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INTRODUCTION

Proteins undergo constant thermal fluctuations and other types

of motions that span between rapid (picoseconds) vibration and rel-

atively slow (microseconds to seconds) movements.1 The structural

flexibility associated with these motions allows implementation of

various biological processes such as molecular recognition, enzyme

catalysis, allosteric regulation, antigen–antibody interactions, and

protein–DNA binding.2–6 Experimentally available structural data

that were derived based on X-ray crystallographic studies provide

information on the atomic mobility, which is represented by the

atomic displacement parameter, also known as the Debye–Waller

temperature factor or B-factor. This parameter reflects the degree of

dispersal of atomic electron density around the equilibrium position

due to thermal motion and positional disorder. The B-factors have

been studied from a variety of viewpoints including the relation

between mobility and thermal stability,7,8 in the context of applica-

tions in the prediction of active sites and binding sites,9–12 in the

design of potential function,13 and in protein function analysis/dis-

covery.2,6,14–16 Molecular dynamic (MD) simulation is one of the

most powerful computational methods used to describe and analyze

protein flexibility. The main drawback of MD simulations is their

high computational cost.17–19 Several prediction methods that

address protein flexibility and that investigate its relation with pro-

tein function were developed to overcome this limitation. They

include structure-based20–24 and sequence-based25–30 methods,

where in both cases B-factor was used as the enabling concept.

Recent studies show that the structure-based methods, such as the

Gaussian network model (GNM),21 the mean-field-like model,17

the elastic network model (ENM),19 the protein fixed-point (PFP)

model,23 and the weighted contact number (WCN) model,24 could

provide better insights to the structure–dynamics–function relation-
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ABSTRACT

We investigate the relationship between the flexi-

bility, expressed with B-factor, and the relative

solvent accessibility (RSA) in the context of local,

with respect to the sequence, neighborhood and

related concepts such as residue depth. We

observe that the flexibility of a given residue is

strongly influenced by the solvent accessibility of

the adjacent neighbors. The mean normalized B-

factor of the exposed residues with two buried

neighbors is smaller than that of the buried resi-

dues with two exposed neighbors. Inclusion of

RSA of the neighboring residues (local RSA) sig-

nificantly increases correlation with the B-factor.

Correlation between the local RSA and B-factor

is shown to be stronger than the correlation that

considers local distance- or volume-based residue

depth. We also found that the correlation coeffi-

cients between B-factor and RSA for the 20

amino acids, called flexibility-exposure correla-

tion index, are strongly correlated with the stabil-

ity scale that characterizes the average contribu-

tions of each amino acid to the folding stability.

Our results reveal that the predicted RSA could

be used to distinguish between the disordered

and ordered residues and that the inclusion of

local predicted RSA values helps providing a bet-

ter contrast between these two types of residues.

Prediction models developed based on local

actual RSA and local predicted RSA show similar

or better results in the context of B-factor and

disorder predictions when compared with several

existing approaches. We validate our models

using three case studies, which show that this

work provides useful clues for deciphering the

structure–flexibility–function relation.
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ship of proteins than the conventional MD simulations

due to their ability to sample a wider range of collective

motions.31 However, such methods require the knowl-

edge of the atomic coordinates. In contrast, the

sequence-based predictors use only the protein sequences

as the input and thus they are suitable for the analysis of

the chains with the unknown structure.

Since the dynamic processes concerning folding and

interactions with ligands are complex, a few different def-

initions of flexible regions were proposed. As an extreme

manifestation of flexibility, a class of ‘‘natively unstruc-

tured’’ or ‘‘intrinsically disordered’’ regions was defined

as the regions that are invisible in X-ray diffraction elec-

tron density maps. In the past decade, protein disorder

has received considerable attention due to its important

role in various protein functions.32,33 A recent result by

Jones group shows that 30–60% of all eukaryotic proteins

may contain disordered regions.34 To this end, a number

of flexible region predictors have been developed35,36

and some of them show strong correlations with B-factor

values.28,37 However, the conceptual connection between

flexible and natively unstructured regions remains

obscure.38 Recently, a disorder prediction method

RONN39 has been applied to analyze the flexibility of ar-

omatic amino acids in cap-binding proteins40 based on

the observation that the flexibility indices27 computed

from B-factor values and the mean values of disorder

probability for each type of amino acid are highly corre-

lated. Abovementioned observations suggest that the two

manifestations of flexibility, B-factors and disordered

regions of proteins, are closely related. At the same time,

the disorder is also closely related to protein function.41

Since the B-factor values are not available for the disor-

dered residues, we cannot directly examine the relation-

ship between B-factors and the disordered regions.

Instead, we investigate whether a model for prediction of

B-factor values developed based on the remaining (or-

dered) residues could be used to detect the disordered

regions.

The solvent-accessible surface area (ASA) has been

widely studied due to the fact that surface residues are

directly involved in the interaction with other biological

molecules.42,43 The ASA was used in the context of pro-

tein function, stability, and fold recognition.44–47 Several

methods were developed for the prediction of relative

solvent accessibility (RSA),48–51 which is defined by the

ASA of a residue in the protein divided by ASA observed

in an extended conformation (Gly-X-Gly or Ala-X-Ala).

The relations between flexibility and a few related con-

cepts such as contact density and contact number have

been previously discussed.22,24 The flexibility of a resi-

due is also known to be correlated with its ASA.52,53

Mobile sections of a protein often have high solvent

accessibility and only a few scaffolding hydrogen bonds

between the domains.54 A sequence-based flexibility

prediction method by Schlessinger and Rost30 uses pre-

dicted binary RSA, which annotates a given residue as

exposed or buried using a cutoff threshold, as its inputs,

which provides further evidence of this relation.

However, a detailed analysis of the relationship between

the B-factor and the solvent accessibility was never

attempted. As observed by Halle,22 this relation cannot

be accurately described using a simple linear function,

that is, Bi 5 a 3 ASAi 1 b0 where i represents the ith

residue in a protein sequence, since such model would

result in B-factor values of all buried residues be the

same and equal to b0. Additionally, other residue descrip-

tors such as distance- or volume-based residue depth

indices, which are complementary of RSA and which

allow describing the interior of the proteins,55–57 could

be also considered in the context of their relation with

the flexibility. These descriptors were shown to be useful

for the analysis of amide hydrogen/deuterium exchange

rates in nuclear magnetic resonance (NMR) experi-

ments,58 for the analysis of the local packing arrange-

ments in the protein core,59 and for protein fold recog-

nition.47 At the same time, their relation with the flexi-

bility has not been studied.

In this study we focus on the relation between the resi-

due flexibility measured with the B-factor and the solvent

accessibility. This relation is investigated in the context of

different types of amino acids and secondary structures

as well as using tripeptide-based exposure patterns. Since

the motions in protein are not constrained to individual

residues but they also involve neighboring residues creat-

ing a dynamic network,4,59 we study the impact of the

solvent accessibility of immediate and further neighbors

of the investigated residue. To do that, we use least

square linear regression model and we optimize the size

of a local, with respect to the sequence, window using a

large dataset of 972 chains from Refs. 23 and 24. We also

contrast the relation between the flexibility and solvent

accessibility with the relation between the flexibility and

residue depth.

In our work we use the actual and the predicted RSA

values. The former RSA values are computed from

known protein structure, while the latter are predicted

using the protein sequence. This allows applying our

conclusions in the context of sequence-based prediction

of the disordered regions. Using a new blind dataset, we

use the predicted RSA values and our linear regression

model to predict B-factor values, which in turn are used

to find the disordered regions. We emphasize that this is

accomplished in spite of the fact that these regions by

default have no actual B-factor values. Finally, we apply

the linear regression models that use either the actual or

the predicted RSA values on three case studies which

involve analysis of Escherichia coli RNase HI,38 human

interleukin-216 and human cyclin-dependant kinase-2

(CDK2)15 proteins. The goal of these case studies is to

show that the relation between solvent accessibility and

B-factor values, which is quantified with the regression
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model, can be used to find rigid/flexible regions that in

turn give useful clues in the context of protein function.

