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INTRODUCTION

Although the number of solved proteins structures increases every

year, the gap between the number of the known protein sequences

and the known protein structures is rapidly growing. Currently,

about 59,000 protein structures, which are deposited into the pro-

tein data bank (PDB) database,1 are resolved from among over 9.5

million known nonredundant protein chains. Membrane proteins

are among the most challenging targets as they are hard to crystal-

lize and therefore hard to map into 3D structure.2 At the same

time, around 25% of genetic code is assumed to represent mem-

brane proteins.3 These proteins play crucial role in cell biology, as

they are responsible for interaction between interior and exterior of

the cell, and they serve as targets for numerous drugs used in

human and veterinarian medicine.4 The membrane proteins could

be categorized into the a-helical membrane proteins (AMPs) and

the outer membrane proteins (OMP). Almost all known proteins in

the latter category, with a handful of exceptions, are outer mem-

brane beta barrel proteins (OMBBs). Recently, two OMPs which

fold into an alpha barrel-like structure were found.5,6 We concen-

trate on building a predictive model for OMBBs, since the low num-

ber of the currently characterized alpha barrel proteins does not

allow for building and a reliable validation of a model that would

cover all OMPs. AMPs are relatively easy to predict from the protein

sequence as they include several long hydrophobic a-helices which

span through a cell membrane. OMBBs are found in the outer

membranes of gram-negative bacteria, mitochondria, and chloro-

plasts7,8 and they perform diverse functional roles, including bacte-

rial adhesion, material transport and they support structural integ-

rity of the cell wall.7–9 Identification of OMBBs are not easy, mainly

because they have shorter membrane spanning region, which assem-

ble into b-barrels, and they lack a clear pattern in their membrane

spanning strands.10
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ABSTRACT

Membrane proteins (MPs) are difficult to identify

in genomes and to crystallize, making it hard to

determine their tertiary structures. MPs could be

categorized into a-helical (AMP) and outer mem-

brane proteins which mostly include beta barrel

folds (OMBBs). The AMPs are relatively easy to

predict from a protein sequence because they usu-

ally include several long membrane-spanning

hydrophobic a-helices. The OMBBs play impor-

tant roles in cell biology, they are targeted by mul-

tiple drugs, and they are more challenging to iden-

tify as they have shorter membrane-spanning

regions which lack a folding patern, that is, as con-

sistent as in the case of the AMPs. Hence, accurate

in silico methods for prediction of OMBBs from

their primary sequences are needed. We present an

accurate sequence-based predictor of OMBBs,

called OMBBpred, which utilizes a Support Vector

Machine classifier and a custom-designed set of 34

novel numerical descriptors derived from pre-

dicted secondary structures, hydrophobicity, and

evolutionary information. Our method outper-

forms modern existing OMBB predictors and

achieves accuracy of above 98% when tested on

two existing benchmark datasets and 96% on a

new large dataset. OMBBpred reduces the error

rates of the second best method, depending on the

dataset used, by between 13 and 65%, and gener-

ates predictions with high specificity of above

96%. Our solution is a useful tool for high-

throughput discovery of the OMBBs on a genome

scale and can be found at http://biomine.ece.

ualberta.ca/OMBBpred/OMBBpred.htm.
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Recent years have seen development of several in silico

methods for the prediction of OMBBs from the protein

sequence. These methods usually work in two steps, where

first the protein sequence is encoded into a feature vector

which is next inputted into a classification model to pro-

duce the prediction. Various models have been utilized to

date, including Hidden Markov Models,10–13 simple sta-

tistical analysis,14–19 nearest neighbors,20–23 quadratic

discriminant,24 neural networks,25,26 radial basis func-

tion networks,27 and support vector machines

(SVMs).28,29 Most of these methods used a fixed size fea-

ture vector to represent the sequence. They utilized various

approaches to extract the features, including the usage of a

simple amino acid (AA) composition16,18,20–23,27–29,

pseudo AA composition,24,24 dipeptide composi-

tion,17,23,27,28 b-barrel score,16 physicochemical AA

properties,14,26,29 and evolutionary information19–

23,27. Only two methods utilized predicted secondary

structure to find OMBBs14,15 although this information

seems crucial since specific arrangements of the secondary

structures define the transmembrane region of the OMBBs

which differentiates them from the AMPs. Unfortunately

these works applied a simple statistical approach to com-

pute the predictions and used the secondary structure in a

limited way as they only considered the composition of a

few AAs in the predicted strands15 or the overall content

of predicted strands in the protein chains.14

Our aim is to build a novel model, referred to as

OMBBpred, which improves prediction quality when

compared with the modern existing methods. This is

accomplished by fusing multiple approaches to extract

the features (numerical descriptor of the input sequence)

