of the
composition moment vector (for k = 0 it reduces to compo-
sition vector), N is the length of the protein sequence, nij is
the j th position of the ith AA, and ci is the count (composi-
tion) of the ith AA in a sequence. Hydrophobicity is used to
represent a protein sequence by using a hydrophobic scale,
where each AA is replaced by its hydrophobic index value
hi , see Table 3. Alternatively AAs can be replaced by their
corresponding energy index values oi , see Table 3.

Autocorrelation function rn is defined as [40]

rn =
∑N−n

j=1 indexi,j indexi,j+n

N − n
,
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Table 3
Hydrophobicity index, energy based index and molecular weight of AAs

AA A/M C/N D/P E/Q F/R G/S H/T I/V K/W L/Y

Eisenberg’s hydro-phobicity index hi 0.62 0.29 −0.90 −0.74 −1.19 0.48 −0.40 1.38 −1.50 1.06
0.64 −0.78 0.12 −0.85 −2.53 −0.18 −0.05 1.08 0.81 0.26

Oobatabe–Ooi energy index oi −9.475 −12.210 −12.144 −13.815 −20.504 −7.592 −17.550 −15.608 −12.366 −15.728
−15.704 −12.480 −11.893 −13.689 −16.225 −10.518 −12.369 −13.867 −26.166 −20.232

Molecular weight mi 71 103 115 129 147.1 57 137.1 113.1 128.1 113.1
131 114 97 128.1 156.1 87 101 99.1 186.1 163.1

Table 4
Chemical groups associated with AAs

AA Associated chemical groups

A CH, CO, NH, CH3
C CH, CO, NH, CH2, SH
D CH, CO, NH, CH2, CO, COO−
E CH, CO, NH, CH2, CH2, CO, COO−
F CH, CO, NH, CH2, CAROM, CHAROM, CHAROM, CHAROM, CHAROM, CHAROM
G CH2, CO, NH
H CH, CO, NH, CH2, CAROM, CHAROM, N, CHAROM, NH
I CH, CO, NH, CH2, CH, CH3, CH3
K CH, CO, NH, CH2, CH2, CH2, CH2, NH+

3
L CH, CO, NH, CH2, CH, CH3, CH3
M CH, CO, NH, CH2, CH2, S, CH3
N CH, CO, NH, CH2, CO, C, NH2
P CHRING, CO, NHRING, CH2RING, CH2RING, CH2RING
Q CH, CO, NH, CH2, CH2, CO, C, NH2
R CH, CO, NH, CH2, CH2, CH2, NH, C, NH2, NH+

2
S CH, CO, NH, CH2, OH
T CH, CO, NH, CH, CH3, OH
V CH, CO, NH, CH, CH3, CH3
W CH, CO, NH, CH2, CAROM, CAROM, CAROM, NH, CHAROM, CHAROM, CHAROM, CHAROM, CHAROM
Y CH, CO, NH, CH2, CAROM, CHAROM, CHAROM, CHAROM, CHAROM, CAROM, OH

where indexi,j is the index value for the ith AA at the j th
position in the sequence, and n is the number of autocor-
relation functions. Based on the prior results, n = 6 and
indexi,j = hi were used for the Eisenberg’s hydrophobicity
index [40], and n = 30 and indexi,j = oi were used for the
Oobatabe–Ooi AA energy index [33]. Another AA property
that was found useful for structure prediction is the chemi-
cal composition of their side chains. There are 19 chemical
groups, which constitute the side chains, and some chemi-
cal groups are associated with multiple different side chains,
see Table 4.

The count (composition) of each of the chemical groups
is computed for a protein sequence, i.e. all AAs that have a
given chemical group are counted, and the resulting vector
constitutes a set of 19 features for the prediction. Finally, the
sequence molecular weight refers to the sum of the atomic
weight of AAs that constitute the sequence, see Table 3.
This feature is defined as

Mavg =
∑N

j=1mij

N
,

where mi is the molecular weight of the ith AA at the j th
position in the sequence and N is the sequence length.

A feature selection study was conducted to select a sub-
set of the most relevant, with respect to structural class pre-
diction, features. The 25PDB and 1189 datasets were used
together with three feature selection methods:

1. Feature Subset Consistency (FSC) feature selection
method, which selects subset of features using a proba-
bilistic filter-based approach that uses Las Vegas algo-
rithm to search through different feature subsets [53].

2. Wrapper Subset Selection (WSS) feature selection
method, which is a classification based wrapper that
uses Naı¨ve Bayes algorithm [54].

3. Feature Correlation (FC) feature selection method,
which selects subset of features based on their cor-
relation with the class while maintaining low inter-
correlation between the selected features [55].

The experiments apply 10-fold cross-validation test pro-
cedure. Table 5 summarizes the results, where the selected
features are those that were picked up by the feature
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Table 5
Feature selection results

Dataset Selection method # Features selected from each of the feature sets Total # selected features

A B C D E F

25PDB FC 10 5 0 1 4 1 21
FSC 14 5 0 1 5 1 26
WSS 3 2 0 0 2 1 8

1189 FC 13 4 0 1 6 1 25
FSC 10 7 0 1 4 1 23
WSS 5 0 0 0 3 1 9

Average # selected features 9.2 3.8 0 0.7 4 1 N/A
Average % selected features 46% 19% 0% 11% 21% 100% N/A
Average # folds feature selected 26.1 14.4 0.3 10 11.1 59 N/A
Features never selected 0 0 22 0 7 0 N/A
Total /# features 20 20 30 6 19 1 96

A—composition vector, B—first order comp moment vector, C—auto-correlation based on Oobatake–Ooi energy index, D—autocorrelation based on
Eisenberg’s hydrophobic index, E—chemical group composition, F—molecular weight.

selection algorithms for at least 5 out of 10 cross-validation
folds (results shown in italics correspond to individual
folds). The “Total # selected features” gives, for each dataset
and each feature selection methods, the number of features
that are selected in at least five folds.

The “Average # folds feature selected” row shows the av-
erage number of individual folds for which features belong-
ing to a given feature set were selected. The maximum value
is 60 since each selection executed 10 folds, and three se-
lection methods were applied on two datasets. The “# Fea-
tures never selected” row gives the number of features from
a given feature sets that were not selected in any fold of any
of the three selection methods and the two datasets. Two
patterns are observed based on these two rows:

• Each feature set contains some features that have been
selected although for some feature sets there are some
features that were never selected. Chemical composition
(and energy index autocorrelations feature sets have some
features that are never selected, but also have features that
were selected).

• For most of the feature sets all features were selected.

These results give motivation to select entire feature sets,
rather than individual features. Additionally, using the entire
feature sets allows to preserve complete description of the
sequence with respect to a given sequence property, such
as AA composition, hydrophobicity, chemical composition,
etc.

The results between different feature selection algorithms
are consistent, and show that composition vector and molec-
ular weight are strongly related to structural classes. They
also show that first order composition vector, autocorrelation
based on hydrophobicity and chemical groups are related
to structural classes, while no features based on the energy
index autocorrelations were selected. The chemical compo-
sition feature set contains seven features that were never se-

lected, but at the same time its average number of folds is
similar to the number for first order composition vector and
autocorrelation based on hydrophobicity feature sets, and
thus it was also selected. Finally, energy index autocorrela-
tion set is relatively less valuable since its average number
of folds is at least an order of magnitude lower when com-
pared with other sets. At the same time, eight features from
this set were selected by in at least one selection fold, which
shows that it still can be applied for this prediction task.

Therefore the proposed representation includes 66 fea-
tures: 20-dimensional composition vector, 20-dimensional
composition moment vector, 19-dimensional chemical group
composition vector, 6-dimensional hydrophobic autocorre-
lations, and the sequence molecular weight. This represen-
tation is compared with two published representations: (1)
20-dimensional composition vector and (2) 30-dimensional
energy autocorrelations.

3.1.3. Classification algorithms
Eight different classification algorithms are used to per-

form structural class prediction. The algorithms are selected
to include all major families of classification algorithms and
select high quality, with respect to relatively low complexity
and good predictive accuracy, methods. They include some
of the previously used algorithms, such as Bayesian clas-
sification (Naı¨ve Bayes is chosen), nearest neighbor (in-
stance based learning algorithm is chosen), and support vec-
tor machines. We also introduce new to this field algorithms
such as decision trees (C4.5 and random forest are cho-
sen), rule based algorithms (RIPPER is chosen), neural net-
works (RBF network is chosen), and logistic regression; see
Table 6. The WEKA 3.4 environment [56] was used to per-
form experiments with the above classifiers. Each of the
classifiers was optimized with respect to their parameter for
each of the three datasets and the three representations. The
optimization was performed for each corresponding dataset-
representation pair using 2

3 of the data for training and 1
3 of
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Table 6
Summary of the applied classification algorithms

Classifier Reference Short description

Naı¨ve Bayes (NB) [57] Simple, scalable, due to assumption that all features are independent, and popular
probabilistic classifier

Radial basis function neural network
(RBF)

[58] Scalable neural network classifier that applies k-means clustering to generate Gaussian
radial basis functions and uses logistic regression to perform learning

Instance based classifier (IB1) [59] Simple, lazy learner that uses the idea of nearest neighbor classification
C4.5 (C4.5) [60] The most popular decision tree classifier
Random forest (RF) [61] One of the newest decision tree based classifiers, which constructs ensemble of

decision trees based on dissimilarity between data points in the training data
Repeated incremental pruning to produce
error reduction (RIP)

[62] A scalable and one of the most accurate rule-based classifiers, which generates
propositional rules using divide-and-conquer approach and a greedy set-covering
based search

Support vector machine (SVM) [63] An accurate classifier that applies sequential minimal optimization algorithm to
generate a support vector machine with polynomial or RBF kernels

Logistic regression (LR) [64] A multinomial logistic regression classifier that applies a ridge estimator

the data for testing. The parameters that gave maximal accu-
racy were selected. The considered parameters, their values
and optimal setup for each classification algorithm are given
in Appendix B.

3.2. Goals

The paper addresses the four following goals:
Goal 1. Comparison of classification accuracy of different

classification algorithms. The eight classifiers are tested and
compared using the low homology 25PDB and 1189datasets.

Goal 2. Impact of sequence homology on the classification
accuracy. The 8 classifiers are compared with respect to
results on the high homology 359 dataset and on the 2 low
homology datasets to investigate the differences in accuracy.

Goal 3. Impact of sequences representation on the classi-
fication accuracy. The prediction accuracies when the three
representations are used for the three considered datasets are
compared.

Goal 4. Comparison between 10-fold cross-validation,
jackknife and resubstitution test procedure with respect to
estimation of prediction accuracy. Experiments for all pre-
diction algorithms and for all datasets are performed and
compared using the three test procedures.

4. Experiments and results

Summaries of the structural class prediction results for
the eight classification algorithms, three sequence represen-
tations, and three test types are shown in Table 8 for 25PDB
dataset, in Table 9 for 1189 dataset, and in Table 10 for 359
dataset. The results show average accuracy lift, and weighted
by the class sizes sensitivity and specificity. The lift is de-
fined as a difference between the achieved accuracy and the
base-line accuracy, i.e. frequency of the largest class in the
dataset, which corresponds to a classifier that always chooses
the most frequent class. The corresponding base-line accu-

Table 7
Confusion matrix for the protein structural class prediction

Actual structural class Predicted structural class

All-� All-� �/� � + �

All-� a ab ac ad

All-� ba b bc bd

�/� ca cb c cd

� + � da db dc d

a, b and c are # of correct predictions for the respective four structural
classes; ab is the number of incorrect predictions where all-� protein is
predicted as all-� protein, ba is the number of incorrect predictions where
all-� protein is predicted as all-� protein, etc.

racies of the three datasets are 26.5% for the 25PDB dataset,
30.6% for the 1189 dataset, and 28.3% for the 359 dataset.
The accuracy, sensitivity and specificity are defined based
on a confusion matrix, see Table 7.