MATERIALS AND METHODS

Datasets

We use a dataset which was proposed in Refs. 23 and

24 and which was selected using PDB-REPRDB.60 This

set, referred to as PDB972, includes 972 protein chains of

length �60 which are characterized by pairwise sequence

identity �25% and which include structures that are

solved by X-ray crystallography with resolution �2.0 Å

and R-factors �0.2. The second dataset, referred to as

PDB766, was introduced in Ref. 29 and contains 766

protein chains selected using the same criteria as the

PDB972 dataset.

We also prepared a new dataset based on sequences

that were deposited to Protein Data Bank (PDB)61

between January 2007 and April 2008, and which were

filtered to have low identity with the sequences in the

PDB972 dataset and the sequences deposited to PDB

before 2007. More specifically, the sequences deposited

before 2007 and after 2007 were separately filtered using

CD-hit program62 with 95% identity threshold. The

resulting sets concerning these two time periods are

referred to as PDB95-B07 and PDB95-A07, respectively.

Since the minimal identity threshold of otherwise highly

efficient CD-hit equals 40%, we used NCBI’s BLAST-

CLUST63 to the union of PDB95-A07, PDB95-B07, and

PDB972 with the local identity threshold set at 25% and

default minimal length coverage of 90% (-S 25 -L 0.9

options). The new dataset was constructed by selecting

one chain of length �60 with best resolution �2.0 Å and

R-factors �0.2 from each of the clusters that contained

no sequences from the PDB95-B07 and PDB972 datasets.

This set, called PDB328, includes 328 chains that, as a

result, have local 25% identity with each other and also

with the PDB95-B07 and PDB972 datasets. The PDB

identifiers of chains from the PDB328 dataset are given

in the supporting information Table I.

The PDB972 dataset is used to study the relation

between the solvent accessibility and the flexibility. The

PDB766 and PDB972 datasets are used to contrast the

proposed RSA-based linear model for prediction of B-

factor values with other sequence based methods for B-

factor prediction. The PDB328 dataset is used to investi-

gate the relation between B-factor, disordered regions

and predicted RSA. This dataset is used to compare dis-

order region prediction obtained based on the findings

in this paper with results of a recent disorder region pre-

diction method. The low identity with respect to the

PDB95-B07 and PDB972 datasets allows for an unbiased

(with respect to sequences used to develop the prediction

methods) comparison.

B-factor and disordered regions

Experimental B-factor of an atom is defined as 8p2hu2i
using the isotropic mean square displacement, u2, aver-

aged over the lattice.30 Since B-factor values depend on

the experimental resolution, crystal contacts, and the

refinement procedures, they have to be normalized to

allow comparisons between different structures. Follow-

Table I
Relationship Between Mean B0-Factor and Mean RSA Values for the 20 Amino Acids

AA type No. of residues Mean B0-factor CC between B0-factor and RSA Mean actual RSA Stability scale (kcal/mol)

K 15650 0.345 0.446 0.472 2.12
E 17844 0.319 0.513 0.470 1.89
D 16823 0.240 0.509 0.426 1.75
P 13553 0.173 0.483 0.320 2.09
S 16945 0.137 0.559 0.313 1.66
Q 11007 0.131 0.495 0.388 2.16
N 12966 0.114 0.528 0.388 1.85
G 21760 0.098 0.542 0.287 1.17
R 13726 0.009 0.452 0.355 2.71
T 16117 20.010 0.524 0.281 2.18
A 22977 20.075 0.515 0.204 2.18
M 6467 20.081 0.565 0.141 3.63
H 6964 20.109 0.542 0.268 2.51
L 24375 20.188 0.398 0.119 4.71
C 4136 20.224 0.421 0.095 3.89
V 19507 20.230 0.438 0.123 3.77
I 15777 20.247 0.411 0.103 4.5
Y 10760 20.286 0.358 0.177 5.01
F 11700 20.289 0.347 0.117 5.88
W 4844 20.298 0.355 0.142 6.46

The rows are in the descending order of the mean B0-factor values. The computations are based on the PDB972 dataset.
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ing Refs. 8 and 30, B-factors of Ca atoms for each chain

were extracted from PDB files and normalized using:

B0 ¼ B � B

r
ð1Þ

where B is the actual B-factor, �B is the average B-factor

in a given chain, and r is the standard deviation of B-

factors for all Ca atoms in a given chain. This normal-

ization was applied to B-factors in the PDB972 and

PDB766 datasets. The disordered regions in the PDB328

dataset were identified as the residues that do not have

coordinates in X-ray structures according to the

‘REMARK465’ record in the header of the correspond-

ing PDB entry.

Solvent exposure properties

The actual ASA values in the three datasets were

computed with DSSP program,64 which also assigns

eight-state secondary structures to each residue. Pre-

dicted ASA values were derived using Real-SPINE65

which is motivated by high quality of predictions gener-

ated by this method, that is, the authors reported corre-

lation coefficient of 0.74 and mean absolute error of

0.142 between the predicted and the actual ASA. Fol-

lowing Ref 65, RSA was computed by the ASA of a resi-

due normalized by the ASA of this residue in its

extended tripeptide (Ala-X-Ala) conformation.49 The

predictions with Real-SPINE on the PDB972 and

PDB766 dataset yielded 0.71 and 0.72 correlation coeffi-

cient, and 0.145 and 0.143 mean absolute error, respec-

tively, and thus we assume that this method did not

overfit the two datasets.

The distance-based depth is defined as the minimum

distance between an atom and a dot of solvent accessible

surface55 or its closest solvent accessible neighbor.56 The

residue depth (RDdis) is the average atom depth of all

atoms composing a given residue. Similarly as in Refs. 66

and 67, the MSMS program68 was first executed with a

probe radius of 1.4 Å to obtain a list of vertices that rep-

resent the protein surface. The atom depth, that is, the

distance between an atom and its nearest vertex, was cal-

culated, and the average atom depth of all atoms except

the hydrogen atoms for a given residue was assumed as

its depth.

In the case of the volume-based depth,57 given an

atom i and a sampling radius r, a depth index Di,r is

defined as Di,r 5 2Vi,r/V0,r, where Vi,r is the exposed vol-

ume of a sphere of radius r centered on atom i and V0,r

is the exposed volume of the same sphere when centered

on an isolated atom. Following Refs. 57 and 67, we

computed the residue depth values (RDvol) as the depth

of Ca atoms with a sampling radius of 9 Å using SADIC

program.

Linear regression models

We use a linear regression model over a local window

in the protein sequence to express the relation between

the solvent exposure, expressed using RSA values, and

flexibility, expressed using normalized B-factor values.

The flexibility of the central residue in the window,

denoted as B0-factor (normalized B-factor), is defined as:

B̂0
i ¼

Xh
k¼�h

wk � RSAiþk þ b ð2Þ

where b is the intercept and B̂0
i represents the estimated

(predicted) B0-factor of the central residue i using RSA

values in the window of size h 5 0, 1, 2, . . ., (the win-

dow includes 2h 1 1 residues), and where weighs wk are

determined using the least squares fit between the esti-

mated (predicted) B0-factor and the actual B0-factor val-

ues. In our study, RSAi correspond to either the actual

RSA values derived with DSSP (denoted by DsspRSAi) or

the predicted values (denoted by PredRSAi). The models

that use the actual and the predicted RSA and which cor-

respond to different window sizes are referred to as

DsspRSAs and PredRSAs, where s 5 2h 1 1, respectively.