including predicted secondary structure, AA composition,

hydrophobicity of residues, and their evolutionary con-

servation. We also carefully craft novel features based on

the predicted secondary structure to not only consider

the content of the predicted strands, but also most

importantly to quantify the size and arrangements of the

predicted secondary structure segments. The latter should

be helpful in finding b-barrels that are formed by all-

next-neighbor b-sheets.30 This means that all paired

strands that form the b-sheets are adjacent in the

sequence, which in turn results in a relatively high num-

ber of strand-coil-strand motifs. Our motivation to use

these features comes from a similar approach that was

recently shown to improve the accuracy of prediction of

protein structural classes,31 which shares similarities with

the OMBB prediction problem. Specifically, proteins

from given structural classes and OMBBs are character-

ized by certain arrangements of secondary structures.

Finally, instead of relying on simple and less accurate sta-

tistical approaches, we use SVM classifier which is con-

sidered to be one of the leading methods to perform

nonlinear classification32 and which was previously

shown to predict OMBBs with favorable quality when

compared with other classifiers.28,29

MATERIALS AND METHODS

Datasets

We utilize three benchmark datasets, two of which

were commonly used in the recent evaluations of OMBB

predictors,17,19–26,28,29 and a new one that includes

OMBB proteins that were characterized after the first two

datasets were released. The two older datasets were pro-

posed by Park et al..28 The first dataset (DS1) consist of

208 OMBBs, 673 globular proteins from various struc-

tural classes including 155 all-a, 156 all-b,184 a1b, and
178 a/b proteins, and 206 AMPs. Similarly as in the

other studies and since we aim at the prediction of

OMBBs, the globular proteins and the AMPs were

merged. The similarity between any pair of the sequences

from DS1 is below 40%. The second dataset (DS2) is

derived from DS1 to include sequences that share pair-

wise similarity of no more than 25%. The DS2 consists

of 112 OMBBs, 673 globular proteins, and 178 AMPs.

We use the second dataset to design our predictor using

fivefold cross validation tests, as this dataset is more chal-

lenging than the DS1. We also introduce the new dataset,

named DS3, which was developed using a protocol simi-

lar to that in28 with the 25% maximal similarity between

any pair of the included sequences. First, we took well

annotated OMBB and AMPs from the PSORT-B data-

base33 and globular proteins from the ASTRAL 1.7534

that exclude entries from the membrane proteins SCOP

class35 and that were filtered at 25% sequence identity.

Next, the combined set of OMBBs, AMPs, and globular

proteins was filtered using blastclust36 at the 25% maxi-

mal pairwise sequence identity; The resulting dataset

includes 6988 globular proteins, 1168 AMPs, and 243

OMBBs. Because of the large and likely overrepresented

(as a result of the difficulties in characterization of the

structure of membrane proteins) number of globular

proteins, we removed at random globular and AMP pro-

teins to obtain the OMBB/AMP and OMBB/globular

ratios that are similar to the ratios in the DS2 dataset.

The final dataset includes 1460 globular proteins, 387

AMPs, and 243 OMBBs, which doubles the size of the

DS2 dataset that is based on the same 25% similarity

cut-off. The DS3 includes a substantial number of

OMBBs that are dissimilar when compared with the

chains in the DS1 and DS2 datasets; over half of the

OMBB sequences from the DS3 share less than 30% and

less than 50% identity with chains from the DS1 and

DS2, respectively; see Supporting Information Figure 1.

Encoding of the protein sequences

Prior studies have demonstrated that evolutionary in-

formation carries more information than the sequence

itself.22,23,37 We use Position Specific Scoring Matrix

(PSSM) computed with PSI-BLAST38 to quantify the ev-

olutionary information. PSSM gives conservation scores
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for each AA at each position in the sequence and is rep-

resented by a N 3 20 dimensional matrix, where N is

the length of the sequence. Conservation scores were nor-

malized to the range between 0 and 1 using a standard

logistic function, as in Ref. 39.