The accuracy is defined as ratio between the number of
correct predictions and n, which is the total number of pre-
dictions (proteins):

accuracy = a + b + c + d

n
.

The sensitivity is the ratio between the correct and all
predictions for a given structural class (all-�, all-�, �/�, and
� + �):

sensitivityall-� = a

a + ab + ac + ad
,

sensitivityall-� = b

b + ba + bc + bd
,

sensitivity�/� = c

c + ca + cb + cd
,

sensitivity�+� = d

d + da + db + dc
.

The specificity is the ratio between the correct and all
predictions for proteins that should be excluded for a given
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structural class:

specificityall-� = b + c + d + bc + bd + cb + cd + db + dc

b + c + d + bc + bd + cb + cd + db + dc + ba + ca + da
,

specificityall-� = a + c + d + ac + ad + ca + cd + da + dc

a + c + d + ac + ad + ca + cd + da + dc + ab + cb + db
,

specificity�/� = a + b + d + ab + ad + ba + bd + da + db

a + b + d + ab + ad + ba + bd + da + db + ac + bc + dc
,

specificity�+� = a + b + c + ab + ac + ba + bc + ca + cb

a + b + c + ab + ac + ba + bc + ca + cb + ad + bd + cd
.

The reported specificity and sensitivity are computed us-
ing a weighted, by the respective class sizes, average:

sensitivity = a + ab + ac + ad

n
sensitivityall-�

+ b + ba + bc + bd

n
sensitivityall-�

+ c + ca + cb + bd

n
sensitivity�/�

+ d + da + db + dc

n
sensitivity�+�,

specificity = a + ab + ac + ad

n
specificityall-�

+ b + ba + bc + bd

n
specificityall-�

+ c + ca + cb + bd

n
specificity�/�

+ d + da + db + dc

n
specificity�+�.

Best average accuracy lift and lifts within the 1% dif-
ference to the best with respect to either 10-fold cross-
validation (10CV) or jackknife tests are shown in bold.
Best results for each dataset are shown using underscore
(Tables 8–10 ). Next, the results are analyzed with respect
to the defined goals.

4.1. Goal 1—comparison of classification algorithms

The classification accuracy lift based on jackknife test for
different classifiers, the proposed representation and the low-
homology datasets are compared. The classifiers are ranked
based on the average results for the two datasets. The results
for the high-homology, 359 dataset are omitted due to their
high and overestimated accuracy. The ranked algorithms and
their accuracy are shown in Fig. 1.

The average classification accuracy ranges between 38.5%
for the RIP and 55.5% for the LR, which shows that man-
ual assignment of SCOP classes is very difficult to predict,
especially when homology is low. In general, the results
agree with Wang and Yuan who concluded about 60% pre-
diction accuracy limit for their method [13]. The SVM and
LR classifiers are best for both datasets and their average lift

values differ by 1.5%. The differences between the second
best SVM and the remaining classifiers are 4.5% for the
third best RF, 5.4% for NB, 6.7 for RBF, 10.1 for C4.5,
12.4 for IB1, and 15.4 for the worst performing RIP. These
differences are substantial as they constitute between 20%
and 60% of the maximal lift. The results for the 1189 datasets
are compared with those reported in [13], see Table 11.

The results are very close, and show that a new to the field
logistic regression classifier is the same accurate as the lead-
ing Bayesian classifier. The results also show high quality of
the support vector machines, but unlike the previously pub-
lished results [15], they are shown on low homology data
and are properly compared with other methods.

The confusion matrices for best results of the jackknife
test for the 25PDB and 1189 dataset are shown in Table 12.
Both best results were achieved for the proposed 66 features
representation and by the logistic regression algorithm.

The matrices show that significant portion of data belong-
ing to a given class is predicted as this class, i.e. for all-�,
all-�, and �/� about 60% and for � + � about 40% on aver-
age. The least accurately predicted class is the � + � class,
while the best results are achieved for the all-� class.

Analysis of sensitivity and specificity achieved by differ-
ent algorithms shows a consistent pattern. The sensitivity is
always significantly smaller compared to specificity, and the
latter measure goes up to 86% for the best results for the
low homology datasets. High average specificity means that
false positives are relatively low and thus low accuracy is
a result of relatively low sensitivity. Thus, the classification
algorithms generate selective models that potentially can be
further improved by pruning or constrain relaxation.

4.2. Goal 2—sequence homology

The classification accuracy lifts based on jackknife test
using the proposed representation and the eight classifiers
are compared between the low homology and high homology
datasets, see Fig. 2. The classifiers are ranked based on the
results for the low homology datasets.

The results shows that significantly higher accuracy lifts
are achieved for the highly homologous, 359 dataset. The
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Table 8
Summary of structural class prediction results for 25PDB dataset

Representation Test Accuracy lift (baseline accuracy = 26.5%) Weighted sensitivity/specificity

NB RBF IB1 C4.5 RF RIP SVM LR Avg NB RBF IB1 C4.5 RF RIP SVM LR

Composition Resubstit 24.4 27.2 73.5 50.8 73.5 24.1 27.6 27.1 41.0 51/84 54/85 100 77/93 100 51/83 54/84 53/84
vector (20) 10CV 21.5 22.8 11.3 11.8 21.1 12.6 25.5 24.5 18.9 48/83 49/83 38/80 38/79 48/82 39/79 52/83 51/83

jackknife 22.5 23.5 11.4 15 23.8 4.3 25.1 24.8 18.8 49/84 50/84 38/80 42/80 50/83 31/76 52/83 51/83

Auto-correlation Resubstit 1.8 1.8 73.5 16.4 73.3 4.9 11.1 10.9 24.2 28/75 29/74 100 43/80 100 32/75 38/78 37/78
(30) 10CV 0.9 0.9 3.2 0 2.6 0.4 8.5 7.6 3.0 27/75 27/74 30/77 27/74 29/76 27/74 35/77 34/77

jackknife 1 1.8 4 −8.7 2.3 −21.2 7.6 7.3 −0.7 27/75 29/75 31/77 18/72 29/76 5/66 34/76 34/76

66 features Resubstit 26.3 34.2 73.5 44.3 73.5 30.3 33.1 35.7 43.9 53/84 51/84 100 71/90 100 57/85 60/86 63/87
10CV 21.4 20.8 12.7 16.8 24.5 16.2 28.6 30.2 21.4 48/83 47/83 39/80 43/81 51/83 43/80 55/85 57/85
jackknife 22 21.1 12.5 17.2 20.6 5.3 29.3 30.6 19.8 49/83 48/83 39/80 44/81 47/82 32/76 56/85 57/86

Table 9
Summary of structural class prediction results for 1189 dataset

Representation Test Accuracy lift (baseline accuracy = 30.6%) Weighted sensitivity/specificity

NB RBF IB1 C4.5 RF RIP SVM LR Avg NB RBF IB1 C4.5 RF RIP SVM LR

Composition Resubstit 23.6 28.3 69.4 68.6 69.4 24.3 25.1 22.9 41.5 54/82 59/84 100 99/100 100 55/81 56/83 53/83
vector (20) 10CV 20.8 21 12.1 9 18.9 11.8 21 21 17.0 51/82 52/82 43/80 40/80 50/82 43/77 52/81 52/82

jackknife 21 21 13.4 10.1 19.5 13.7 21.7 20.5 17.6 52/82 52/82 44/80 41/79 50/82 44/78 52/82 51/82

Auto-correlation Resubstit 0 7.3 69.4 60.4 69.4 4 14.7 12 29.7 31/69 38/77 100 91/97 100 35/71 45/78 43/78
(30) 10CV 0 2 −1.4 −3.5 3.2 0.4 6.4 5.2 1.5 31/69 33/75 29/75 27/75 34/76 31/71 37/75 36/76

jackknife 0 1.1 −1.1 −0.7 2.6 0.6 7.1 5.5 1.9 31/69 32/75 30/74 30/76 33/76 31/71 38/75 36/76

66 features Resubstit 20.9 23 69.4 38.1 69.4 23.5 25.3 31.4 37.6 52/82 54/83 100 69/89 100 54/82 56/82 62/86
10CV 18.4 17.5 12.8 13.7 19.6 13.9 21 23.2 17.5 49/81 48/81 44/80 44/81 50/82 45/79 52/81 54/84
jackknife 18.1 16.3 13.5 13.4 21.3 14.7 21.5 23.3 17.8 49/81 47/80 44/80 44/81 52/83 45/79 52/81 54/84

Table 10
Summary of structural class prediction results for 359 dataset

Representation Test Accuracy lift (baseline accuracy = 28.3%) Weighted sensitivity/specificity

NB RBF IB1 C4.5 RF RIP SVM LR Avg NB RBF IB1 C4.5 RF RIP SVM LR

Composition vector Resubstit 38.6 68.4 71.7 70.8 71.7 68.1 71.4 39.5 62.5 67/89 97/99 100 99/100 100 96/99 100 68/89
(20) 10CV 34.7 60.3 66.3 62.1 63.9 45.2 65.1 28 53.2 63/87 88/96 94/98 90/97 92/97 74/91 94/98 56/85

jackknife 34.9 60.6 67.2 65.1 66.9 52.7 67.5 30.7 55.7 63/87 89/96 96/98 94/98 95/98 81/93 96/99 59/86

Auto-correlation Resubstit 8.1 44.6 71.7 71.7 71.7 53.3 71.1 39.5 54.0 36/80 73/91 100 100 100 82/93 100 68/89
(30) 10CV 4.5 21.4 59.3 52.1 54.8 31.3 60.3 27.4 38.9 33/78 50/83 88/96 81/93 83/94 60/86 89/96 56/85

jackknife 5.1 21.7 62.4 53.6 56.3 36.5 62.4 24.7 40.3 33/79 50/83 91/97 82/94 84/95 65/88 91/97 53/84

66 features Resubstit 57.2 71.4 71.7 71.4 71.7 69.6 71.7 71.7 69.6 86/95 100 100 100 100 98/99 100 100
10CV 40.7 59.7 67.8 63.3 65.4 53.6 66.9 59.7 59.6 69/89 88/96 96/99 91/97 94/98 82/94 95/99 88/96
jackknife 42.5 59 68.7 64.5 67.5 56.1 68.7 60.9 61.0 71/90 87/96 97/99 93/97 96/98 84/95 97/99 89/96

lift values are better for all classifiers, therefore showing
a consistent pattern. The average accuracy lift for 25PDB
is 19.8%, for 1189 dataset is similar and equal to 17.8%,
while for the 359 dataset is 59.0% for the jackknife test. The
best 97% accuracy for the 359 datasets was achieved by the
IB1 and SVM classifiers. At the same time, IB1 achieves
relatively poor accuracy for the low homology datasets. A
paired t-test between the results achieved by the eight algo-
rithms on the 25PDB and 359 datasets and using jackknife

test and the 66 features representation gave t-score of 10.0
and between the 1189 dataset and 359 dataset gave t-score
of 13.0. Both scores indicate that the difference in accuracy
lift is statistically significant. At the same time, the paired
t-test between the results for the 25PDB and 1189 datasets
resulted in t-score of 1.0, which shows that the difference is
statistically not significant.