In order to evaluate the ability of these models to gener-

alize to new data, we performed fivefold cross validation

tests by following Ref. 29. The computation of the

weights was performed using Weka.69

Evaluation measures

Based on Refs. 24 and 29, the Pearson correlation coef-

ficient (CC), which is defined as

CC ¼

PN
i¼1

ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðxi � �xÞ2

� � PN
i¼1

ðyi � �yÞ2

� �s ð3Þ

where xi is the observed B0-factor and yi is the RSA value

or predicted B0-factor for the ith residue in the sequence,

is used to quantitatively measure the relationship

between B0-factor and solvent accessibility and to evalu-

ate the quality of the proposed linear models. If CC is

close to 1, then {xi} and {yi} are fully correlated. If CC is

close to 0 then the two variables are not correlated, and

in the case when CC is close to 21 then the variables are

anticorrelated. The absolute CC values quantify the

degree of the correlation.

We note that the correlation can be measured at the

residue level29 or at the chain level.23,24 In the former

case, all residues in a given dataset are merged together

and one CC value is computed. In the latter case, CC is

computed for each chain separately and next these values

are averaged to compute the correlation over the entire

dataset. In this article, we report CC at the residue level,

H. Zhang et al.
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unless stated otherwise, in which case we will use term

average correlation coefficient (ACC) that refers to the

CC at the chain level.

Statistical tests

We use statistical tests to verify whether the distribu-

tions used in the course of this paper are different. We

used t-test to compare two normal distributions and Sha-

piro–Wilk test to verify whether a given distribution is

normal. These statistical tests were performed with statis-

tical package R.70

RESULTS

First, we investigate the relation between the flexibility

and solvent accessibility for individual residues. This is

followed by an analysis of this relation in a context of

neighboring residues, including both immediate neigh-

bors and a local window in the protein sequence. We

also compare our window-based model that can be used

to predict B0-factor values from the solvent accessibility

(both actual accessibility and accessibility predicted from

the protein sequence) with relevant methods for predic-

tion of B0-factor values. Next, we investigate the relation

between residue depth and B0-factor and contrast it with

the relation between solvent accessibility and B0-factor.

Finally, we explore the relation between the solvent acces-

sibility predicted from the protein sequence and B0-factor

in the context of the application into prediction of disor-

dered regions. This section is concluded with an applica-

tion into three case studies.

Relation between B0-factor and RSA
at the single residue level

The CC and ACC between B0-factor and solvent acces-

sibility for residues in the PDB972 dataset equal 0.47 and

0.48 for the actual ASA and 0.51 and 0.52 for the actual

RSA, respectively. Since the RSA values have higher corre-

lation with B-factor than the ASA values, only RSA values

are used to quantify the relationship between B-factor

and the solvent accessibility.

Relation between B 0-factor and RSA at the
single residue level for different amino acid types

We divided the 283,898 residues in the PDB972 dataset

into 20 subsets according to the type of the amino acids

and examined the correlations between B0-factor and

mean RSA for each of these subsets. Table I lists the

mean B0-factor and mean RSA values for the 20 amino

acids together with the CC values between B0-factor and

RSA. The CC between the 20 mean B0-factor values and

20 mean RSA values over the standard amino acids

equals 0.93, which suggests that higher mean B0-factor

implies larger mean RSA, that is, flexible residues are

usually on the protein surface so that a sufficient amount

of solvent accessibility allows them to carry out specific

functions. For instance, the table shows that the charged

residues, which include Lys (K), Glu (E), and Asp (D),

are not only the most flexible but also the most exposed.

The CC values between B0-factor and RSA for the amino

acids yield a new amino acid index which we call flexibil-

ity-exposure correlation index (FECI). This index reflects

the strength of the relation between B0-factor and RSA.

We observe that FECI is not strongly correlated with nei-

ther mean B0-factor, CC 5 0.62, nor mean RSA, CC 5

0.51. This implies that the strength of this relation is

mediated by some other property. We searched all amino

acid indices deposited in the AAindex database,71 and

found that FECI is strongly correlated with the stability

scale,72 see Table I. The CC between the stability scale

and the FECI index equals 20.85 and the corresponding

linear regression line is shown in Figure 1. The stability

scale, which was derived from the knowledge-based

atom–atom potentials, characterizes the average contribu-

tions of individual residues to the folding stability. The

negative correlation suggests that the individual residues

with higher (lower) FECI in general have lower (higher)

stability scale value, that is, they have lower (higher) av-

erage contributions to the folding stability, and vice

versa. For example, Trp (W) has the lowest mean B0-fac-

tor, the second lowest CC between B-factor and RSA,

and the largest value according to the stability scale, but

it does not have the lowest mean RSA. The lowest mean

B0-factor together with low CC between B-factor and

Figure 1
The relation between flexibility-exposure correlation index (y-axis) and

the stability scale (x-axis) for the 20 amino acids. Correlation coefficient

corresponding to the shown linear regression line equals 20.85. The

computations are based on the PDB972 dataset.
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RSA imply that surface Trp residues tend to be relatively

rigid, when compared to other residues. Recent studies

show that surface Trp residues strongly contribute to the

folding stability.73,74 More specifically, they show that

single mutation (W62G) of hen egg-white lysozyme

results in a less stable structure than that of the wild-

type,74 which supports our finding.

Relation between B 0-factor and RSA at the single
residue level for different secondary structures

DSSP program64 was used to assign the eight-state

secondary structures, which include a-helix (H), 310-he-

lix (G), p-helix (I), b-sheet (E), b-bridge (B), hydrogen

bonded turn (T), bend (S), and random coil or loop (-),

for all residues in the PDB972dataset. We reduced the

eight-state structures into three states by grouping H, G,

and I as helix (H), B and E as strand (E), T, S, and - as

coil (C); the same conversion is performed in the EVA

server.75

We separated all the residues in the PDB972 dataset

based on their eight-state and three-state structures into

eight and three subsets, respectively. The corresponding

mean B0-factor and mean RSA values, as well as the CC

between B0-factor and RSA for the residues in each of

the eight and three secondary structure states are given

in Table II. The hydrogen bonded turn (T) is character-

ized by the highest flexibility, that is, the mean B0-factor

equals 0.354, and the highest mean RSA that equals

0.452. The random coil (-) and bend (S) have almost the

same mean B0-factor values, that is, the corresponding P-

value using two-sided t-test equals 0.6259. Among the

three helix types (H, G, I), 310 helix is the most flexible,

a-helix is more rigid, and the p-helix is the most rigid.

These differences are likely due to the geometry of the

helices, in which 3, 3.6, and 4.1 residues per turn and

translation of 2 Å, 1.5 Å, and 1.15 Å for the 310, a-, and

p-helices imply increasingly tighter packing. We note that

the number of p-helices in our dataset is relatively small,

thus potentially limiting reliability of our observation.

Among the two strand types, b-sheet is less flexible than

b-bridge. We observe that the mean B0-factor of b-

bridges is close to that of a-helix. When examining the

three-state secondary structures, the table shows, as

expected, that coils are the most flexible, while strands

are the most rigid. The order of mean B0-factor values is

in consistent with the order of mean RSA values for the

three-class secondary structures. The distributions of B0-
factor and RSA values in three-state secondary structures

are shown in Figure 2. We note that the CC values

between B0-factor and RSA are relatively similar across all

secondary structure types, which suggests that the rela-

tion between these two structural descriptors does not

vary with the secondary structures. Finally, the mean

RSA values show that strands tend to be more buried

than helices and coils, while the most solvent-exposed

secondary structure is the bonded turn.