Many OMBBs have a well defined tertiary structure, where

the transmembrane portion folds into a b-barrel. While pre-

diction of tertiary structure from a sequence is still a chal-

lenging task,40 our approach is to identify b-barrels using

the predicted secondary structure that should include high

content of long, collocated strand segments. We use

PSIPRED37 to predict secondary structure, since this method

was ranked as one of the best in the field according to the

EVA server (http://cubic.bioc.columbia.edu/eva/index.html).

PSIPRED outputs probability of helix, strand and coil con-

formation for each input residue.

Hydrophobicity is another important feature of trans-

membrane proteins.22 We group AAs into two sets,

hydrophilic (D, E, G, H, K, N, Q, R, S, T) and hydro-

phobic (A, C, F, I, L, M, P, V, W, Y) and we also use a

hydrophobicity index to estimate the hydrophobicity of

the protein chain. We use the index by Jones41 as it is

characterized by the highest biserial correlation coeffi-

cient with the binary annotation of protein chains

(OMBBs vs others) among different hydrophobicity indi-

ces from the AAIndex database.42

For each feature, we use either its raw value or we nor-

malize it to assure that it’s maximal and minimal values

are in the [0; 1] range. We compare results obtained with

the raw (without normalization) and the normalized fea-

tures to investigate whether normalization leads to

improved predictions. We first introduce the features and

next we explain how they were normalized. The follow-

ing 28 features are derived from the primary sequence:

� seq_length (N)—sequence length. (1 feature);

� mol_weight—molecular weight. (1 feature);

� composition_AAi—number of AAi in a sequence,where

i 5 1,2,. . .,20 is the AA type. (20 features);

� content_{hydrophobic/hydrophilic}—number of hydro-

phobic/hydrophilic residues in a sequence. (1 features);

� max_len_{hydrophobic/hydrophilic}—maximal length of

a segment of residues in which each consecutive AA is

hydrophobic/hydrophilic. (2 features);

� avg_len_{hydrophobic/hydrophilic}—average length of

segments of residues in which each consecutive AA is

hydrophobic/hydrophilic. (2 features);

� hydrophobicity—sum of the hydrophobicity index val-

ues for all residue in the sequence. (1 features).

Another 23 features are based on the conservation

scores from the PSSM produced by the PSI-BLAST:

� consScore_AAi—sum of conservation scores of AAi for

each residue in a sequence. (20 features);

� consScore_{hydrophobic/hydrophilic}—sum of conserva-

tion scores of hydrophobic/hydrophilic AAs for each

residue in a sequence. (2 features);

� consScore_hydrophobicity—hydrophobic index values

multiplied by the corresponding conservation scores

summed for all residues in a sequence. (1 feature).

The following 34 features are based on the predicted

secondary structure, linear collocation of secondary

structure segments, and some of them also use informa-

tion concerning hydrophobicity:

� content_SSj—number of residues predicted as SSj, where

j 5 {C (coil), H (helix), E (strand)}. (3 features);

� max_SSj—maximal number of consecutive residues

predicted as SSj (i.e., length of the longest SSj seg-

ment). (3 features);

� avg_SSj—average number of consecutive residues pre-

dicted as SSj (i.e., average size of the SSj segments). (3

features);

� probability_SSj—sum of probabilities of predictions of

SSj. (3 features);

� {hydrophobic/hydrophilic}_SSj—number of hydropho-

bic/hydrophilic residues predicted as SSj. (6 features);

� hydrophobicity_SSj—sum of hydrophobicity index val-

ues of residues predicted as SSj. (3 features);

� {HH, EE, HE or EH}—number of helix-coil-helix,

strand-coil-strand, and helix(strand)-coil-strand(helix)

motifs. (3 features);

� Segk_num—number Segk segments in a protein, where

k 5 {HCH, ECE, HCEorECH} represents segments of

helices separated only by coils, segments of strands

separated by coils, and segments of helices and strands

separated by coils where a helix cannot be followed by

helix and a strand cannot be followed by another

strand. (3 features);

� Segk_len—number of residues in Segk segments. (3 fea-

tures);

� E_ECE—number of residues predicted as strands

involved in the ECE segments. (1 feature);

� H_HCH—number of residues predicted as helices

involved in the HCH segments. (1 feature);

� {H/E}_HCE_or_ECH—number of residues predicted as

H/E involved in the HCE or ECH. (2 features).