The best results for the 359 dataset are compared with
best results of other researchers, see Table 13.
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The table shows that the best past results achieved with
information discrepancy based classification algorithm and
8000 features are beaten by a simple IB1 classifier that uses
66 features. Among the six results above 95%, four are
achieved using algorithms and representations introduced in
this paper. We caution the reader that these results should not
be taken as reliable indicator for the general task of struc-
tural class prediction. They are shown to demonstrate that
high sequences homology results in higher accuracy.

4.3. Goal 3—sequence representation

The average, over the two low homology datasets, classi-
fication accuracy lifts for the jackknife test, the three differ-
ent representations, and the eight classifiers are compared,
see Fig. 3.

The results show that autocorrelation based representa-
tion performs worse than the remaining two representations.
The differences range between 10% and 25% for different
classifiers. This result does not agree with the comparison
published in Ref. [33], where autocorrelations performed
better than the composition vector. We conclude that the pre-
vious results were likely to be unreliable due to testing on
the highly homologous dataset. At the same time, the auto-
correlation based representation achieved 91% accuracy on
the highly homologues 359 dataset, which shows that this
representation is a viable alternative when high homology
data are used. Similar outcome was reported in Ref. [33], see
Tables 2 and 10. On the other hand, using autocorrelations
with datasets containing low homology sequences resulted
in significantly worse results. A paired t-test between the
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Fig. 1. Accuracy of the eight classifiers for the 25PDB dataset, 1189
datasets and average of the two; classifiers are ranked from the worst on
the left to the best on the right.

Table 11
Comparison of best results for low homology 1189 datasets

Classification algorithm Representation Classification accuracy

Resubstitution Jackknife Reference

Support vector machine AA composition vector 57.8 52.3 This paper (second best result)
Bayes classification AA composition vector 63.8 53.8 [13]
Logistic regression 66 features 62.0 53.9 This paper (best result)

Table 12
Confusion matrices for best results: (a) for the 25PDB dataset; (b) for
the 1189 dataset

Predicted class True class

All-� All-� �/� � + �

All-� 306 27 40 70
All-� 33 273 43 94
�/� 31 52 208 55
� + � 85 121 66 169

All-� 127 14 53 29
All-� 14 185 43 52
�/� 39 37 216 42
� + � 31 70 79 61
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Fig. 2. Accuracy of the eight classifiers for the 25PDB, 1189, and 359
datasets.

accuracy lift results achieved with different representations
and for the eight classifiers and over the three datasets and
jackknife test was performed, see Table 14.

The results show that for the three datasets the auto-
correlation based representation is statistically significantly
worse than the two other representations. At the same time,
the t-test shows that there is no statistically significant dif-
ference between the accuracy of classification when using
the 66 features and the composition vector based represen-
tations. The results confirm high quality of the composition
vector with respect to structural class prediction. At the
same time, for high quality classifiers, such as SVM and
LR, the newly proposed representation provides significant
benefits, which are balanced by similar or slightly worse
results for the lower quality classifiers. In case of SVM
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Table 13
Comparison of best results for high homology 359 datasets

Classification algorithm Representation Classification accuracy

Resubstit Jackknife Reference

Component coupled geometric classification AA composition vector 94.3 84.1 [25]
Component coupled geometric classification AA composition vector 94.4 84.7 [33]

Auto-correlation functions 96.7 90.5
Support vector machines AA composition vector 93.0 95.2 [15]
Support vector machine AA composition vector 100.0 95.8 This paper

(second best result)
Random forest 66 features 100.0 95.8 This paper

(second best result)
Information discrepancy based classification Polypeptides – 95.8 [16]
Support vector machine 66 features 100.0 97.0 This paper

(best result)
Instance based classifier 66 features 100.0 97.0 This paper

(best result)
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Fig. 3. Accuracy of the eight classifiers for the 25PDB and 1189, and
the three representations.

the average, over the two low homology datasets, increase
of accuracy lift due to using the new representation instead
of composition vector is 2.0% and for LR is 4.3%. Consid-
ering the overall range of reported accuracy lifts and that
the improvements concern the most accurate classifiers, the
result is considered significant and shows that the proposed
representation is better when compared with the most com-
monly used composition vector.

4.4. Goal 4—test procedures

The two most commonly used test procedures with respect
to protein structural class prediction are resubstitution and
jackknife. The resubstitution test results in overestimation
of the prediction accuracy. For instance, 43.9%, 37.6%, and
69.6% average accuracy lift for the proposed representation
was achieved using the resubstitution test for the 25PDB,
1189 and 359 datasets, respectively. To compare, jackknife
test resulted in average 19.8, 17.8, and 61.0% correspond-
ing accuracy lifts. Thus the resubstitution test should not,
and, in many cases, is not used to estimate accuracy. At the
same time, execution of the jackknife test requires substan-
tial computational time, while a much less demanding and

commonly performed 10-fold cross-validation test could be
used instead. For instance, tests for the LR classifiers and
the 25PDB datasets using 10-fold cross-validation requires
about 50 min, while about 8400 min was required for the
jackknife test. To evaluate if there is any statistically signif-
icant difference between the two test procedures, a paired
t-test between the accuracy lift results for the 10-fold cross-
validation and the jackknife tests and the eight classification
algorithms, and over the three datasets and the three repre-
sentations was performed, see Table 15.

The t-test results show that for most of the cases there is
no statistically significant difference between the accuracy
lift reported based on the 10-fold cross-validation and the
jackknife tests. In several instances, i.e. for the 1189 dataset
and the composition vector representation, and for the 359
dataset and both the composition vector and the proposed
66 features representations, the accuracies computed using
jackknife test are statistically significantly better than those
computed using 10-fold cross-validation. This means that
using jackknife test sometimes may result in overestimation
of the accuracy. The study shows that not only 10-fold cross-
validation seems to be at least as reliable as the currently per-
formed jackknife test, but at the same time is it substantially
less computationally demanding. Therefore, feature studies
should perform 10-fold cross-validation tests.

5. Summary and conclusions

Prediction of protein structural classes is a very impor-
tant and challenging problem. Over the last three decades
many attempts, with varying degrees of success and novelty,
were made to propose such prediction methods. Based on
the past works we conclude that in general a progress was
being made. At the same time, there was no comprehensive
study that would point out some of the existing problems,
which include testing standardization, introduction of new
classification algorithms, and alternative sequence represen-
tations. The main drawback of the past papers was their
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Table 14
Paired t-test results between results achieved using different protein representations

Dataset 25PDB 1189 359

t-test result t-score Confidence level t-test result t-score Confidence level t-test result t-score Confidence level

66 compared with CV = 0.9 N/A = 0.2 N/A = 1.4 N/A
66 compared with AC ++ 10.3 > 99.9% ++ 22.8 > 99.9% ++ 4.1 > 99.7%
CV compared with AC ++ 9.8 > 99.9% ++ 13.1 > 99.9% ++ 3.5 > 99.5%

++ denotes that the first representation is statistically significantly better than the second representation,—indicates that the first representation is
statistically significantly worse, and = indicates that there is no significant difference; the following abbreviations are used for the corresponding
representations: composition vector (CV), auto-correlations (AC), and 66 features (66).

Table 15
Paired t-test results between 10-fold cross-validation and jackknife test results

Dataset representation 25PDB 1189 359

CV AC 66 CV AC 66 CV AC 66

10-fold cross-validation compared with jackknife t-test result = = = — = = — = –
t-score 0.1 1.3 1.1 2.5 0.9 0.8 3.0 1.8 3.8
Confidence level N/A N/A N/A > 97% N/A N/A > 99% N/A > 99.5%

++ denotes that the 10-fold cross-validation gives statistically significantly higher values than the jackknife test,—indicates that 10-fold cross-validation
gives statistically significantly lower values, and = indicates that there is no significant difference; the following abbreviations are used for the corresponding
representations: composition vector (CV), auto-correlations (AC), and 66 features (66).

limited scope. Usually a new method was proposed and com-
pared with competing methods on individual and different,
in terms of the size and the sequence homology, datasets and
using different sequence representations. This results in un-
reliable conclusions and difficulty in evaluation of the true
state of the art for this prediction problem.

To this end, this paper performs comprehensive, multi-
goal study that addresses comparison of eight classification
algorithms on three common datasets, using three sequence
representations and three test types. The tested algorithms
include those used in the past and several new ones. Simi-
larly a new sequence representation and test procedure are
proposed and compared with those used in the past. Based
on extensive experimental study several important discover-
ies and conclusions are made:

• First, sequence homology is found to significantly affect
prediction accuracy. Algorithms should not be compared
using datasets of unknown and different homology, as the
results for highly homologous datasets are shown to be
statistically significantly higher than those for the datasets
with low homology. The tests should be performed using
low homology and standard (benchmark) datasets. This
paper provides two datasets that can be used for future
comparative studies.

• Second, a new to the field prediction algorithm based on
logistic regression is found to generate results that are
competitive or better when compared with the past results.
Also, high quality of the previously used support vector
machine classifiers is confirmed.

• Third, results confirm the 60% accuracy limit first dis-
cussed by Wang and Yuan [13]. Higher accuracy of some

other competing methods was achieved by using highly
homologous datasets and/or by application of improper
procedures. We show that for eight considered prediction
algorithms, state-of-the-art sequences representation and
low, about 30%, homologous dataset, the best results are
in the range of 57% accuracy.

• Fourth, we show that the newly proposed sequence rep-
resentation is beneficial for high quality prediction algo-
rithms, i.e. for logistic regression and support vector ma-
chines, while it does not help to improve accuracy of other
algorithms.