The impact of RSA of the neighboring
residues on the residue flexibility

The distributions of B0-factor values for residues

binned according to RSA values in the PDB972 dataset,

see Figure 3, indicate that the exposed residues are on av-

erage more flexible than the buried residues. The Figure

also shows that certain buried residues could be more

flexible than some exposed residues, which comes from

the overlap between the corresponding distributions. This

is likely due to the fact that a protein is a dynamic net-

work formed by the connected residues, which means

that local packing and arrangement of neighboring resi-

dues, especially the exposure or burial of the adjacent

neighbors, strongly impact the flexibility of a given resi-

due. To this end, we investigate the exposure patterns of

tripeptides based on the RSA cutoffs. To avoid using an

arbitrary threshold we use twenty RSA cutoffs ranging

between 0 and 95% with a step of 5%. A given residue is

defined as exposed (e) if its RSA is larger than the cutoff

value, and otherwise it is defined as buried (b). A given

(central) residue that assumes the exposure state x (one

of two states, e and b) may have two buried (bxb), two

exposed (exe), or one buried and one exposed (exb and

bxe) adjacent neighbors. The mean B0-factor values of the

central residues for each of the six possible tripeptide ex-

posure patterns for each RSA cutoff are plotted in Figure

4. The Figure shows a consistent increase of mean B0-fac-

tors with the increasing values of the RSA cutoff. We

observe that irrespective of the exposure state of the cen-

tral residue, the exposure to the solvent of the adjacent

residues promotes flexibility of the central residue, while

the burial of the adjacent residues inhibits the flexibility

of the central residue. Contrary to the intuition, given

any RSA cutoff value, the exposed residues with two bur-

Table II
Relationship Between Mean B0-Factor and Mean RSA for Eight-State

and Three-State Secondary Structures

SS type
No. of
residues

Mean
B0-factor

CC between
B0-factor and RSA

Mean
actual RSA

Eight-state secondary structures
T 33918 0.354 0.499 0.452
— 57834 0.270 0.520 0.296
S 25506 0.266 0.481 0.350
G 12128 0.151 0.450 0.335
B 3748 20.147 0.446 0.183
H 88672 20.160 0.435 0.236
I 64 20.230 0.620 0.117
E 62028 20.347 0.460 0.148
Three-state secondary structures
C 117258 0.294 0.497 0.353
H 100864 20.123 0.446 0.248
E 65776 20.336 0.460 0.150

The rows are in the descending order of the mean B0-factor values. The computa-

tions are based on the PDB972 dataset.
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ied adjacent neighbors (i.e., beb pattern) have lower

mean B0-factor values than the buried residue with two

exposed adjacent neighbors (i.e., ebe pattern). This

implies that the two buried neighbors strongly influence

the flexibility of the central residue making it more rigid

than the buried residue which is flanked by two exposed

residues.

As an example, we further investigate two cases with

RSA cutoffs equal to 20 and 25%. The latter threshold is

applied in two-class (buried/exposed) RSA prediction,65

while the former cutoff value results in the most bal-

anced division into exposed and buried residues. The dis-

tributions of B0-factor values for each of the six tripep-

tide exposure patterns and the corresponding mean B0-
factor values are shown in Figure 5 and Table III, respec-

tively. We again observe that for both the cutoffs the resi-

dues with beb pattern have smaller mean B0-factor values

than the residues within ebe pattern. We performed two-

sided t-test that compares the corresponding two distri-

Figure 3
Distributions of B0-factor values for residues binned according to their

RSA values. The B0-factor values were discretized into 0.2 wide

intervals. The computations are based on the PDB972 dataset.

Figure 4
Mean B0-factor values of central residues for the six tripeptide exposure

patterns (y-axis) which are defined based on different RSA cutoffs

(x-axis). The computations are based on the PDB972 dataset.

Figure 2
Distributions of B0-factor values (Panel A) and RSA values (Panel B) for the three major types of the secondary structures. The computations are

based on the PDB972 dataset.
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butions of B0-factor values for both RSA thresholds,

which shows that they are different with P-values <2.2e-

16. The same tests performed for all other pairs of distri-

butions also shows that they are different with P-values

<2.2e-16. The above results suggest that the neighboring

residues have significant impact on the flexibility of the

central residue.

The impact of the local solvent accessibility
on the residue flexibility

In addition to the impact from the adjacent residues

discussed in the above section the solvent accessibilities

of other residues that are further along the sequence (in

a local sequence window) may also contribute the flexi-

bility. We developed linear regression models that take

RSA/ASA values of residues in a local window as an

input to compute the B0-factor value of the central (in

the window) residue. These models are used to quantify

the relation between local (with respect to the sequence)

RSA/ASA and B-factor. We also use them to study the

impact of the window sizes on the strength of this rela-

tion. The regression models are computed based on five-

fold cross validation on the PDB972 dataset. Figure 6A

shows the ACC values that quantify correlation between

the outputs of the linear regression models and the B0-
factor values for the window sizes between 1 and 25 for

DsspRSA (actual RSA), DsspASA (actual ASA), PredRSA

(RSA predicted using Real-SPINE) and PredASA (ASA

predicted with Real-SPINE) models. The Figure shows

that local RSA values have stronger correlation with B0-
factors than the local ASA values. The differences when

using the actual and the predicted solvent accessibility

are consistent across different window sizes. The

improvement in ACC due to the increased window size

is larger when considering small sizes between 1 and 3,

Figure 5
The distributions of B0-factor values of central residues for the six tripeptide exposure patterns and two RSA cutoffs. Panel A shows results for RSA

cutoff equal 20%. Panel B shows results for RSA cutoff equal 25%. The computations are based on the PDB972 dataset.

Table III
The Comparison of Mean B0-Factor Values for the Six Tripeptide Exposure Patterns and Two RSA Cutoffs

Exposure of the
central residue

Tripeptide exposure
pattern

20% cutoff 25% cutoff

No. of residues Mean B0-factor No. of residues Mean B0-factor

Buried bbb 67576 20.646 79789 20.613
bbe/ebb 54223 20.297 58158 20.229
ebe 27145 0.061 25064 0.150

Exposed beb 21507 20.134 23695 0.048
bee/eeb 65211 0.280 60527 0.376
eee 46292 0.813 34721 0.917

The computations are based on the PDB972 dataset.
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that is, ACC values increase from 0.52 to 0.63 for

DsspRSA and from 0.45 to 0.53 for PredRSA. In contrast,

for window sizes of 9 and above, there is virtually no

improvement in the ACC. The maximal ACC equals 0.66

for DsspRSA, 0.62 for DsspASA, 0.55 for PredRSA, and

0.51 for PredASA. The main reasons for the lack of

improvement when using large window sizes are the rela-

tively large separation between the residues (and thus

potential lack of interactions) and the decrease of average

autocorrelations of B0-factors. As shown in Figure 6(B),

when the residue separation is �5 (i.e., the window size

�11), the corresponding average autocorrelations are

lower than 0.3.

We also directly compare the CC values which are

derived using the linear regression models with the win-

dow sizes of 9 and 1 for each chain in the PDB972 data-

set, see Figure 7. In the case of using the actual RSA val-

ues (DsspRSA model), see Figure 7(A), significant major-

ity of chains show improvement in the correlation due to

the usage of the local RSA values, that is, 960 out of 972

protein chains are located above the diagonal which

denotes points where the correlation is the same for both

window sizes. Similarly, when using the predicted RSA

values (PredRSA model), see Figure 7(B), the improve-

ment is observed for 920 out of 972 chains. Similar com-

parison was also performed in the case of individual AAs

and secondary structures, and overall the conclusions are

that the local RSA values contribute to the increase of

CC irrespective of the type of the amino acid and the

type of the secondary structure (data not shown).

Based on the above observations, the window size of 9

is selected to model the relation between the residue flex-

ibility and the local RSA. We use two models, DsspRSA9

and PredRSA9, which are based on the actual local RSA

and the predicted local RSA, respectively.