Most of the features were normalized by dividing their

values by N, except the seq_length and mol_weight which

were divided by the corresponding maximal value in the

training DS2 dataset (we set the values of these features

to 1 in case of longer/heavier proteins in the DS1 or DS3

datasets), consScore_{hydrophobic/hydrophilic} that was di-

vided by the product of N and the number of AA in

each group (these features are named avg_consScore_{hy-

drophobic/hydrophilic}), consScore_hydrophobicity divided

by the product of N and 20 (the number of AAs) (these
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features are named avg_consScore_hydrophobicity), HH,

EE, HE, or EH which were divided by the sum of the

number of the helix and strand segments, and Segk_num

that was divided by the total number of the predicted

secondary structure segments.

The latter set of features that quantify the linear arrange-

ment and size of predicted secondary structure segments

as well as the features that are based on the aggregation of

the scores from the PSSM matrix and which utilize the

hydrophobic/hydrophilic segments are first proposed in

this study, and they contribute to the improved predictive

quality offered by the proposed here method.

Quality measures

We compute four quality measures including accuracy,

Matthews Correlation Coefficient (MCC), sensitivity, and

specificity, to evaluate the proposed predictor. Accuracy is

defined as the number of correct predictions divided by

the total number of test sequences. The MCC values range

between 21 and 1, where 0 represents random correlation,

and bigger positive (negative) values indicate better

(lower) prediction quality. Sensitivity and specificity quan-

tify the percentage of correctly predicted OMBBs and non-

OMBBs, respectively, from among all OMBBs/non-

OMBBs. We use the MCC to guide our design process,

that is, we maximize MCC when performing feature selec-

tion and parameterization of the SVM, since this quality

index provides better estimates for unbalanced datasets

(which is the case in this project) when compared with the

other three measures. We also report receiver-operator

characteristics (ROC) curves that present a graphical plot

of the True Positive (TP) rates (OMBBs predicted as

OMBBs) 5 TP/(all OMBBs) against False Positive (FP)

rates (non-OMBBs predicted as OMBBs) 5 FP/(all non-

OMBBs). This is performed by thresholding the probabil-

ities (confidence values) that are generated together with

the predicted classes (OMBBs vs. nonOMBBs). These plots

are also used to compute the area under the ROC curve

(AUC). Higher AUC value indicates better predictive

power of the corresponding method.

Proposed prediction model

We use SVM due to its successful use in the prior

OMBBs predictors,28,29 as well as Nearest Neighbour

(NN) and RBF Network classifiers that were previously

used in this area.20–23,27 We utilized implementations

from the WEKA workbench.43 The SVM requires param-

eterization to select the kernel function, its parameters,

and the complexity constant C. We considered three pop-

ular kernels, Radial Basis Function (RBF), polynomial

kernel (POLY), and normalized polynomial kernel

(NPOLY) and we tuned their gamma (for the RBF ker-

nel) and exponent (for the polynomial kernels) parame-

ters. We also considered each of the three SVMs with

and without logistic regression-based estimates of the

output probabilities. In case of the NN, we tuned the

number of neighbors and the type of the distance func-

tion and distance weighting used, whereas for the RBF

Network we choose the values of the ridge and minimal

standard deviation parameters. We tested total of eight

classifiers, including six SVM configurations, NN, and

RBF Network. Our feature set includes 85 features and

some of them may not be relevant to the prediction of

OMBBs. Therefore, we performed a heuristic search to

find a well-performing subset of these features and to

optimize the classifiers’ parameters for this set. First, we

parametrized the eight classifiers using the entire feature

vector. For each of the classifiers, we performed a grid

search for the set of parameters’ values that give the

highest MCC when tested based on the fivefold cross val-

idation on the DS2. Using the best parameters from the

grid search we applied a wrapper-based feature selection

with the corresponding classifier as the base method44

and three different search algorithms including forward

best first, backward best first, and ranking-based search.

The forward (backward) best first search starts with

empty (all features) subset of features and adds

(removes) one feature at the time which increases the

MCC value the most. In the ranking based feature selec-

tion, we first ranked features using an average rank based

on the v2 and information gain criterions, and next start-

ing with the empty feature set we kept adding the top

ranked features if these additions would result in an

increase of the MCC value. For each of the selected three

feature sets, the corresponding classifiers were parameter-

ized once again. The MCC, v2, and information gain val-

ues, which were used to tune the classifiers and in the

feature selection, were computed based on the fivefold

cross validation on DS2 to assure robust (not over-

trained) estimates. The same test type was adopted by

authors of other predictors in this area. We selected the

classifier and its corresponding feature set that provided

the highest MCC value based on the fivefold cross valida-

tion on the DS2. We performed the above feature selec-

tion for both raw (without normalization) and normal-

ized feature sets. The results for the raw features, see the

Supporting Information Table I, are in general worse

than for the corresponding models computed with the

normalized features, see the Supporting Information Ta-

ble II. Therefore, we concentrate our further efforts on

the evaluation and building of predictive models using

normalized features.