• Finally, the resubstitution tests are shown to significantly
overestimate the prediction accuracy, and the commonly
performed jackknife test procedure leads to unnecessarily
high computational demand. The experimental results re-
vealed that a significantly simpler, in terms of the compu-
tational load, 10-fold cross-validation test is shown to be
statistically not significantly different than the jackknife
test. Therefore, we recommend that this test type should
be used in the future studies.
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Appendix A

List of sequences and domains from the 25PDB dataset;
values after semicolon denote domain ranges and the fifth
character denotes specific chain (if missing then the se-
quence has only one chain) (see Table A.1).
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Table A.1

25PDB dataset

All-�
1A1W, 1A56, 1A6M, 1AB3, 1ABV, 1ADUB:180-265, 1AIPH:3-53, 1AJ3, 1AK0, 1ALU, 1AOY, 1ASH, 1AVOA, 1B0NA:74-108, 1B0NA:1-68, 1B0NB,
1B22A, 1B28A, 1B4UA, 1B8ZA, 1BAL, 1BAX, 1BBHA, 1BBN, 1BC9, 1BEA, 1BG8A, 1BGF, 1BH8B, 1BH9A, 1BK6A, 1BKRA, 1BL0A:63-124,
1BL0A:9-62, 1BO9A, 1BP3A, 1BR0A, 1BSHA:87-138, 1BT6A, 1BU2A:22-148, 1BUYA, 1BW6A, 1C1KA, 1C20A, 1C53, 1C75A, 1C9IA:331-357,
1CF7A, 1CF7B, 1CIF, 1CMBA, 1CNT4, 1COKA, 1COO, 1COPD, 1CTJ, 1CY5A, 1CZ2A, 1D2VA, 1D2ZB, 1D5VA, 1D8BA, 1D8JA, 1D8LA:65-140,
1DGNA, 1DIZA:100-282, 1DK8A, 1DNYA, 1DP3A, 1DP5B, 1DP7P, 1DPUA, 1DQEA, 1DU6A, 1DVKB, 1DVOA, 1E29A, 1E52A, 1E6BA:88-220,
1E6IA, 1E7LA:104-157, 1EB7A:165-323, 1EB7A:1-164, 1ECA, 1ECIA, 1EF4A, 1ELKA, 1ELRA, 1ENWA, 1EO0A, 1EOQA, 1ERD, 1ETED, 1EUMA,
1EXJA:3-120, 1EYHA, 1F4IA, 1F5QB:147-252, 1F5QB:6-146, 1F6VA, 1F7CA, 1FADA, 1FAFA, 1FEXA, 1FF1A, 1FFKS, 1FIPA, 1FLIA, 1FP2A:8-108,
1FPOC:1-76, 1FPOC:77-171, 1FQKA:61-181, 1FR2A, 1FS9A, 1FYJA, 1FZPB, 1G03A, 1G1EB, 1G6IA, 1G7OA:76-215, 1G8EA, 1G8QA, 1GA3A,
1GAKA, 1GC6A:88-198, 1GJTA, 1GKMA, 1GNC, 1GOTG, 1GSCA:85-217, 1GSQ:76-202, 1GU2B, 1GUMA:81-220, 1GUXB, 1GVDA, 1GXMB,
1GYZA, 1GZSB, 1H0TB, 1H1JS, 1H31B, 1H3LB, 1H4JB, 1H4LD, 1H6OA, 1H8EI, 1H97A, 1H99A:54-168, 1H9EA, 1HBKA, 1HCIA:272-396, 1HCRA,
1HD6A, 1HE8A:525-725, 1HFES, 1HH8A, 1HKQA, 1HLOA, 1HM7A, 1HMWA:26-335, 1HNS, 1HQ1A, 1HQBA, 1HRYA, 1HS5A, 1HS7A, 1HX8B:22-
162, 1HX8B:167-299, 1HXGA:221-548, 1HXGA:15-220, 1HZ4A, 1I1SA, 1I27A, 1I2TA, 1I4ZA, 1IAPA, 1IB1A, 1ICHA, 1IE9A, 1IFYA, 1IG6A, 1IIEA,
1IIOA, 1IJYA, 1IK7B, 1IRDB, 1IRG, 1IRJD, 1IRL, 1IRQA, 1IRZA, 1IT2A, 1ITF, 1ITHA, 1IUFA:76-141, 1IUYA, 1IW8D, 1IX9A:1-90, 1J0PA, 1J0TA,
1J2JB, 1J75A, 1J7QA, 1J9IA, 1JEIA, 1JFBA, 1JFIA, 1JFIB, 1JGCA, 1JGSA, 1JHGA, 1JIGA, 1JJRA, 1JJSA, 1JKUA, 1JKW:11-161, 1JKW:162-287,
1JL7A, 1JLI, 1JNIA, 1JOYA, 1JQJD:213-333, 1JR5A, 1JR8A, 1JUMA:2-72, 1JUMA:73-187, 1JVR, 1JW2A, 1JYBA:2-147, 1K04A, 1K0MA:92-240,
1K1VA, 1K3XA:125-213, 1K5OA, 1K61D, 1K6KA, 1K8KE, 1K94A, 1K99A, 1KA8A, 1KANA:126-253, 1KBHA, 1KEYC, 1KF6B:106-243, 1KFTA,
1KGZB:12-80, 1KHOA:1-249, 1KJS, 1KO9A:136-323, 1KOYA, 1KQMB, 1KS8A, 1KWFA, 1KX7A, 1L3PA, 1L9LA, 1LB3A, 1LBU:1-83, 1LD8A,
1LDDA, 1LEA, 1LIAA, 1LJ9A, 1LMB3, 1LQ1A, 1LRIA, 1LS1A:1-88, 1LWBA, 1LYCA, 1M12A, 1M15A:2-95, 1M1EB, 1M1QA, 1M5NS, 1M70A:1-
92, 1M70A:93- 190, 1M8YA, 1M9XC, 1MC2A, 1MDYB, 1MHZG, 1MKDA, 1MN8D, 1MP1A, 1MR8A, 1MWBA, 1MZBA, 1N1FA, 1N32R, 1N3KA,
1N62D:82-160, 1N69B, 1N89A, 1N8VA, 1N9DA, 1NC5A, 1ND9A, 1NEQ, 1NG7A, 1NGNA, 1NH2B, 1NHM, 1NI8A, 1NK2P, 1NKD, 1NKL, 1NKUA,
1NLXA, 1NOM:91-148, 1NP7A:205-483, 1NQ4A, 1NS1A, 1NWNA, 1NY9A, 1NYAA, 1NZPA, 1O4XA:5-79, 1O4XA:110-163, 1O82A, 1O9RA, 1OAFA,
1OAIA, 1OCZE, 1OHZB, 1OMRA, 1ON7B, 1OOHA, 1OQPA, 1OR6A, 1OR7F, 1ORGA, 1OS6A, 1OSLA, 1OTKA, 1OTRA, 1OTWA, 1OYIA, 1OYKA,
1P22B:64-136, 1P3BA, 1P3BC, 1P3BF, 1P5SA, 1P6RA, 1P8CD, 1P94A, 1PC2A, 1PD3A, 1PFVA:389-550, 1PGYA, 1PN5A:59-151, 1PNBA, 1PNBB,
1PP7U, 1PRA, 1PSRA, 1PSYA, 1PUOA:93-164,1PUOA:5-73, 1PVHB, 1PZQA, 1PZRA, 1Q02A, 1Q08A, 1Q2ZA, 1Q8CA, 1QATA:206-298, 1QKSA:9-
135, 1QNTA:92-176, 1QPMA, 1QQIA, 1QV1A, 1QWNA:412-522, 1QZ4A, 1R2AA, 1R4AE, 1R4GA, 1R5ID, 1R5RA, 1RES, 1RFBA, 1RKCA:129-
258, 1RKCA:1-128, 1RQTA, 1RRTA:9-230, 1RSOA, 1RSOB, 1RSS, 1RYKA, 1S0PA, 1S7AA, 1SIG, 1SKNP, 1SLY:1-450, 1T5JA, 1TAFA, 1TBAA,
1TFB:111-207, 1UB9A, 1UCPA, 1UCRB, 1UCVA, 1UFIB, 1UK5A, 1UQVA, 1USTA, 1UTG, 1UW4B, 1UZCA, 1V38A, 1V3FA, 1V54H, 1V74B,
1V92A, 1VF6A, 1VF6C, 1VII, 1VLS, 1WJFA, 1WTUA, 1XBL, 1XO1A:186-290, 1YCQA, 1YTFD:5-54, 2A0B, 2BBY, 2CPGB, 2EIAA:17-147, 2ERL,
2EZI, 2EZL, 2ILK, 2LEFA, 2LFB, 2LISA, 2PVBA, 2SAS, 2TMVP, 3CSMA, 3HDHC:204-295, 3HTSB, 3YGSP, 4CTSA