Comparison between DsspRSA and PredRSA models and
other existing methods for prediction of B 0-factor

As shown above, local RSA is strongly correlated with

the B0-factor, which could be exploited to build a simple

model for the prediction of residue flexibility. Table IV

summarizes the prediction quality, measured based on

the ACC and CC between the actual and the predicted

B0-factor values, of several existing method for B0-factor

prediction. We include two methods that predict the B0-
factor values from the protein structure, WCN24 and

GNM,21 which are compared against our regression

model that is based on the actual DSSP values. We also

report results for three methods that predict the B0-factor

values from the protein sequence, a support vector

regression (SVR) method by Yuan et al.,29 a neural net-

work method PROFbval,30 and RONN method39 which

is primarily used to predict protein disorder. The latter

three approaches are compared against our linear model

Figure 6
Panel (A) Strength of the relation between B0-factor and local solvent exposure which is measured with ACC (y-axis) and which is computed using

varying window sizes (x-axis). The solvent exposure is modeled using the actual RSA (DsspRSA) and ASA (DsspASA) values, as well as predicted

RSA (PredRSA) and predicted ASA (PredASA) values. The regression models are computed based on fivefold cross validation on the PDB972

dataset. Panel (B) The average autocorrelations of B0-factor values (y-axis) for the residue separations between 0 and 12 (x-axis). The corresponding

average autocorrelation values for each residue separation were computed using formula from Ref. 27 based on the PDB972 dataset; the values are

shown above the bars.
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that uses the predicted RSA as the input. RONN was

used to verify whether a specific disorder predictor could

model the flexibility measured with the B-factor. The

structure-based methods, WCN and GNM, yield ACC

values of 0.61 and 0.56, which were reported in Ref. 24,

on the PDB972 dataset, while our DsspRSA9 model

achieves ACC of 0.66. In the case of sequence-based

methods, our PredRSA9 model provides the best result

on the PDB766 dataset, that is, ACC 5 0.56 and CC 5

0.55, when compared with the SVR (CC 5 0.53), the

PROFbval (ACC 5 CC 5 0.50 due to the normalization

of the network outputs), and RONN (ACC 5 0.14). We

observe that probabilities outputted by RONN, which are

designed for the prediction of the disorder, show weak

correlation with the B0-factor.

Analysis of the linear regression models for
the relation between local RSA and B 0-factor

The linear model which represents the relationship

between the B0-factor and the actual RSA values in win-

dow of size 9 (DsspRSA9) that was computed using the

entire PDB972 dataset follows

Figure 7
Comparison of CC between RSA and B0-factor for individual chains in the PDB972 dataset. Panel (A) compares the CC values when using the

actual RSA of an individual residue (x-axis) and when using the actual RSA values in a window of size 9 (y-axis). Panel (B) compares the CC

values when using RSA values predicted with Real-SPINE for a single residue (x-axis) and when using the predicted RSA values in a window of size

9 (y-axis).

Table IV
Comparison of Prediction Quality

Datasets

Structure based methods Sequence based methods

DsspRSA9 WCN GNM PredRSA9 SVR PROFbval RONN

ACC CC ACC ACC ACC CC CC ACC CC ACC

PDB972 0.66 0.63 0.61 0.56 0.55 0.53 — — — 0.14
PDB766 0.65 0.63 — — 0.56 0.55 0.53 0.50 0.50 0.14

Measured using CC and ACC between the predicted and the actual B0-factor values for the proposed linear regression models (DsspRSA9 and PredRSA9) and five exist-

ing method. The competing methods include two structure based algorithms, WCN24 and GNM,21 and three sequence based algorithms, SVR,29 PROFbval,30 and

RONN.39 The results of DsspRSA9 and PredRSA9 are based on fivefold cross validation on the PDB972 and PDB766 datasets; the remaining methods, which

were designed in the corresponding references, were tested on the entire dataset. The results of DsspRSA9 and PredRSA9 are shown in bold, and the results denoted

with ‘‘—’’ could not be computed due to the unavailability of the corresponding programs.
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B̂0
i 5 0.0797DsspRSAi24 1 0.1590DsspRSAi23 1

0.3305DsspRSAi22 1 0.6260DsspRSAi21 11.1837DsspRSAi 1

0.6267DsspRSAi11 1 0.3367DsspRSAi12 1 0.1942DsspRSAi13

1 0.1016DsspRSAi14 2 0.9826

where i represents the ith residue in the protein sequence

and B̂0
i denotes B0-factor estimate (prediction) for the ith

residue.

The model that uses the predicted RSA values, Pre-

dRSA9, is shown below

B̂0
i 5 0.1430PredRSAi24 1 0.2144PredRSAi23 1

0.4184PredRSAi22 1 0.7175PredRSAi21 1 1.3322Pre-

dRSAi 1 0.7257PredRSAi11 1 0.4141PredRSAi12 1

0.2643PredRSAi13 1 0.1607PredRSAi14 2 1.1493

Both regression models show that the weight values

decrease linearly, with a factor of 0.5, with the linear dis-

tance from the central, with respect to the window, resi-

due. This decrease is symmetric, that is, towards both the

N-terminus and C-terminus, and all weights are positive,

which means that RSA values have promoting effect

on the flexibility of the central residue. However, we

observe that the weights in the PredRSA9 model are

larger than the weights in the DsspRSA9 model. This is

likely due to the differences in the distributions of the

actual and the predicted RSA values, see Figure 8. The

Figure shows that Real-SPINE, which was used to predict

RSA values, tends to underpredict the highly exposed res-

idues and to overpredict the deeply buried residues. In

particular, residues in the PDB972 dataset that are fully

buried, that is, their RSA equals zero, are predicted with

a nonzero value by the prediction method. Similarly, ma-

jority of the residues that are significantly exposed, that

is, RSA values >0.7, are predicted with lower ASA value,

which results in lower values of the weights. However,

the intersect values in the PredRSA9 and DsspRSA9

models, that is, 21.1493 and 20.9826, respectively, com-

pensates for the differences in the weight values.

Relation between the B0-factor and the
residue depth

The residue depth, which could be defined based on

distance (RDdis) and volume (RDvol), is an alternative to

solvent accessibility which allows for a better quantifica-

tion for the residues in the interior of protein. We exam-

ine the relationship between representative residue depth

indices and the B0-factor at the single residue level. This

relation is measured based on the ACC and CC values

between B0-factor, RSA, RDdis, and RDvol, see Table V.

The RDvol has the highest correlation with the B0-factor

(ACC 5 0.61 and CC 5 0.59) when compared with RSA

(ACC 5 0.52 and CC 5 0.51) and RDdis (ACC 5 20.39

and CC 5 20.37). The reason for that is that the vol-

ume-based depth values, which are computed using

spheres with sampling radius of 9 Å, include more infor-

mation about the local residues when compared with

RSA and distance-based depth. Relatively high correlation

between RSA and RDvol (ACC 5 0.87 and CC 5 0.87)

shows that these two descriptors are related. The RDdis is

shown to have the lowest correlation with the B0-factor,

which is likely due to the fact that it produces similar

values for all surface residues (irrespective of their solvent

exposure) and the fact that this depth index is dependent

on the protein size.

In spite of the higher correlation at the single residue

level between RDvol and B0-factor when compared with

the relation between RSA and B0-factor, usage of the local

RSA results in improving the strength of the correlation

that becomes higher than the correlation when consider-

ing local RDvol, see Figure 9. The computations were per-

formed based on fivefold cross validation on the PDB972

dataset applying the linear regression model over differ-

ent window sizes. The Figure shows that ACC values for

Figure 8
The distributions of the actual and the predicted RSA values computed

from the PDB972 dataset. The RSA values were discretized with bin size

of 0.02 (x-axis) and counted in intervals where RSA 5 0, 0 < RSA �
0.02, 0.02 < RSA � 0.04, . . . , RSA > 1.0.

Table V
Correlation Matrix That Lists ACC and CC Values Computed Between

B0-Factor, RSA, RDdis, and RDvol

Descriptor B0-factor RSA RDdis RDvol

B0-factor ACC 1.0 0.52 20.39 0.61
CC 1.0 0.51 20.37 0.59

RSA ACC 1.0 20.59 0.87
CC 1.0 20.55 0.87

RDdis ACC 1.0 20.66
CC 1.0 20.63

RDvol ACC 1.0
CC 1.0

The computation was performed based on the PDB972 dataset. The bolded values

concern ACC and CC values between B0-factor and RSA, RDdis, and RDvol.
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all three descriptors display improvements with the

increase of the window size of up to 9. The further

increase of the window size has no effect on the correla-

tion. Most importantly, RDvol shows a relatively small

increase of ACC from 0.61 to 0.64 due to added value of

the local information, while usage of local DsspRSA

brings the ACC to 0.66.