Next, we investigate whether building of a consensus

based predictors would lead to improved predictions.

We tried two types of ensembles, a heterogeneous en-

semble that combines different types of classifiers and a

homogenous ensemble that combines multiple instances

of classifiers of the same type. The consensus prediction

was implemented based on a majority vote using pre-

dictions from individual input predictors; we combine
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an odd number of predictors to avoid ties. The hetero-

geneous ensemble was built by combining the three

best-performing, based on the results in the Supporting

Information Table I, parameterized predictors that uti-

lize the NN, RBF Network, and SVM classifiers, respec-

tively. The homogenous ensembles combine multiple

SVM classifiers since Supporting Information Table I

demonstrates that the SVMs provide favorable predictive

performance when compared with the NNs and RBF

Networks. We tried to combine the best 3, best 5, and

best 7 SVM configurations (the bottom 3, 5, and 7

SVMs in the Supporting Information Table I). The

results of the considered consensus predictors and the

predictions using individual classifiers are compared in

the Supporting Information Table I. The heterogeneous

ensemble is outperformed by the homogenous ensem-

bles, likely because the NN- and RBF Network-based

classifiers provide lower predictive quality than the

SVMs. The homogenous ensembles do not improve

over the best performing individual SVM-based predic-

tor. This could be explained by the very high quality of

this SVM-based classifier and the fact that the third and

lower-ranked best SVMs, which are utilized in the ho-

mogenous ensembles, introduce additional errors that

were not balanced by the new correct predictions due

to the voting. Consequently, we selected the best per-

forming, with respect to MCC, SVM classifier to imple-

ment the proposed OMBBpred method, see Figure 1.

The OMBBpred utilizes the SVM with the normalized

polynomial kernel with exponent 5 2 and C 5 2 which

uses 34 normalized features that are listed in Table I.

RESULTS AND DISCUSSION

The results for all datasets are based either on the five-

fold cross validation or based on predictions generated

using available web servers in case of methods that could

not be re-implemented; the latter methods are marked

with asterix in Tables II and III. The results on DS2 and

DS3 are based on the same splits into the fivefolds, while

the tests on DS1 may include different splits since these

Figure 1
Flowchart of the proposed prediction method. The rectangles with the dotted and dashed border indicate the input and output, respectively.

Table I
List of the 34 Features Used by the Proposed Prediction Method

Id Feature name
Biserial

correlation Id
Feature
name

Biserial
correlation

1 consScore_N 20.51 18 composition_G 20.23
2 consScore_S 20.5 19 composition_Y 20.22
3 content_E 20.36 20 consScore_Q 20.22
4 consScore_D 20.35 21 composition_E 0.2
5 avg_len_hydrophobic 0.33 22 composition_C 0.19
6 content_H 0.32 23 consScore_F 20.17
7 consScore_Y 20.31 24 composition_H 0.14
8 probability_H 0.31 25 composition_D 20.13
9 composition_N 20.29 26 consScore_H 0.13
10 avg_len_hydrophilic 0.29 27 probability_C 20.12
11 hydrophobic_E 20.29 28 composition_L 0.1
12 hydrophobicity_E 20.28 29 composition_K 0.09
13 composition_S 20.26 30 consScore_K 0.09
14 consScore_A 20.26 31 consScore_P 20.08
15 composition_I 0.25 32 composition_A 20.05
16 content_hydrophilic 20.24 33 consScore_L 0.03
17 content_hydrophobic 0.24 34 composition_R 0.02

The features are sorted in the descending order based on the magnitude of their

biserial correlation coefficients with the binary annotation of protein sequences

(OMBBs vs. others).
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folds were not annotated by the authors of this dataset.