All-�
1A1X, 1A8VA:48-118, 1A9V, 1AG4, 1AIW, 1AJW, 1AM2, 1AOL, 1AONO, 1AVGI, 1AX3, 1AYOA, 1B34B, 1B35A, 1B55A, 1B9XA, 1BAK, 1BBPA,
1BCI, 1BDO, 1BDYA, 1BHU, 1BJ8, 1BPV, 1BQHH, 1BR9, 1BSHA:1-86, 1BWMA:3-116, 1BYMA, 1C01A, 1C28A, 1C4RB, 1C5EA, 1C5FK, 1C5LL,
1C8CA, 1C9IA:3-330, 1C9OA, 1C9UB, 1CAWB, 1CDB, 1CI0A, 1CI5A:1-95, 1CID:106-177, 1CID:1-105, 1CPM, 1CQ3A, 1CQYA, 1CR5A:26-107,
1CTO, 1CUR, 1D1NA, 1D3BA, 1D7PM, 1D8LA:1-64, 1DCS, 1DDMA, 1DG6A, 1DJ7B, 1DQGA, 1DQIA, 1DQTA, 1DS1A, 1DXMA, 1DXWA,
1DZ1A, 1DZKA, 1E0LA, 1E44B, 1E5CA, 1E5UI:1-89, 1E9GA, 1E9YA:106-238, 1EAJB, 1EARA:1-74, 1EAZA, 1ED7A, 1EGXA, 1EHKB:41-168,
1EJFA, 1EO2A, 1EQRA:1-106, 1ERNB:10-116, 1ETHA:337-448, 1EUWA, 1EWIA, 1EXH, 1EXSA, 1EYSH:59-259, 1EZGA, 1F3UB, 1F53A, 1F6OA,
1F86A, 1F8EA, 1FEUD, 1FFKN, 1FG9E:13-109, 1FG9E:110-221, 1FHOA, 1FHRA, 1FI2A, 1FJRA, 1FL0A, 1FLMA, 1FLTY, 1FMMS, 1FOD1, 1FUJA,
1FVIA:190-293, 1FYC, 1G291:241-301, 1G291:302-372, 1G2BA, 1G3GA, 1G43A, 1G5VA, 1G6EA, 1G6ZA, 1G84A, 1G88A, 1G9OA, 1GC6A:199-297,
1GCQC, 1GGLA, 1GJXA, 1GL4B, 1GMIA, 1GNHA, 1GP0A, 1GPPA, 1GQHD, 1GQWB, 1GSGP:339-547, 1GUIA, 1GV9A, 1GVMF, 1GVP, 1GWMA,
1GXCA, 1GXEA, 1GYWB, 1H2CA, 1H2NA, 1H2WA:1-430, 1H3ZA, 1H4AX:1-85, 1H6FB, 1H6XA, 1HAVA, 1HCE, 1HCFX, 1HDKA, 1HE8A:353-524,
1HK6A, 1HKFA, 1HLCA, 1HM8A:252-459, 1HMWA:336-599, 1HMWA:600-699, 1HT6A:348-404, 1HTRP, 1HU8A, 1HWHB:131-237, 1HWHB:32-
130, 1HXRB, 1HZEA, 1I07A, 1I16, 1I1JA, 1I40A, 1I4VA, 1I8AA, 1I9BA, 1IAOA:83-178, 1IARB:1-96, 1IARB:97-197, 1IB5A, 1IB8A:91-164, 1IBYA,
1IC1A:1-82, 1IC1A:83-190, 1IFC, 1IFRA, 1IGQA, 1IHWA, 1IISC:5-86, 1IISC:87-171, 1IKOP, 1ILFA, 1IM3D, 1IRSA, 1IS3A, 1IWNA, 1J0SA, 1J3RA,
1J7VR:101-206, 1J7VR:2-100, 1JER, 1JHJA, 1JJJA, 1JK4A, 1JM1A, 1JO8A, 1JOPA, 1JOVA, 1JQ7A, 1JSYA:176-399, 1JSYA:6-175, 1JT8A, 1JYTA,
1K0HA, 1K2FA, 1K3BA, 1K3XA:1-124, 1K45A, 1K4ZA, 1K5CA, 1K5JA, 1K5NA:182-276, 1K5NB, 1K8HA, 1K8KC, 1K9CA, 1KAWA, 1KD6A,
1KDMA, 1KHOA:250-370, 1KIKA, 1KJ2B, 1KNMA, 1KO6C, 1KQ1A, 1KQRA, 1KSR, 1KT6A, 1KUM, 1KV7A:31- 170, 1KV7A:171-335, 1KWAA,
1KXGA, 1KXLA, 1L1CA, 1L1NB, 1L1OB, 1L2HA, 1LB6A, 1LF7A, 1LIXB:160-261, 1LKTA, 1LM8V, 1LMIA, 1LPLA, 1LUGA, 1LUQB, 1M1FB,
1M30A, 1M4OA, 1M5ZA, 1M7EA, 1MAI, 1MDAH, 1ME6A, 1MFGA, 1MFMA, 1MGQA, 1MI8A, 1MJUL:108-214, 1MJUL:1-107, 1MNNA, 1MUZA,
1MVFD, 1MVXA, 1MY7B, 1MZKA, 1N0FC, 1N32L, 1N3JA, 1N6UA:110-212, 1N6UA:1-109, 1N8BA, 1N8KA:340-374,1N8KA:1-163, 1NCT, 1NE3A,
1NEPA, 1NGLA, 1NH0A, 1NH2C, 1NIVA, 1NKOA, 1NKR:6-101, 1NKR:102-200, 1NLS, 1NNXA, 1NOFA:31-43, 1NPUA, 1NQJA, 1NWBA, 1NXMA,
1NYCA, 1NZ9A, 1O1UA, 1O3SA:8-137, 1O4TA, 1O4YA, 1O5LA:1-129, 1O5PA, 1O6SB, 1O7IB, 1OD3A, 1ODMA, 1OEKA, 1OFZA, 1OGOX:202-
574, 1OGOX:3-201, 1OH1A, 1OH4A, 1OIOA, 1OK0A, 1OP4A, 1OQKA, 1OU8A, 1OUXA, 1OY2A, 1P0SE, 1P1MA:331-404, 1P1MA:1-49, 1P35C,
1P3EA, 1P4PA, 1P9UA, 1PEX, 1PFBA, 1PFSA, 1PGS:141-314, 1PGS:4-140, 1PH7A:205- 328, 1PH7A:36-204, 1PHT, 1PINA:6-39, 1PJWA, 1PK6A,
1PKHB, 1PLC, 1PMS, 1PQ7A, 1PRTD, 1PRTF, 1PSE, 1PYBA, 1Q67B, 1QAUA, 1QDNA:1-85, 1QFOA, 1QKSA:136-567, 1QLEB:108-252, 1QOUB,
1QQP4, 1QREA, 1QW9A:5-17, 1QW9A:385-501, 1QWDA, 1QWNA:523-1044, 1QWYA, 1QXMA:149-286, 1QXMA:4-148, 1QY1A, 1R0UA, 1R21A,
1R2MA, 1R6JA, 1R6KA, 1R75A, 1RHI1, 1RI9A, 1RIP, 1RK8C, 1RKRA, 1RL1A, 1ROCA, 1RQWA, 1S2BA, 1S2EA, 1SE1A:1-125, 1SFP, 1SG3A:195-
343, 1SG3A:1-187, 1SM4A:67-207, 1SR3A, 1SSXA, 1TFHB:107-210, 1TFHB:5-106, 1TIID, 1TIU, 1TL2A, 1TME1, 1TTG, 1TUL, 1UB4B, 1UCSA,
1UD8A:391- 480, 1UEPA, 1UFFA, 1UFXA, 1UG1A, 1UJVA, 1UJXA, 1ULP, 1UMIA, 1USCA, 1UT4B, 1UW7A, 1UZ0A, 1V27A, 1VIE, 1WBC,
1WHI, 1WKT, 1XNTA, 1YTFD:55-119, 2ARCB, 2BPA2, 2DYNA, 2HNTE, 2HRVA, 2ILA, 2NLRA, 2SNS, 2STV, 2TNFA, 3CHBD, 3DPA:125-218,
3DPA:1-124, 3EZMA, 3MSPA, 3NCMA, 3SEB:1-121, 3SIL, 3VUB, 4AAHA, 4HMGA, 4ULL
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Table A.1 Continued

25PDB dataset

�/�
1ABA, 1AO3A, 1AY7B, 1AYL:228-540, 1AYL:1-227, 1B26A:179-412, 1B26A:4-178, 1B3OA:232-499, 1B3OA:10-109, 1B4UB, 1B8GB, 1B93A, 1BCRA,
1BCRB, 1BQCA, 1BRT, 1BVH, 1BX4A, 1BYI, 1BYKA, 1C25, 1CEN, 1CFZA, 1CP2A, 1CQGA, 1CUI, 1CXQA, 1D2HA, 1D3VA, 1D4OA, 1D5TA:389-
431, 1DBWB, 1DCIA, 1DE5B, 1DIRA, 1DL3A, 1DO0A, 1DOSA, 1DQZA, 1E0JA, 1E5KA, 1E6BA:8-87, 1ECXA, 1EDG, 1EEXB, 1EFM:12-190,
1EFPA:2-184, 1EIWA, 1EIZA, 1EM8B, 1EO1A, 1EOMA, 1EQA, 1ES9A, 1ETHA:1-336, 1EXCA, 1F2TB, 1F51E, 1F61A, 1F9VA, 1FEZA, 1FFKC,
1FFKG, 1FFKL, 1FFKV, 1FO5A, 1FOVA, 1FP2A:109-352, 1FQKA:28-60, 1FSGA, 1FVKA, 1FVPA, 1FYEA, 1FZTA, 1G291:1-240, 1G5QA, 1G64A,
1G66A, 1G7EA, 1G7OA:1-75, 1G8AA, 1GA6A, 1GCI, 1GIN, 1GKLA, 1GLLO:2- 253, 1GLLO:254-499, 1GLV:1-122, 1GN1G, 1GPH1:235-465,
1GQOV, 1GRCA, 1GSCA:1-84, 1GSGP:8-338, 1GSQ:1-75, 1GUMA:4-80, 1GVFA, 1GWZ, 1H2WA:431-710, 1H6JA, 1H6VC:171-292, 1H6VC:14-170,
1H6VC:293-366, 1H75A, 1HD2A, 1HDOA, 1HG3A, 1HJQA, 1HLGA, 1HM8A:2-251, 1HQKA, 1HT6A:1-347, 1HTWA, 1HUXA, 1HXHA, 1I0DB,
1I24A, 1I2ZA, 1I4NA, 1I4WA, 1I69B, 1I7LA:113-214, 1IAQB, 1IBSB:167-315, 1IBSB:6-166, 1IIBA, 1IIWA, 1IN1A, 1IOIA, 1ITQA, 1IU9A, 1IXH,
1IZYA, 1J2RC, 1J5SA, 1JDNA, 1JF8A, 1JI3A, 1JIKA, 1JL1A, 1JLSB, 1JMKO, 1JMVA, 1JN0A:313-333, 1JON, 1JQ3C, 1JQJD:1-209, 1JR4A, 1JSXA,
1JTVA, 1JUBA, 1JXIA, 1K0MA:6-91, 1K7CA, 1K92A:1-188, 1KGDA, 1KGZB:81-344, 1KI9B, 1KICA, 1KJQB:2-112, 1KMVA, 1KNGA, 1KQPA,
1KR2F, 1KTE, 1L7AA, 1L8OA, 1LC7A, 1LIXB:262-439, 1LIXB:57-159, 1LK9A, 1LKXD, 1LL4A:36-292, 1LLFA, 1LQTB:2-108, 1LQTB:109-324,
1LQTB:325-456, 1LS1A:89-295, 1LU4A, 1M0IA, 1M1BB, 1M1NA, 1M1NB, 1M2DA, 1M2EA, 1M3GA, 1M4LA, 1M65A, 1M6BB:311-479, 1M6BB:6-
165, 1M7GD, 1MAVA, 1MF7A, 1MJ5A, 1MLDA:1-144,1MOQ, 1MQ0A, 1MUWA, 1MWJA, 1MXIA, 1N1DA, 1N25A, 1N2OB, 1N32B, 1N3LA,
1N4WA:9-318, 1N55A, 1N7HB, 1N7IB, 1N8KA:164-339, 1N9KA, 1NBWB, 1NF9A, 1NH7A:1-210, 1NMPA, 1NN5A, 1NNFA, 1NNUC, 1NOFA:44-
320, 1NOYA, 1NP6B, 1NP7A:1-204, 1NRJB, 1NW8A, 1NZJA, 1O08A, 1O58A, 1O7JA, 1O7QA, 1O8XA, 1OAA, 1OBOA, 1OC7A, 1OD6A, 1ODGA,
1ODZA, 1OFTA, 1OHEA:42-198, 1OHHG, 1OJRA, 1ON4A, 1OOYA:1-242, 1OOYA:261-481, 1ORHA, 1OT5A:123-460, 1OVYA, 1P1MA:50-330,
1P33C, 1P4CA, 1P5FA, 1P5ZB, 1P6OA, 1P73C, 1P74B:1-101, 1P74B:102-272, 1PB7A, 1PDO, 1PFVA:176-388, 1PFVA:4-140, 1PMOC, 1POIB, 1PWYE,
1PYOB, 1PZTA, 1Q1QA, 1Q7LA, 1Q7LD, 1Q92A, 1QC9A, 1QDLB, 1QFEA, 1QGEE, 1QGVA, 1QHHA, 1QHHB, 1QHHC, 1QJ4A, 1QKIB:11-199,
1QKIB:435-449, 1QLWB, 1QMLA, 1QNRA, 1QNTA:6-91, 1QO5K, 1QOPB, 1QTNB, 1QTWA, 1QW9A:18-384, 1QWNA:31-411, 1QZMA, 1R18A,
1R26A, 1R2QA, 1R5PB, 1R5XA, 1R5YA, 1R6DA, 1R6HA, 1RFLA, 1RFVA, 1RHQA, 1RKUA, 1RPA, 1RRF, 1RTQA, 1RYOA, 1S4PB, 1SFSA,
1SHUX, 1ST9A, 1SX5A, 1T2DA:1-150, 1THX, 1UD8A:1-390, 1UEHA, 1UG6A, 1UOCA, 1URSA, 1US0A, 1USLA, 1UWCA, 1UZBA, 1V2XA,
1V7RA, 1V8AA, 1VGUB, 1VHWF, 1VIMA, 1XO1A:19-185, 1YACA, 1YUB, 2AT2A:145-295, 2AT2A:1-144, 2PJRB, 2PTH, 2TPSA, 2TSYA, 3CLA,
3FUA, 3HDHC:12-203, 3PVIA, 4EUGA, 6PFKA, 7A3HA, 7MHTA, 8ABP