Relation between B-factor and predicted
RSA in the context of disorder

We study the relation between the disordered regions

in the protein sequence, which constitute an extreme

manifestation of the flexibility, and the B0-factor values

that were predicted using a linear regression model from

the predicted RSA values, that is, B0-factor values pre-

dicted from the sequence. We use the PDB328 dataset,

which incorporates 4470 disordered residues and 74,483

ordered residues. The motivation that supports such rela-

tion comes from the differences in the distributions of

the predicted RSA values for the disordered and the or-

dered residues, see Figure 10(A). Figure 10(B) shows the

distributions of the predicted B0-factor values for the dis-

ordered and ordered residues in the PDB328 dataset.

These predictions are based on the PredRSA9 model that

was built on the PDB972 dataset. In both the cases we

observe that the distributions are significantly different,

which should allow for building a well-performing pre-

dictor.

We use Receiver Operating Characteristic (ROC)76

analysis to investigate whether predicted RSA values

could be used to find disordered regions. We apply a se-

ries of thresholds on the outputs of a B0-factor predictor

to classify the residues as ordered and disordered. The

ROC curve shows the relation between TP rate (sensitiv-

ity) and FP rate (1-specificity) for each threshold, where

Figure 9
Strength of the relation between B0-factor and local RSA, local distance

based depth (RDdis), and local volume based depth (RDvol), which is

measured with ACC (y-axis) and which is computed using varying

window sizes (x-axis). The regression models are computed based on

fivefold cross validation on the PDB972 dataset.

Figure 10
Panel (A) Distributions of RSA values for the disordered and ordered residues. The RSA values were discretized into 0.02 wide intervals. The

computations are based on the PDB328 dataset. Panel (B) Distributions of the predicted B0-factor values for the disordered and ordered residues.

The B0-factor values were discretized into 0.1 wide intervals. The prediction model was developed using the PDB972 dataset and the plot is based

on the predictions performed on the PDB328 dataset.
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the sensitivity is defined as the ratio between the number

of correct predictions for disordered residues and the

total number of the actual disordered residues, and the

specificity is defined as the ratio between the number of

correctly predicted ordered residues and the total number

of the actual ordered residues. Figure 11 shows the ROC

curves for the PredRSA9 model, which is based on the

linear regression model over a window of size 9, the lin-

ear regression model that uses only the RSA values of an

individual residue as the input, and the RONN

method39 that specializes in prediction of disordered

regions. The areas under the ROC curve (AUC), which

were calculated with ROCR77 and which quantify the

overall performance independently of the threshold val-

ues, equal 0.83 for PredRSA9, 0.75 for predictions based

on the individual residues, and 0.79 for RONN. This

indicates that local predicted RSA is strongly correlated

with the disordered regions. This correlation is more sig-

nificant than the correlation when no window is used.

Our simple linear regression model, PredRSA9, shows

comparable performance when compared with the

RONN method. We observe that both methods perform

similarly for low FP rates, while the regression model

performs better for FP rates of above 0.2. Overall, we

conclude that the predicted RSA constitutes a valuable

input that could be used to predict both the B0-factor

values and the disordered regions.

Our results show that B0-factor prediction model that

was established using ordered residues can be used to

predict disordered regions. At the same time, a disorder

predictor like RONN that provides accurate predictions

on the disordered regions may not yield high quality pre-

diction of B-factor values, which implies that some other

factor(s), besides B-factors, could be associated with the

disorder.

Case studies

The discussed above relation is utilized in the context

of case studies based on the observation that the protein

structure, flexibility and function are closely linked.6

Both rigid and flexible residues are important in imple-

menting certain protein functions. For instance, enzyme

active sites are in general rigid although most of them

are located at the protein surface.2 We consider three

case studies that concern analysis of Escherichia coli ribo-

nuclease HI (RNase HI),38,78 and human interleukin-2

(hIL-2)16 and CDK215 proteins. The first study concen-

trates on the analysis of rigid residues, while the other

two studies concern flexible residues. In all the cases we

investigate the relationship between residue flexibility,

solvent accessibility, and protein function.

Rigid active site of RNase HI

RNase HI requires the binding of cofactors to perform

its biochemical activity.78 The active site residues, D10,

E48, and D70 that bind Mg21, have been shown to be

rigid (this was also shown by the sequence-based predic-

tion method PROFbval38) and highly conserved.78 At

the same time, these residues are relatively solvent

exposed with RSA values of 9.7%, 12.0%, and 40.2%,

respectively, which are based on the calculation for the

apo X-ray structure (PDB ID: 2RN2).

Figure 12 shows the actual B0-factor values along the

RNase HI chain, as well as the predicted B0-factors that

were obtained with our two linear regression models

DsspRSA9 (that uses the knowledge of the structure) and

PredRSA9 (that is based solely on the protein sequence),

with WCN (which is a structure-based method),24 and

Figure 11
ROC curve for disorder region predictions on the PDB328 dataset. We

compare the predictions of the PredRSA9 model, prediction when using

RSA of an individual residue as the input, that is, PredRSA1 model,

and the predictions generated with RONN.

Figure 12
The actual B0-factors and the B0-factors predicted with DsspRSA9,

PredRSA9, WCN and PROFbval for RNase HI (PDB ID: 2RN2). The

residues that constitute the active site (D10, E48, and D70) are shown

with dotted lines. The predictions of PROFbval were obtained using the

web server.38 [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com.]
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with PROFbval (which is based on the sequence

alone).38 WCN values were computed based on the defi-

nition of WCN proposed in Ref. 24. We selected to use

PROFbval since this method is readily available and has

comparable quality to another sequence-based method by

Yuan et al.,29 which we could not obtain. The CC values

between the actual the predicted B0-factor values equal

0.79, 0.75, 0.72, and 0.59 for DsspRSA9, WCN, Pre-

dRSA9, and PROFbval, respectively. This shows that our

relatively simple linear model perform well when applied

to predict B0-factor values.

All four predictors predicted this active site to be rigid.

We observe that the adjacent (in the sequence) neighbors of

the active site residues are relatively buried. More specifi-

cally, the RSA values of neighbors of D10 equal 1.4% for

T9 and 5.1% for G11, the neighbors of E48 equal 0.0% for

M47 and 0.0% for L49, and the neighbors of D70 equal

0.7% for T69 and 3.4% for S71. In the case of the most

solvent-exposed residue in the active site, D70, we note that

the burial of the adjacent residues coincides with the rigid-

ity of this residue. This corroborates with our observation

that two buried adjacent residues have promoting effect on

the rigidity of the central-exposed residues.

We also compare the predictions made by using RSA

of individual residues (DsspRSA1 and PredRSA1 models)

with the predictions when using local RSA values

(DsspRSA9 and PredRSA9 models). Application of the

local RSA results in the increase of the correlation

between the predicted and the actual B0-factor from 0.58

to 0.79 when using the actual RSA values (DsspRSA

models) and from 0.54 to 0.72 when using the RSA pre-

dicted from the sequence (PredRSA models). This con-

firms the strong impact of neighboring residues on the

relation between solvent accessibility and the flexibility of

residues.

Flexible PEGylation site of human interleukin-2

Human interleukin-2 (hIL-2) is a pharmaceutical pro-

tein with a chimeric form that undergoes PEGylation

mediated by tranglutaminase (TGase).16 The flexibility

or local unfolding of the chain region encompassing the

Gln residue(s) was suggested as the main feature dictat-

ing the site-specific modification mediated by TGase.16

It was found that the microbial TGase allows a selective

and stoichiometric incorporation of the polyethylenegly-

col (PEG) polymer chain at the Gln74 of hIL-2, in spite

of the protein including six Gln residues in positions 11,

13, 22, 57, 74, and 126.16 As shown in Figure 13, residue

Gln74, which is adjacent to a disordered region (residue

75-76), is highly flexible based on its high B0-factor value

(PDB ID: 1M47), while the other five Gln residues are

relatively rigid. Fontana et al.16 emphasize that the expo-

sure to the surface is not sufficient to explain the site-

specific TGase attack, since this protein has several sur-

face-exposed Gln residues, while only one of them is

located in a flexible region that is attacked by TGase.