Table II compares the quality of prediction generated by

the OMBBpred with the predictions of several modern

predictors on the benchmark datasets DS1 and DS2, and

Table III report the results on the new DS3. In Table II,

we report solutions with the highest MCC values for the

prior studies that investigated several different OMBB

predictors. The OMBBpred achieves above 98% accuracy

and 0.93 MCC on both older benchmark datasets. The

sensitivity of the proposed method shows that it correctly

predicts at least 88% of the OMBBs, while the specificity

reveals that only 0.3% or less of the non-OMBBs are

mistaken for OMBBs. This means that OMBBpred is

geared towards predictions with very low false positive

rates. The OMBBpred achieves 96% accuracy, 0.78 MCC,

and 99.1% specificity on the new dataset. The lower pre-

dictive performance on the DS3 when compared with

DS2 that also includes chains with the maximal identity

set at 25% is characteristic to all top-performing meth-

ods. The MCC, which provides better estimates for

unbalanced datasets like DS2 and DS3 when compared

with other considered measures, drops from 0.86 to 0.62

for the homology-based WED,23 from 0.83 to 0.7 for the

TMB-Hunt,20 from 0.82 to 0.71 for the BOMP,16 and

from 0.93 to 0.78 for the proposed OMBBpred. This

indicates that the new dataset, which includes recently

annotated and larger number of chains, is more challeng-

ing. Importantly, our method is shown to consistently

outperform the existing solutions; we obtain the highest

accuracies and MCC values on all benchmark datasets.

The only method that has higher specificity (but only by

0.1%) on the DS2 is PROFtmb,17 but this result comes

as a trade-off for the relatively low sensitivity and MCC

values that equal 37% and 0.58, respectively. Similarly,

there is only one method, WED,23 with higher sensitivity

on the DS2 but it generates predictions with lower accu-

racy, MCC and specificity when compared with the

OMBBpred. When compared with the second best pre-

dictor by Gao et al.29 on the DS1, OMBBpred obtains

(98.1–97.8)/(100–97.8) 5 14% error rate reduction.

However, the error rate reductions for datasets with

stricter similarity threshold are 65% for the DS2 when

Table II
Results of the Empirical Comparison Between the Proposed and Competing Methods on the DS1 and DS2

Dataset

Prediction method Prediction quality

Classifier (name of the
method, if available) # Features Reference Accuracy MCC Sensitivity Specificity

DS1 Neural Network 20 25 91.0 0.72 79.3 93.8
Neural network 400 26 94.4 0.81 81.3 97.5
Quadratic Discriminant 420 24 94.8 0.84 92.8 82.5
SVM 420 28 95.2 0.84 79.3 99.0
Nearest Neighbor 20 22 96.1 0.87 91.5 98.2
Nearest Neighbor (WED with homology) 144 23 97.4 0.89 91.1 98.4
SVM 546 29 97.8 0.93 91.8 99.2
SVM (OMBBpred) 34 This paper 98.1 0.94 91.3 99.7

DS2 Probabilistic (PROFtmb)* N/A 19 96.4 0.58 37.0 100
Nearest Neighbor 20 22 95.6 0.77 74.3 98.4
Probabilistic and Nearest Neighbor (BOMP)* N/A 16 92.3 0.82 79.8 98.5
Nearest Neighbor (TMB-Hunt)* 20 20 96.4 0.83 81.5 98.5
Nearest Neighbor (WED with homology) 144 23 96.8 0.86 90.7 97.6
SVM (OMBBpred) 34 This paper 98.5 0.93 88.2 99.9

The results were taken from the original publications and they were obtained using fivefold cross validation, except for the methods marked with asterix which were

obtained using available web servers. The methods are sorted in the ascending order by their MCC values. The best results for each prediction quality measure and each

dataset are shown in bold.

Table III
Results of the Empirical Comparison Between the Proposed and the Competing Methods on the DS3

Prediction method Prediction quality

Classifier (name of the method, if available) # Features Reference Accuracy MCC Sensitivity Specificity AUC

Nearest Neighbor (WED without homology) 144 23 90.8 0.49 44.4 96.9 N/A
SVM 546 29 92.4 0.60 55.6 97.3 0.930
Nearest Neighbor (WED with homology) 144 23 92.9 0.62 56.8 97.6 N/A
Nearest Neighbor (TMB-Hunt)* 20 20 94.4 0.70 62.1 98.7 0.917
Probabilistic and Nearest Neighbor (BOMP)* N/A 16 94.4 0.71 63.4 98.5 0.811
SVM (OMBBpred) 34 This paper 95.8 0.78 70.4 99.1 0.961

The results were obtained using fivefold cross validation using the same folds for all methods, except for the methods marked with asterix which were obtained using

available web servers. We used a standalone version of the WED method that was provided by the authors. The methods are sorted in the ascending order by their