� + �
169LA, 1A2N, 1A2PA, 1A67, 1A9ND, 1AA3, 1AF5, 1AIHB, 1AIPH:54-196, 1AKO, 1APS, 1APZA, 1AQ4A, 1AQZB, 1AVPA, 1AYYB, 1B04B,
1B10A, 1B33N, 1B3AA, 1B5EA, 1B65A, 1B69A, 1B6FA, 1B87A, 1B9LA, 1BNLA, 1BOB, 1BXYA, 1BY2, 1BYSA, 1BYWA, 1C05A, 1C7KA,
1CC8A, 1CJKB, 1CKJB, 1CKV, 1CQMA, 1CV8, 1CXYA, 1CZPA, 1D5TA:292-388, 1D8IA, 1D9UA, 1DCHA, 1DCJA, 1DEF, 1DI2B, 1DIZA:1-99,
1DOKA, 1DT4A, 1E0GA, 1E1HA, 1E1HD, 1E44A, 1E5UI:90-187, 1E7KA, 1E7LA:1-103, 1E87A, 1E9YA:1-105, 1EARA:75-142, 1EAYC, 1EB6A,
1ECSA, 1EF5A, 1EGGB, 1EGWA, 1EKTA, 1EL6A, 1EMWA, 1EQKA, 1EQRA:107-287, 1EQRA:288-420, 1EQRA:421-590, 1EUVA, 1EUVB, 1EV0A,
1EW4A, 1EXJA:121-277, 1F08A, 1F0ZA, 1F2RI, 1F32A, 1F40A, 1F51A, 1F60B, 1F7LA, 1F96A, 1F9YA, 1FFK1:1-79, 1FFK1:80-172, 1FFKD, 1FFKF,
1FFKP, 1FFKU, 1FJCA, 1FM0D, 1FPYA:1-100, 1FPYA:101-468, 1FU6A, 1FVIA:2-189, 1FW9A, 1FX4A, 1G61A, 1G71A, 1GC1G, 1GC6A:1-87,
1GD0A, 1GH8A, 1GHHA, 1GK9A, 1GK9B, 1GO1A, 1GPH1:1-234, 1GPQB, 1GTPA, 1GTQA, 1GW5S, 1GXUA, 1GXYA, 1GY7B, 1GYFA, 1GYXA,
1H0YA, 1H3QA, 1H5PA, 1H6HA, 1H6KY, 1H6VC:367-495, 1H8CA, 1HBNB:2-188, 1HE8A:144-321, 1HL6D, 1HMJA, 1HQ6A, 1HQI, 1HQZ1,
1HV2A, 1HYWA, 1HZ6B, 1HZTA, 1I0VA, 1I12A, 1I17A, 1I35A, 1I7EA, 1I9YA, 1IAD, 1IAJB, 1IAOA:1-82, 1IB8A:1-90, 1IBXA, 1ID0A, 1IDPA,
1IHRA, 1IJKC, 1IKM, 1IMUA, 1IOUA, 1IPBA, 1IPGA, 1IQSA, 1IQZA, 1IRYA, 1IS7K, 1ITPA, 1IU3C, 1IUJB, 1IV3A, 1IVZA, 1IX9A:91-205, 1J0GA,
1J27A, 1J3GA, 1J4WA:1-74, 1J4WA:104-174, 1J57A, 1J6RA, 1J8CA, 1JATA, 1JATB, 1JBIA, 1JC5B, 1JD21, 1JD2K, 1JD2L, 1JD2M, 1JFMA, 1JH6A,
1JHSA, 1JIDA, 1JIHA:390-509, 1JK3A, 1JKNA, 1JN0A:149-312, 1JNZB, 1JO0A, 1JOSA, 1JRKA, 1JRMA, 1JRUA, 1JW3A, 1JYOA, 1K0KA, 1K1GA,
1K3EA, 1K4IA, 1K5NA:1-181, 1K83K, 1K8BA, 1K8KF, 1K92A:189-444, 1KAFD, 1KANA:1-125, 1KCGC, 1KCQA, 1KF6B:1-105, 1KG0C, 1KJKA,
1KJQB:113-318,1KN0A, 1KN6A, 1KO9A:12-135, 1KOTA, 1KP6A, 1KPQA, 1KPTA, 1KQFB:2-245, 1KUFA, 1KVDB, 1KVEA, 1KZNA, 1L0OA,
1L1PA, 1L3GA, 1L3KA:103-181, 1L3KA:8-91, 1L4ZB, 1L5PA, 1L9AA, 1L9YA, 1LBU:84-213, 1LKKA, 1LL4A:293-354, 1LL8A, 1LNIA, 1LO7A,
1LQ9A, 1LTZA, 1LY7A, 1M0VA, 1M15A:96-357, 1M4JA, 1MBXD, 1MBYA, 1ME4A, 1MG4A, 1MG7A:14-187, 1MG7A:188-380, 1MHDA, 1MHMB,
1MK0A, 1MK4A, 1MKBA, 1ML8A, 1MLDA:145-313, 1MOGA, 1MOLA, 1MSZA, 1MW4A, 1MWPA, 1MWWB, 1N13C, 1N32C:107-207, 1N32C:2-
106, 1N32I, 1N32J, 1N4WA:319-450, 1N62C:1-177, 1N62C:178-286, 1N62D:2-81, 1N6ZA, 1NEIA, 1NH7A:211-284, 1NKIA, 1NO5A, 1NR3A, 1NRJA,
1NSKL, 1NVJD, 1NWWB, 1NWZA, 1NXIA, 1NZ8A, 1O0PA, 1O26A, 1O2FB, 1O50A:77-145, 1O7BT, 1O7NB, 1O8RA, 1OCYA, 1ODHA, 1OF5A,
1OF5B, 1OFHG, 1OH0A, 1OJ5A, 1OJGA, 1OO5A, 1OPD, 1OPZA, 1OQJB, 1OQQA, 1OQVA, 1OQWA, 1OTFA, 1OTGA, 1OWTA, 1P0RA, 1P0ZA,
1P1TA, 1P22B:2-59, 1P32B, 1P4LD, 1P4OA, 1P65A, 1P9KA, 1PA4A, 1PAVA, 1PBA, 1PBUA, 1PC6B, 1PCFA, 1PIL, 1PINA:45-163, 1PQSA, 1PRTA,
1PRTB:4-89, 1PUGC, 1PVMB:65-142, 1PYTA, 1PZ4A, 1Q53A, 1Q5YB, 1Q8LA, 1Q8RA, 1QB3B, 1QDDA, 1QDNA:86-201, 1QFCA, 1QG7A, 1QHKA,
1QKFA, 1QKIB:200-434, 1QKIB:450-511, 1QKLA, 1QL0A, 1QMTA, 1QOLA, 1QR5A, 1QS1A:265-461, 1QS1A:60-264, 1QSOA, 1QSTA, 1QTOA,
1QXYA, 1QYMA, 1QYNA, 1R29A, 1R52B, 1R8HC, 1REGY, 1RFA, 1RJTA, 1RO2A, 1RRTA:231-360, 1RWZA:1-122, 1RWZA:123-244, 1RY9A,
1RYJA, 1S0YD, 1S0YE, 1S5FA, 1S5UB, 1S79A, 1S7JA, 1SB6A, 1SCJB, 1SF0A, 1SGOA, 1SJWA, 1SLY:451-618, 1SP4A, 1ST4A:38-145, 1ST4A:146-
337, 1T0GA, 1T0YA, 1T1DA, 1T2DA:151-315, 1TBAB:61-155, 1TIG, 1TIIC, 1UB1A, 1UFYA, 1UNNC, 1UQ5A, 1USMA, 1UUTA, 1UUZB, 1UW4A,
1V2YA, 1V74A, 1VAZA, 1VCC, 1VHIB, 1VI8B, 1VIH, 1XXCA, 2ATCB:1-100, 2BOPA, 2FDN, 2FMR, 2IGD, 2JDXA, 2NEF, 2NMTA:34-218, 2PLEA,
2PROB:86-158, 2PROB:4-85, 2SAK, 2SXL, 2TBD, 2TLDI, 2U1A, 2VIL, 3GCC, 3LZT, 3SEB:122-238, 3ZNBA
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List of sequences and domains from the 1189 dataset;
values after semicolon denote domain ranges and the fifth

Table A.2

1189 dataset

All-�
1AAB, 1AB3, 1ABV, 1ACA, 1ACP, 1ADR, 1AEP, 1AF8, 1AFRA, 1AGRE, 1AJ3, 1AK4C, 1ALLA, 1AN2A, 1AORA:211-605, 1AOY, 1ARU, 1ASH,
1BBHA, 1BBL, 1BCFA, 1BEO, 1BFMA, 1BGC, 1BIA:1-63, 1BIP, 1BUCA:233-383, 1BVP1:1-120, 1BVP1:255-349, 1C5A, 1CC5, 1CEM, 1CMBA,
1CNT1, 1COO, 1COPD, 1CPCA, 1CPCB, 1CPQ, 1CPT, 1CRKA:1-98, 1CSGA, 1CSH, 1CSMA, 1CUK:65-142, 1CYI, 1DNPA:201-469, 1DVH, 1ECA,
1ECIA, 1ECMA, 1ENH, 1ERC, 1ERD, 1ERP, 1ERY, 1ETPA:93-190, 1ETPA:1-92, 1FAPB, 1FCDC:81-174, 1FCDC:1-80, 1FIPA, 1FJLA, 1FLP, 1FOW,
1FPS, 1GAB, 1GKS, 1GLM, 1GLN:306-468, 1GLQA:79-209, 1HBG, 1HCRA, 1HDJ, 1HMCA, 1HME, 1HNR, 1HRZA, 1HSTA, 1HUEA, 1HULA,
1HUW, 1HVD, 1HYP, 1IHFB, 1ILK, 1IMQ, 1ITHA, 1JLI, 1JVR, 1LBD, 1LBU:1-83, 1LCCA, 1LEA, 1LFB, 1LH1, 1LIS, 1LKI, 1LLIA, 1LPE, 1LRE,
1LRV, 1MBD, 1MDYA, 1MHLA, 1MHLC, 1MMOB, 1MMOD, 1MMOG, 1MNGA:1-92, 1MNTA, 1MYKA, 1NER, 1NGR, 1NKL, 1OCCE, 1OCCH,
1OLGA, 1OPC, 1OSA, 1OXA, 1PBWA, 1PDNC, 1PHB, 1PNBA, 1PNBB, 1POA, 1POC, 1PPRM:1-156, 1PPRM:157-312, 1PRCC, 1PUEE, 1R69, 1RCD,
1REC, 1RES, 1RFBA, 1RGP, 1RIBA, 1ROM, 1RPO, 1RRO, 1SCMB, 1SETA:1-110, 1SIG, 1SLY:1-450, 1SRA, 1TAFA, 1TAFB, 1TCOB, 1TF4A:1-460,
1TNS, 1TPT:1-70, 1UTG, 1VII, 1VNC, 1VTMP, 1XGSA:195-271, 1XSM, 1YRNA, 1YRNB, 1YTFB, 256BA, 2ABK, 2BCT, 2BMHA, 2CCYA, 2CYP,
2END, 2GSTA:85-217, 2HMQA, 2HMX, 2HTS, 2INT, 2LHB, 2LIGA, 2MTAC, 2MYSB, 2PDE, 2PGD:177-473, 2SAS, 2SCPA, 2SPCA, 2WRPR,
351C, 3INKC, 3SDHA, 4ICB, 1ADT:176-265, 1AOFA:36-133, 1BMFA:380-510, 1BMFD:358-475, 1CGPA:138-205, 1CLC:135-575, 1CUK:156-203,
1DJXA:200-298, 1DPRA:65-136, 1DPRA:3-64, 1GNWA:86-211, 1GRJ:2-79, 1GRL:410-523, 1GRL:6-136, 1HC2:136-398, 1HC2:5-135, 1JKW:11-161,
1JKW:162-287, 1LLA:2-109, 1LLA:110-379, 1OCTC:5- 75, 1PNRA:3-58, 1RLR:10-221, 1RYT:2-147, 1SFE:93-176, 1TADA:57-177, 1TFR:183-305,
1YTFD:5-54, 1ZYMA:22-144, 2SBLB:150-839, 2TCT:2-67, 5EAS:221-548, 5EAS:24-220, 2LEFA, 1GH1A