Figure 13 shows the B0-factor profiles of the X-ray struc-

ture of hIL-2 as well as the B0-factor values predicted by

DsspRSA9, PredRSA9, WCN, PROFbval, and RONN

methods. The CC values between the actual and the pre-

dicted B0-factor values equal 0.74, 0.72, 0.54, 0.48, and

0.19 for DsspRSA9, WCN, PredRSA9, PROFbval, and

RONN, respectively. The former four methods predict

Gln74 to be flexible (the predicted B0-factor is larger than

zero) and encompassed in a flexible (disordered) region,

while they predict the other five Gln residues to be rigid.

The RONN method is used to find the disordered regions

rather than to predict B0-factor values. The X-ray structure

of 1M47 contains three disordered regions composed of

residues 1–5, 75–76, and 99–102. While RONN performs

well on the former two regions (the predicted values are

relatively high), but it does not detect the third region.

The sequence-based B0-factor predictors, PredRSA9, and

PROFbval, succeed in identifying the three disordered

regions (higher predicted B0-factor values correlate with

location of the disordered regions), although the results

are somehow weaker for the third region. At the same

time, these two methods perform better in the context of

the B0-factor prediction, while RONN is consistently char-

acterized by lower CC with the actual B0-factor values.

Flexible regions of CDK2

CDK2 is the most thoroughly studied of the cyclin-de-

pendent kinases that regulate essential cellular processes

such as the cell cycle. The regulation and function of

CDK2 have been intensively investigated.15 The struc-

tural changes correlated with the intrinsic dynamics of

this protein are shown to be essential for the successful

execution of its biological functions.3 Following Bártová

et al.,15 we investigated the functional flexibility of

CDK2 based on four X-ray structures with PDB IDs

1HCK (free CDK2), 1FIN (CDK2/cyclin A/ATP), 1JST

(pT160-CDK2/cyclin A/ATP), and 1QMZ (pT160-CDK2/

Figure 13
The actual B0-factors and the B0-factors predicted with DsspRSA9,

PredRSA9, WCN, PROFbval and RONN for hIL-2 (PDB ID: 1M47).

The site-specific PEGylation at Gln74 is shown with dotted line. [Color
figure can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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cyclinA/ATP/HHASSPRK). Table VI compares the CC

values computed between the actual B0-factors and the

B0-factors predicted with our linear regression models

(DsspRSA1, PredRSA1, DsspRSA9, and PredRSA9) and

other methods including structure-based methods such

as MD,15 GNM,21 and WCN,24 and sequence-based

approaches such as PROFbval30,38 and RONN.39 Our

structure-based method, DsspRSA9, provides comparable

results with the results obtained with MD simulations,

and better than results obtained with GNM and WCN.

Using the sequence-based method results in the same

prediction for all four chains (the chains are the same),

although the correlation between the predicted and the

actual B0-factors differ, we note that PredRSA9 shows the

best performance when compared with PROFbval and

RONN. Figure 14 shows the cartoon representations of

the CDK2 (1HCK) colored by the actual B0-factors [Fig.

14(A)] and B0-factors predicted with DsspRSA9 [Fig.

14(B)]. We also note that the usage of local RSA

improves the predictions when compared with using the

RSA values for individual residues, that is, the results of

DsspRSA9 and PredRSA9 are better than the results of

DsspRSA1 and PredRSA1, respectively.

Table VII lists flexible regions, which are associated

with peaks in the B0-factor profile and which were dis-

cussed by Bártová et al.,15 and describes their functional

roles in CDK2. These peaks are also visualized in Figure

14(B). We added the functional descriptions for regions

d and f, since the authors in Ref. 15 labeled them with-

out explaining their functional roles. We examine

whether the B0-factor profiles predicted by the proposed

linear regression models and other structure- and

sequence-based methods also include peaks at the posi-

tions corresponding to the functional sites. The actual

B0-factor profiles and the profiles computed with MD,

GNM, WCN, PROFbval, RONN, DsspRSA9, and Pre-

dRSA9 are given in Figure 15. For consistency, the results

of MD, GNM, which were received from the authors of

Ref. 15, WCN, and RONN were normalized in the same

way as the original B-factors were normalized. Table VII

shows whether the profile generated each of the consid-

ered methods includes a peak at the positions corre-

sponding to the functional sites. We assume that the

peak corresponds to a local maximum for which the B0-
factor value is >0.

Table VI
The Correlation Coefficients Between the Actual and Predicted

B0-Factor Values

Input Methods 1HCK 1F1N 1JST 1QMZ

Structure MDa 0.60 0.49 0.46 0.73
GNMa 0.36 0.50 0.49 0.68
WCN 0.55 0.59 0.51 0.61

DsspRSA1 0.39 0.48 0.42 0.55
DsspRSA9 0.55 0.58 0.55 0.71

Sequence PROFbvalb 0.38 0.42 0.40 0.50
RONN 20.10 0.12 20.09 0.14

PredRSA1 0.38 0.40 0.38 0.46
PredRSA9 0.47 0.44 0.47 0.56

The values predicted with several methods, including MD, GNM, WCN,

PROFbval, RONN, DsspRSA1, DsspRSA9, PredRSA1, and PredRSA9 for four

CDK2 chains. The actual B-factor values were extracted from the chain A of

1HCK, 1F1N, 1JST, and 1QMZ. The results of the linear regression models that

use local RSA values, which were developed in this paper, are shown in bold.
aThe results were taken from Ref. 15.
bThe predictions were obtained using the PROFbval web server.38

Figure 14
The cartoon representations of the CDK2 (1HCK) colored by (A) actual B-factors and (B) B-factors predicted using DsspRSA9. The color scale

ranges between red which denotes highly flexible regions, through yellow and green that depicts moderately flexible regions, and light and dark blue

that correspond to rigid regions. Panel B also annotates location of flexible regions that are denoted as peak a through peak j.
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We observe that the results generated by DsspRSA9 are

comparable to results obtained with the other three

structure-based methods, MD, GNM, and WCN. The

four methods generated strong peaks for the regions b, c,

e, g, h, and j. Similarly as MD, WCN, and DsspRSA9

identified all peaks except for the region f, whereas GNM

did not generate the peaks for the regions a and f. Visual

inspection of the original B0-factor profile reveals that

some peaks, such as for the regions d, f, and i, are rela-

tively weak, and thus they are more difficult to predict.

In the case of the peak at the region i, MD, WCN, and

DsspRSA9 reflected it relatively better than GNM, while

the four methods perform similarly for the regions d and

f. When considering the B0-factor value in the region b,

DsspRSA9 provides predictions that are the closest to the

actual values when considering all four CDK2 chains.

More specifically, only the one HCK chain, that is, the

free CDK2, has a peak in this position, which is also true

for the predictions of DsspRSA9, while MD, WCN, and

GNM predict the peaks for all the four chains.

The sequence-based methods, that is, PredRSA9,

PROFbval, and RONN, yield one prediction for CDK2

because all the four chains have the same sequence. At the

same time, their performance with respect to the detection

of the peaks is quite different. The two methods that are

designed to compute B0-factor values, PredRSA9 and

PROFbval, captured almost all flexible regions except for

the regions a and f. The RONN method that aims at the

prediction of disorder regions found only two peaks in the

c and j regions. The region c, which concerns residues 36 to

42, is disordered in several X-ray structures in the noncom-

plexed CDK2 proteins, e.g., 1AQ1, 1CKP, 1HCK, 1HCL.