MCC values. The best results for each prediction quality measures are shown in bold.
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compared with the second best method by Yan et al.23

and 25% for the DS3 when compared with the runner-

up BOMP and TMB-Hunt. Both BOMP and TMB-Hunt

are web servers which are based on homology detection

and they may include some of the OMBBs from the DS3

in their template database. The OMBBpred, which out-

performed these solutions on the DS3 for all quality

measures, was evaluated using training datasets with

chains that share no more than 25% similarity with the

test sequences. When compared with the best performing

SVM method,29 which does not utilize homology model-

ing and that was tested using the same fivefold cross vali-

dation on the DS3, the OMBBpred provides 45% error

rate reducution. We also report and compare the AUC

values, see Table III, and the corresponding ROC curves,

see Figure 2, for the predictions on the DS3. Similarly as

for the other measures, the proposed predictor outper-

forms other solutions and these improvements are con-

sistent for the entire range of the False Positive rates. The

main reason for these improvements is the fact that the

proposed method utilizes carefully crafted input features

that combine information from the predicted secondary

structure, AA composition, hydrophobicity of residues,

and their evolutionary conservation.

We investigated SCOP classes of the false positives pre-

dictions (AMP and globular proteins predicted as

OMBBs). Since OMBB is characterized by high specificity

it rarely misclassifies the non-OMBBs. When considering

prediction on the three datasets together, only 14 AMPs,

4 all-b, 1 a/b, and 3 a1b proteins were misclassified as

OMBBs by our method. Additionally, we checked

whether OMBBpred can successfully discriminate

between the OMBBs and the all-b proteins that also have

high content of b-strands. We filtered the biggest dataset,

DS3, leaving only OMBB and all-b globular proteins and

we repeated the 5-fold cross validation test on the result-

ing dataset using the same architecture of the OMBBpred

method (the same features and the parameters of the

SVM classifier). These predictions are characterized by

high 0.91 MCC and 95.8% accuracy and they demon-

strate that OMBBpred can be used to distinguish between

the all-b and the OMBB proteins.

Another important aspect is the impact of the sequence

identity between the chains used to compute evolutionary

information that is inputted to the OMBBpred and the

chains in the benchmark datasets. To investigate this, we

filtered the nr dataset, which is utilized to generate the

PSSM profiles and the predicted secondary structure that

uses these profiles as inputs, to exclude any sequence that

shares over 25% identity with any chain in the training

dataset DS2. We regenerated the profiles and re-predicted

the secondary structure utilizing the filtered nr database,

which includes 1,324,307 chains, and we used these new

inputs to generate the 34 features for the OMBBpred. We

evaluated this version of our predictor using fivefold cross

validation on the DS2 and we observe that the accuracy

and the MCC drop by 2.2% and 0.12, respectively; see Sup-

porting Information Table III. This shows that OMBBpred

that uses the filtered nr dataset provides competitive pre-

dictions when compared with the top-performing runner-

up methods that utilize homology modeling like WED,

TMB-Hunt and BOMP, see Table II. To compare, a similar

drop in accuracy is observed for WED method on the DS3,

see Table III, where addition of the information concerning

homologous (i.e., similar) sequences improves the accu-

racy by 2.1% and the MCC by 0.13.

Until recently the OMPs were believed to be OMBBs.

A study in 20065 and subsequent works including6 show

examples of OMPs that implement the membrane span-

ning region as the alpha barrel rather than the beta bar-

Figure 2
The ROC curves for four predictors, including SVM,29 TMB-Hunt,20 BOMP,16 and OMBBpred for the predictions on the new DS3.
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rel. Although OMBBpred and other related predictors

were designed and tested using the OMBB-type OMPs,

we investigate how they would predict the two known a-
barrel OMPs.5,6 We found that OMBBpred and TMB-

Hunt predict them as OMBBs, BOMP and WED predict

only the WZA protein5 as OMBB, whereas the SVM clas-

sifier29 predicts both of these proteins as not OMBBs.