All-�
1ABRB:1-140, 1ABRB:141-267, 1AGJA, 1AH9, 1AHSA, 1AIZA, 1ALY, 1AMY:347-403, 1ANU, 1AOL, 1AONO, 1AOZA:130-338, 1AOZA:1-129,
1AOZA:339-552, 1ARB, 1BBPA, 1BBT1, 1BBT3, 1BDO, 1BEBA, 1BOVA, 1BTKA, 1BTN, 1BTY, 1BVP1:121-254, 1BW3, 1CDCB, 1CDG:496-581,
1CDG:582-686, 1CID:106-177, 1CID:1-105, 1CKAA, 1CPN, 1CSKA, 1CTM:168-230, 1CTM:1-167, 1CTM:231-250, 1CTO, 1CUK:1-64, 1CUR, 1CWPA,
1CYX, 1DUPA, 1DUTA, 1DYNA, 1EAGA, 1EAL, 1EFT:213-312, 1EFT:313-405, 1EPBA, 1EPNE, 1ETA1, 1EUR, 1EXG, 1FGP, 1FIVA, 1FMB, 1FNA,
1FUIA:356-591, 1FYC, 1GEN, 1GHK, 1GLAF, 1GOF:151-537, 1GOF:1-150, 1GOF:538-639, 1GPC, 1GPR, 1GZI, 1HAVA, 1HBP, 1HCD, 1HGEA,
1HMS, 1HOE, 1HSQ, 1HTP, 1HXN, 1I1B, 1IDAA, 1IDK, 1IFC, 1IHWA, 1ILR1, 1IRSA, 1IYU, 1JDC:358-418, 1JER, 1KAPP:247-470, 1KCW:193-338,
1KCW:1-192, 1KNB, 1KSR, 1LAC, 1LCL, 1LTSD, 1LXA, 1MAI, 1MJC, 1MPP, 1MSAA, 1MSPA, 1MUP, 1NBCA, 1NCIA, 1NEU, 1NFA, 1NOA,
1NPOA, 1NSCA, 1OBPA, 1OCCB:91-227, 1OSPO, 1PCL, 1PDR, 1PEX, 1PFSA, 1PHT, 1PKYA:70-167, 1PLC, 1PLS,1PMI, 1PMS, 1PPI:404-496,
1PRR:91-173, 1PRR:1-90, 1PRTD, 1PRTF, 1PSE, 1PVC1, 1PVC2, 1PVC3, 1PYP, 1RIP, 1RSY, 1SACA, 1SCS, 1SE4:1-121, 1SEMA, 1SGC, 1SHCA,
1SHG, 1SLAA, 1SLUA, 1SMPI, 1SRIA, 1SRO, 1SSO, 1STMA, 1STY, 1SVA1, 1TDTA, 1TEN, 1TF4A:461-605, 1THJA, 1THW, 1TIE, 1TIID, 1TIU,
1TLK, 1TME1, 1TNFA, 1TNM, 1TNRA, 1TSP, 1TUL, 1TUPA, 1ULO, 1VCAA:91-199, 1VCAA:1-90, 1VFBA, 1VIE, 1VMOA, 1WAPA, 1WBA,
1WHI, 1WHO, 1WIU, 1WKT, 1XNB, 1XSOA, 1YAIA, 1YHB, 1YTFC, 1ZNCA, 1ZXQ:1-86, 1ZXQ:87-192, 2ALP, 2ARCA, 2AVIA, 2BBKH, 2BBVA,
2BPA1, 2BPA2, 2CAS, 2CBP, 2CPL, 2ENG, 2FGF, 2ILA, 2KAUB, 2MEV1, 2MEV2, 2NCM, 2PCDA, 2PCDM, 2PEC, 2PIA:1-103, 2PRD, 2RSPA,
2SIL, 2SNV, 2STV, 2TBVA, 2TRCB, 3CD4:98-178, 3CD4:1-97, 3NN9, 3ULLA, 4AAHA, 4GCR:86-174, 4GCR:1-85, 1AOFA:134-567, 1ASYA:68-204,
1BGLA:626-730, 1BGLA:3-219, 1BGLA:220-333, 1BGLA:731-1023, 1BHGA:226-328, 1BHGA:22- 225, 1BIA:271-317, 1BMFA:24-94, 1BMFD:9-
81, 1BNCA:331-446, 1CD1A:186-279, 1CDG:407-495, 1CGPA:9-137, 1CIY:256-461, 1CKMA:239-327, 1CLC:35-134, 1CTN:24-132, 1DAR:283-
400, 1DDT:381-535, 1DKGA:139-197, 1DLC:290-499, 1EBPA:10-116, 1ESFA:1-120, 1FDR:2-100, 1FNB:19-154, 1GGTA:516-627, 1GGTA:628- 729,
1GGTA:8-190, 1GTRA:339-547, 1HC2:399-653, 1KCW:347-553, 1KCW:554-705, 1KCW:706-884, 1KCW:892-1040, 1KEVA:1-139, 1KEVA:314-351,
1KIT:217-346, 1KIT:25-216, 1KIT:347-543, 1LLA:380-628, 1LYLA:14-153, 1MMD:34-79, 1PGS:141-314, 1PGS:4-140, 1QBA:28-200, 1QORA:292-327,
1QORA:2-112, 1RGS:113-244, 1SFTA:2-11, 1SFTA:245-383, 1SVB:303-395, 1YTFD:55-119, 2AAA:382-476, 2BB2:86-175, 2CND:11-124, 2HFT:107-
211, 2HFT:1-106, 2KAUC:2-129, 2KAUC:423-475, 2OHXA:1-163, 2OHXA:340-374, 2PHLA:11-210, 2PHLA:220-381, 2SBLB:7-149, 3DPA:125-218,
3DPA:1-124, 3HHRB:32-130, 4KBPA:9-120, 4BCL, 2TSSA:1-93

�/�
1ABA, 1AD3A, 1ADD, 1ADEA, 1AG8A, 1AMP, 1AMY:1-346, 1ART, 1ASU, 1BAM, 1BLE, 1BMFG, 1BNCA:1-114, 1BROA, 1BRSD, 1BYB, 1CB2A,
1CBG, 1CEC, 1CFR, 1CHD, 1CSEE, 1CTT:151-294, 1CTT:1-150, 1CUS, 1CYDA, 1DAPA:1-118, 1DAPA:269-320, 1DCTA, 1DEAA, 1DHPA, 1DHR,
1DNPA:1-200, 1DORA, 1DOSA, 1DPGA:1-181, 1DPGA:413-426, 1DPPA, 1DRAA, 1DTS, 1DUBA, 1DXY:1-100, 1E2B, 1EAF, 1EBHA:142-436,
1ECEA, 1ECPA, 1EDE, 1EDG, 1EDT, 1EFT:1-212, 1EGO, 1ENY, 1ERIA, 1ESC, 1FCDA:256-327, 1FCDA:115-255, 1FCDA:1-114, 1FDS, 1FMCA,
1FUA, 1FUIA:1-355, 1GARA, 1GCA, 1GGGA, 1GHR, 1GLN:1-305, 1GLQA:1-78, 1GND:1-291, 1GND:389-430, 1GPB, 1GPH1:235-465, 1GYM,
1HDCA, 1HGXA, 1HJRA, 1HMPA, 1HMY, 1HRDA:1-194, 1HRDA:195-449, 1HURA, 1HVQ, 1ICEA, 1ICEB, 1IDM, 1IDO, 1IGS, 1ITG, 1JDC:1-357,
1KIFA:1-194, 1KIFA:288-339, 1KTE, 1LAM:1-159, 1LAM:160-484, 1LCT, 1LDM:1-160, 1LEHA:1-134, 1LEHA:135- 364, 1LFAA, 1LST, 1LUCA,
1LUCB, 1LVL:266-335, 1LVL:151-265, 1LVL:1-150, 1MEK, 1MIOA, 1MIOB, 1MPB, 1NAL1, 1NAR, 1NBAA, 1NFP, 1NHP:1-119, 1NHP:120- 242,
1NHP:243-321, 1NIPA, 1NOYA, 1NSJ, 1NSYA, 1NTR, 1NULA, 1NZYA, 1OBR, 1OFGA:1-160, 1OFGA:323-381, 1OPR, 1ORB:150-293, 1ORB:1-149,
1ORDA:108-569, 1ORDA:1-107, 1ORTA:151-335, 1ORTA:1-150, 1OYA, 1PAUA, 1PAUB, 1PBE:276-391, 1PBE:1-173, 1PBN, 1PBP, 1PDO, 1PEA,
1PFKA, 1PHP, 1PHR, 1PII:1-254, 1PII:255-452, 1PKYA:168-344, 1PKYA:1-69, 1POT,1PPI:1-403, 1PTA, 1PUD, 1PVUA, 1QRDA, 1RAAA:151-310,
1RAAA:1-150, 1RCF, 1RLAA, 1RPA, 1RVAA, 1RVVA, 1SBP, 1SCUA:1-121, 1SCUA:122-288, 1SRRA, 1TAHB, 1TCA, 1TDE:119-244, 1TDE:1-
118, 1TDE:245-316, 1THTA, 1TIB, 1TLFA, 1TML, 1TPFA, 1TPLA, 1TPT:71-335, 1UDG, 1V39, 1VHRA, 1VID, 1VTK, 1WHTA, 1WHTB, 1XEL,
1XVAA, 1XYZA, 1YASA, 1YBVA, 1YPTA, 2ACR, 2ADMA, 2ANHA, 2AT2A:145-295, 2AT2A:1-144, 2BGU, 2CHR:127-370, 2CMD:1-145, 2CTB,
2DKB, 2DLN:1-96, 2DRI, 2EBN, 2FX2, 2GLT:1-122, 2GSTA:1-84, 2HNP, 2LBP, 2MASA, 2NACA:336-374, 2NACA:148-335, 2NACA:1-147, 2OLBA,
2PGD:1-176, 2PIA:104-223, 2RN2, 2RSLA, 2TMDA:341-489, 2TMDA:1-340, 2TMDA:490-645, 2TMDA:646-729, 2TPRA:286-357, 2TPRA:169-285,
2TPRA:1-168, 2TRXA, 2XIS, 3CHY, 3CLA, 3DFR, 3PGM, 3PMGA:191-303, 3PMGA:1-190, 3PMGA:304-420, 3TGL, 5NUL, 5P21, 7ICD, 8ABP,