This region has ‘‘dual personality,’’ it becomes ordered in

the active CDK2 in the complex.81 This is likely the reason

that RONN perform well in the case of this peak.

The above three case studies demonstrate that our rela-

tively simple models that use solvent accessibility to com-

pute the B0-factor values can be used to infer positions of

functionally important residues, and the quality of such in-

formation is at least comparable with the quality of infor-

mation provided by other modern methodologies.

DISCUSSION

Our analysis suggests that the local solvent accessibility

strongly influences the residue flexibility. The correlations

Table VII
Flexible Regions in CDK2 Family15

Peak Function description

Method

DsspRSA9 WCN MD GNM PredRSA9 PROFbval RONN

a: 13–15 Glycine-rich loop (G-loop) as an inhibitory segment
of CKD2 roofing the ATP-binding site.

1 1 1

b: 25 A hinge between the secondary structure
elements

1 1 1 1 1 1

c: 36–42 Provides the flexibility of the a1-helix required to
allow its shift during activation, i.e., after binding
of the regulatory subunit.

1 1 1 1 1 1 1

d: 57 A conserved arginine R122 that is highly buried
upon binding to cyclin forms a salt bridge with the
highly conserved glutamate E57 within the CDK2
family.79

1 1 1 1 1 1

e: 71–76 This region contacts the regulatory subunit and
presumably also CDK2 substrates

1 1 1 1 1 1

f: 84–85 H84 carbonyl and Q85 CA shift toward the inhibitor
in the active CDK2.80

g: 95–98 The loop between the a2 and a3 helices; its
flexibility increases when CDK2 is in complex with
cyclin A, while a3-helix flexibility decreases after
cyclin A binding.

1 1 1 1 1 1

h: 150–162 The activation segment (T-loop) which is flexible in
CDK2 that is not bound to cyclin but not flexible in
other CDK2–cyclin complexes; in cases where
cyclin A is present, this peak vanishes because of
the intensive interaction between the T-loop and
cyclin A.

1 1 1 1 1 1

i: 177–180 The highly flexible region in all of the inactive,
semi-active, and active forms of CDK2.

1 1 1 1 1

j: 220–260 This region includes nearly all of the highly mobile
CMGC insert (also called the ``CDK insert`` region
that comprises of residues 219–251).

1 1 1 1 1 1 1

The first column shows flexible regions that correspond to peaks in the B0-factor profiles; the second column provides a brief description of the regions; the third

column shows whether the B0-factor profile predicted with a given method has a peak in the corresponding region (1 denotes that the peak was found, while empty

cell denotes lack of the peak).
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that were obtained based on our regression models

should be considered as relatively strong in the con-

text of the noise imbedded in the experimental B-fac-

tor values. The B-factors not only reflect the fluctua-

tion and static, dynamic and lattice disorders, but also

depend on the experimental resolution, crystal contacts

and refinement procedures. Examination of the B-fac-

tor profiles of homologous proteins shows that they

are correlated with each other with the average CC of

0.80.28,29 This constitutes an approximate upper limit

when it comes to prediction of B-factor values, which

also applies to our regression model. The high ACC

of B-factor predictions that were obtained from RSA,

that is, 0.66 when using the actual RSA values and

0.55 with the RSA values predicted from the protein

sequence, suggests that, to some extent, the RSA-based

models could be used to derive the information con-

cerning residue flexibility. This information, in turn,

has implication in characterization of protein struc-

ture–function relation, which we demonstrate in our

three case studies.

To date, several in silico methods, which use either

protein structure or sequence as the input, were devel-

oped to describe the flexibility and/or to predict the flex-

ibility at the residue, region, or protein level. GNM21

regards a protein as an elastic network of Ca atoms of

which the fluctuations are assumed to be isotropic and

follow Gaussian distributions. WCN24 is established

based on the inter-residue contacts weighted by the dis-

tances among residues. These two structure-based meth-

ods show high correlations with the experimental B-fac-

tors and are useful to characterize the cross-correlations

of motions among residues. We note that the proposed

RSA based models, DsspRSA and PredRSA, cannot be

used to perform the cross-correlation analysis. At the

same time, in spite of its simplicity our structure-based

DsspRSA model shows higher correlation with the exper-

imental B-factors when compared with the above two

structure-based methods. The advantage of the sequence-

based PredRSA model is that it can be used for high

throughout analysis of proteins for which structural

coordinates of residues are unavailable.

Figure 15
Comparisons of B0-factor profiles from (A) the X-ray crystal structures, (B) MD, (C) GNM, (D) WCN, and (E) DsspRSA9. The profile for 1HCK

(free CDK2) is shown in red, for 1FIN (CDK2/cyclin A/ATP) in blue, for 1JST (pT160-CDK2/cyclin A/ATP) in green, and for 1QMZ (pT160-

CDK2/cyclin A/ATP/HHASSPRK) in black. Panel (F) compares B0-factor values of CDK2 predicted by the sequenced-based methods including

PredRSA9, PROFbval, and RONN. Regions discussed in Table VII are labeled by the vertical lines where (a) corresponds to residue 15, (b) to

residue 25, (c) to residue 38, (d) to residue 57, (e) to residue 73, (f) to residue 84, (g) to residue 95, (h) to residue 162, (i) to residue 178, and (j)

to residue 234. The B0-factor profiles are missing for region c in the case of panels A, C, D, and E since this region is disordered, which implies lack

of the atomic coordinates. [Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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CONCLUSIONS

We investigate the relationship between the residue

flexibility, measured by B-factor, and the solvent accessi-

bility in the context of the influence of information in

local sequence neighborhood, different residue types, and

different secondary structures. The main findings are:

- The ACC between B-factor and the actual RSA equals

0.52 which indicates relatively strong relation. The FECI

that measures CC between B-factor and RSA for the 20

amino acids is highly correlated with the stability scale

derived from the knowledge-based atom–atom potentials

that characterizes the average contributions of each

amino acid to the folding stability.

- The exposure or burial of the adjacent residues

strongly influences (promotes or inhibits) the flexibility

of the central residues. Our results, which are independ-

ent of the RSA thresholds used to define buried/exposed

residues, suggest that the exposed residues with two bur-

ied adjacent residues have lower mean B0-factor (are

more rigid) than the buried residues with two exposed

neighbors.

- Using a linear regression model we observed that the

inclusion of local RSAs significantly improves the correla-

tion between the solvent accessibility and the B-factor.

This increase is consistent for all amino acid type and

the underlying secondary structures. The strength of the

relation decreases linearly, with a factor of 0.5, with the

distance from the considered residue.

We also contrasted the relation between the flexibility

and RSA with the relation between flexibility and dis-

tance/volume based residue depth. When considering

individual residues, the volume-based depth has the

strongest correlation with flexibility. Inclusion of the local

information (local RSA/depth) results in significant

increase of the correlation with RSA, which becomes

stronger than the correlation with the depth.

Furthermore, we observe that the RSA that is predicted

from the sequence could be used to distinguish between

the disordered and ordered residues by utilizing informa-

tion about the B0-factor that is computed (predicted)

from the predicted RSA values. Similarly as in the case of

the actual RSA values, inclusion of the local predicted

RSA values helps in providing a better contrast between

the disordered and the ordered residues. Our results sug-

gest that the B-factor values predicted using the RSA val-

ues could be used to identify the flexible and rigid

regions and also to find the disordered regions.

Prediction models developed based on the local actual

RSA (structure-based) and the local predicted RSA

(sequence-based) show similar or better results in the

context of B-factor and disordered/ordered residues pre-

dictions when compared with several competing

approaches on three large benchmark datasets and three

case studies. The proposed linear regression-based models

provide an interesting insight into the structure–flexibil-

ity relation (DsspRSA model) and the sequence–flexibility

relation (PredRSA model), which in both cases can be

extended into applications in the context of the struc-

ture/sequence–flexibility–function relation.
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