The likely reason why OMBBpred, TMB-Hunt, BOMP,

and WED predict the WZA protein as the beta barrel

fold is the fact that it includes b-sheets.
Finally, we analyze features that are utilized in the

OMBBpred to provide insights into sequence-derived fac-

tors that differentiate OMBB proteins from the AMPs

and globular proteins. We investigate the two representa-

tive novel features which quantify information concern-

ing the evolutionary profiles and hydrophobicity. The

consScore_N feature is characterized by the highest nega-

tive value of the biserial correlation coefficient with the

annotation of protein chains (OMBBs vs others) among

the 34 features used by the proposed predictor, and the

value of avg_len_hydrophobic obtains the highest positive

correlation, see Table I. The former feature quantifies the

overall sequence conservation (computed using PSSMs)

of Asp in the input sequence and the latter feature com-

putes the average length of hydrophobic segments. A

scatter plot shown in Figure 3 visualizes the predictive

value of these two features. The size and color of the

markers indicate the number of chains and the probabil-

ity of these chains to be OMBBs, respectively. The plot

reveals that OMBBs are characterized by shorter average

hydrophobic segments and have higher average conserva-

tion of Asp when compared with the non-OMBBs pro-

teins. The shorter average hydrophobic segments, as well

as shorter average hydrophilic segments (the avg_len_

hydrophilic feature also has positive biserial correlation,

see Table I), could be explained by the fact that the beta

barrel residues are hydrophobic on the exterior (where

they contact membrane lipids) and hydrophilic in the in-

terior, which results in a chain consisting of multiple

short hydrophobic/hydrophilic segments. The content of

Asp was previously shown to be similar in the OMBB

and globular proteins, and substantially higher in the

OMBBs when compared with the AMPs.28 However, our

work shows that Asp is more conserved in OMBBs than

in the other protein types. In DS2, the average composi-

tion of Asp is 3.1% (�1.2%) for AMPs, 4.4% (�2.2%)

for globular proteins, and 6% (�1.8%) for OMBBs,

whereas the corresponding average conservation scores

equal 0.239 (�.057), 0.309 (�.063), and 0.421 (�.078),

respectively, see Supporting Information Figure 2. This is

also confirmed by the lower magnitude of the biserial

correlation of composition_N (20.29) than consScore_N

(20.51), see Table I, which means that the composition

of Asp has lower discriminative power than the average

conservation score of Asp. In our feature set, 6 of the 34

features quantify different aspect of hydrophobicity which

confirms that the knowledge of this factor is useful for

the discrimination of membrane proteins. Combining the

hydrophobicity-derived features with six features which

describe the predicted secondary structure helps to dis-

criminate between the OMBBs and the other membrane

proteins, such as the a-helical membrane proteins. We

also utilize 13 features that quantify AA composition and

11 which describe average AA conservation score, which

agrees with previous results that have shown that AA

composition is useful for an accurate identification of the

OMBBs.16,18,21–23,27–29 However, analysis of the bise-

rial correlations shown in Table I reveals that the conser-

vation score-based features, which were introduced in

this work, are more informative (they have higher magni-

tutes of the correlations) than the features based on the

AA content.

CONCLUSIONS

The novel characteristics of the proposed OMBBpred

method, which include effective fusion of multiple

information sources including the predicted secondary

structure, hydrophobicity, and evolutionary conservation

and the careful design that combines feature design and

selection, result in its favorable predictive quality when

compared with modern solutions on three benchmark

datasets that include sequences with low identity. Our

predictions are characterized by high specificity, which

Figure 3
Scatter plot of two representative features (novel features with the

highest positive and negative biserial correlations with the OMBB/non-

OMBB annotations) used by the proposed predictor. The x-axis shows

the values of the consScore_N (overall sequence conservation of Asp in

the input sequences) feature and the y-axis the values of the

avg_len_hydrophobic (average length of hydrophobic segments) features

for the proteins from the DS2. The color (shading) of the markers

indicates the probability of a given prediction outcome (darker for

proteins that are more likely to be OMBBs) for a given combination of
the values of the two features. The size of the markers denotes the

number of proteins with the given values of the two features.
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reveals that around 90% of OMBBs in the older datasets

and above 70% in the new more challenging dataset were

correctly identified, and very high specificity that demon-

strates that only about 0.9% or less of non-OMBBs are

incorrectly predicted as OMBBs. Moreover, OMBBpred

achieved the highest accuracy and MCC scores on the

three datasets when compared with several modern pre-

dictors of the OMBB proteins. The high predictive qual-

ity of our method motivates its use for the high-through-

put identification of OMBBs on the genomic scale. Our

methods could be also used to generate predicitons for

methods, such as TMBpro,45 which predict structural

properties of the OMBBs. The prediction model and the

datasets can be found at http://biomine.ece.ualberta.ca/

OMBBpred/OMBBpred.htm.
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