character denotes specific chain (if missing then the se-
quence has only one chain) (see Table A.2).
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8DFR, 1ADJA:326-421, 1AK5:2-101, 1AK5:222-483, 1ATIA:395-505, 1AYL:228-540, 1AYL:1-227, 1BGLA:334-625, 1BMFA:95-379, 1BMFD:82-357,
1CDG:1-406, 1CHMA:2-156, 1COY:4-318, 1CTN:133-443, 1DAR:1-282, 1DIH:241-273, 1DIH:2-130, 1DIK:510-874, 1DIK:377-505, 1DSBA, 1DXY:101-
299, 1FDR:101-248, 1FNB:155-314, 1GAL:3-324, 1GAL:521- 583, 1GD1O:313-333, 1GDHA:2-100, 1GDHA:101-291, 1GESA:3-146, 1GESA:263-
335, 1GESA:147-262, 1GLAG:254-499, 1GLAG:4-253, 1GNWA:2-85, 1GPMA:3-207, 1GPMA:208-404, 1GRL:191-366, 1GSEA:2-80, 1GTMA:3-180,
1GTMA:181-419, 1GTRA:8-338, 1HLPA:21-162, 1HPLA:1-336, 1HPM:4-188, 1HPM:189-381, 1HYHA:21- 166, 1KEVA:140-313, 1KFD:324-518,
1LDB:15-162, 1LDG:18-163, 1LLDA:7-149, 1MLA:3-127, 1MLA:198-307, 1MMD:2-33, 1MMD:80-759, 1PDA:3-219, 1PKYA:351- 470, 1PNRA:59-340,
1POXA:183-365, 1POXA:9-182, 1PSDA:108-295, 1PSDA:296-326, 1PSDA:7-107, 1PVDA:2-181, 1PVDA:182-360, 1PXTA:28-293, 1QAPA:130-296,
1QBA:338-780, 1QORA:113-291, 1REQA:2-560, 1REQB:20-475, 1RLR:222-748, 1RNL:5-142, 1SCUB:239-388, 1SFE:12-92, 1SFTA:12-244, 1TADA:27-
56, 1TFR:12-180, 1TRKA:3-337, 1TRKA:338-534, 1TRKA:535-680, 1YVEI:83-307, 1ZYMA:145-249, 1ZYMA:3-21, 2AAA:1-381, 2CND:125-270,
2KAUC:130-422, 2KAUC:476-567, 2OHXA:164-339, 2REB:3-268, 2TS1, 3RUBL:148-467, 5RUBA:138-457, 1BKSA, 1BKSB

� + �
119L, 193L, 1AB8A, 1ABRA, 1ACF, 1AF5, 1AFI, 1AG2, 1AH6, 1AHQ, 1AIHA, 1AK7, 1AKO, 1AORA:1-210, 1APA, 1APS, 1APYA, 1APYB, 1AST,
1ATLA, 1BP1:1-217, 1BP1:218-456, 1BRNL, 1BV1, 1CBY, 1CEWI, 1CHKA, 1COAI, 1CRKA:99-380, 1CTF, 1DAPA:119-268, 1DCOA, 1DDT:1-187,
1DEF, 1DHMA, 1DMAA, 1DONA, 1DPGA:182-412, 1DPGA:427-485, 1EBHA:1-141, 1EFNB, 1EPS, 1ESL:1-118, 1FCA, 1FCDA:328-401, 1FD2,
1FJMA, 1FKD, 1FRD, 1FROA, 1FWP, 1FXRA, 1GBS, 1GCB, 1GMPA, 1GND:292-388, 1GPH1:1-234, 1GTPA, 1GTQA, 1GUAB, 1HFC, 1HQI,
1HUMA, 1IBA, 1IGD, 1KIFA:195-287, 1KPTA, 1KUH, 1KVDA, 1KVDB, 1LBA, 1LBU:84-213, 1LDM:161-329, 1LIT, 1LML, 1LTSA, 1LTSC,
1LVL:336-458, 1MAT, 1MKAA, 1MLI, 1MNGA:93-203, 1MOLA, 1MRJ, 1MSK, 1MUT, 1NAPA, 1NHP:322-447, 1NOX, 1NPK, 1OFGA:161-322,
1ORDA:570-730, 1OTFA, 1OTGA, 1OUNA, 1PBA, 1PBE:174-275, 1PIL, 1PLQ:127-258, 1PLQ:1-126, 1PMAA, 1PMAB, 1PNKA, 1PNKB, 1POH,
1PRTA, 1PTF, 1PUT, 1PYAA, 1QBEA, 1RAAB:1-100, 1REGX, 1RIS, 1SCEA, 1SE4:122-239, 1SEIA, 1SETA:111-421, 1SHAA, 1SLY:451-618, 1SMNA,
1SPBP, 1SRSA, 1STD, 1STFI,1STU, 1SVR, 1SXL, 1TBD, 1TFE, 1TIF, 1TIG, 1UAE, 1UBI, 1UDII, 1URNA, 1VCC, 1VHH, 1VHIA, 1VIG, 1VJW,
1XGSA:272-295, 1XGSA:1-194, 1XXAA, 1ZNBA, 2ACT, 2BAA, 2BOPA, 2CHR:1-126, 2CHSA, 2CMD:146-312, 2DLN:97-306, 2DNJA, 2KAUA,
2MS2A, 2PHY, 2PIA:224-321, 2PLDA, 2PNB, 2POLA:245-366, 2POLA:123-244, 2POLA:1-122, 2PTL, 2SICI, 2TPRA:358-482, 2U1A, 2VIK, 3FIB,
3PMGA:421-561, 3RUBS, 7RSA, 9RNT, 1ADJA:2-325, 1ATIA:1- 394, 1BIA:64-270, 1BNCA:115-330, 1CD1A:7-185, 1CKMA:11-238, 1COY:319-
450, 1CTN:444-516, 1DAR:476-599, 1DAR:600-689, 1DIH:131-240, 1DIK:2-376, 1DIV:1-55, 1DIV:56-149, 1DLHA:3-81, 1ESFA:121-233, 1EZM,
1GD1O:149-312, 1GESA:336-450, 1GGTA:191-515, 1GPMA:405-525, 1GRJ:80-158, 1GRL:367-409, 1GRL:137-190, 1HAN:133-289, 1HAN:2-132,
1HTTA:4-325, 1HXPA:2-177, 1HXPA:178-348, 1KAPP:1-246, 1LGR:101-468, 1LGR:1-100, 1LLDA:150-319, 1LYLA:161-502, 1MBB:3-200, 1MBB:201-
342, 1MLA:128-197, 1MXA:1-102, 1MXA:108-231, 1MXA:232-383, 1PDA:220-307, 1PKP:78-148, 1PKP:4-77, 1PMD:76-263, 1PREA:2-84, 1PRTB:4-
89, 1QAPA:8-129, 1QBA:201-337, 1SCUB:1-238, 1TPT:336-440, 1UP1:7-92, 1UP1:99-182, 1VAOA:6-273, 1VAOA:274-560, 1YTBA:61-155, 2GLT:123-
316, 2MNR:3-132, 2REB:269-328, 3RUBL:22-147, 4KBPA:121-432, 5RUBA:2-137, 2AAK, 1BVTA, 1AOP:81-145, 1AOP:346-425, 1AOP:149-345,
1O7BT, 1IQZA, 1CYO, 2TSSA:94-194

Appendix B

Results of the parameter optimization for the considered eight classification algorithms (see Table B.1).

Table B.1

Classification algorithm Parameters Considered values Optimal setup for a given dataset
and feature representationa

Naïve Bayes (NB) 1. Supervised or unsuper-
vised discretization

Superv, unsuperv 359+CV 1. Unsuperv
359+AC 1. Unsuperv
359+66 1. Superv
1189+CV 1. Unsuperv
1189+AC 1. Superv
1189+66 1. Unsuperv
25PDB+CV 1. Unsuperv
25PDB+AC 1. Unsuperv
25PDB+66 1. Superv

Radial basis function 1. Number of clusters per class 2, 3, 4, . . . , 10 359+CV 1. 8; 2. e−8

neural network (RBF) 2. Ridge parameter for regression e−10, e−9, e−8, e−7, . . . , 359+AC 1. 8; 2. e−8

e1e2 ,e3 359+66 1. 8; 2. e−8

1189+CV 1. 3; 2. 100
Regression performed always until 1189+AC 1. 8; 2. e−8

convergence 1189+66 1. 3; 2. 100
25PDB+CV 1. 2; 2. e−8

25PDB+AC 1. 2; 2. e−8

25PDB+66 1. 2; 2. e−8
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Table B.1. Continued

Classification algorithm Parameters Considered values Optimal setup for a given dataset
and feature representationa

Instance based classifier (IB1) None None N/A
C4.5 (C4.5) 1. Pruning confidence 0.1, 0.2, 0.25, 0.4, 0.6 359+CV 1. 0.25; 2. 1

2. Minimum number of instances
per leaf

1, 2, 5, 10, 15 359+AC 1. 0.25; 2. 1

359+66 1. 0.25; 2. 1
1189+CV 1. 0.4; 2. 1

Tree pruning always performed 1189+AC 1. 0.25; 2. 2
1189+66 1. 0.25; 2. 10
25PDB+CV 1. 0.2; 2. 5
25PDB+AC 1. 0.2; 2. 10
25PDB+66 1. 0.25, 2. 10

Random forest (RF) 1. Number of trees in the forest 1, 2, 5, 10, 20, 30, 40, 50 359+CV 1. 10
359+AC 1. 30
359+66 1. 20
1189+CV 1. 40
1189+AC 1. 20
1189+66 1. 30
25PDB+CV 1. 40
25PDB+AC 1. 10
25PDB+66 1. 30

Repeated incremental prun- 1. Number of optimization runs 1, 2, 5, 10 359+CV 1. 2; 2. 2
ing to produce error reduction
(RIP)

359+AC 1. 2; 2. 2

within a split
2. Minimal weights of instances 1, 2, 5, 10, 20
Rule pruning always performed 359+66 1. 5; 2. 2

1189+CV 1. 2; 2. 2
1189+AC 1. 2; 2. 2
1189+66 1. 5; 2. 2
25PDB+CV 1. 5; 2. 20
25PDB+AC 1. 2; 2. 2
25PDB+66 1. 2; 2. 2

Support vector machine
(SVM)

1. Complexity constant 1, 5, 10, 20, 50 359+CV 1. 10; 2. RBF; 3b. 1

2. Kernel type Polynomial, RBF 359+AC 1. 10; 2. RBF; 3b. 10
3a. Exponent for the polynomial
kernel

1, 2, 3 359+66 1. 10; 2. RBF; 3b. 1

3b. Gamma for the RBF kernel 0.01, 0.1, 1, 10 1189+CV 1. 100; 2. RBF; 3b. 0.01
1189+AC 1. 100; 2. RBF; 3b. 1
1189+66 1. 1; 2. RBF; 3b. 0.1
25PDB+CV 1. 20; 2. RBF; 3b. 0.1
25PDB+AC 1. 20; 2. POLY; 3a. 1
25PDB+66 1. 10; 2. POLY; 3a. 1

Logistic regression (LR) 1. Ridge parameter for the log-
likelihood

e−10, e−9, e−8, e−7, . . .

e1, e2, e3
359+CV 1. e−5

Regression performed always un-
til convergence

359+AC 1. e−8

359+66 1. e−8

1189+CV 1. e−8

1189+AC 1. e−8

1189+66 1. e−8

25PDB+CV 1. e−8

25PDB+AC 1. 1
25PDB+66 1. e−2

aDatasets include 25PDB, 1189, and 359; feature representations include composition vector (CV), autocorrelation (AC), and 66 features (66); 1189+CV
stands for 1189 dataset and composition vector representation.
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