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 2 

Abstract 

Protein folding rates vary by several orders of magnitude and they depend on the 

topology of the fold and the size and composition of the sequence. Although recent 

works show that the rates can be predicted from the sequence, allowing for 

high-throughput annotations, they consider only the sequence and its predicted 

secondary structure. We propose a novel sequence-based predictor, PFR-AF, which 

utilizes solvent accessibility and residue flexibility predicted from the sequence, to 

improve predictions and provide insights into the folding process. The predictor 

includes three linear regressions for proteins with two-state, multi-state and unknown 

(mixed-state) folding kinetics. PFR-AF on average outperforms current methods when 

tested on three datasets. The proposed approach provides high quality predictions in 

the absence of similarity between the predicted and the training sequences. The 

PFR-AF’s predictions are characterized by high (between 0.71 and 0.95, depending on 

the dataset) correlation and the lowest (between 0.75 and 0.9) mean absolute errors 

with respect to the experimental rates, as measured using out-of-sample tests. Our 

models reveal that for the two-state chains inclusion of solvent exposed Ala may 

accelerate the folding, while increased content of Ile may reduce the folding speed. 

We also demonstrate that increased flexibility of coils facilitates faster folding and 

that proteins with larger content of solvent exposed strands may fold at a slower pace. 

The increased flexibility of the solvent exposed residues is shown to elongate folding, 

which also holds, with a lower correlation, for buried residues. Two case studies are 

included to support our findings. 
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Introduction 

Protein chains fold, from their initial random coil conformation into their 

functional three-dimensional structure, with rates that vary between several 

microseconds and an hour
1
. The two main folding kinetics types include two-state 

folding in which a given protein folds in an “all-or-none” process and multi-state 

folding where the protein folds with at least one intermediate state. Although these 

processes are not yet fully understood, the knowledge of folding kinetics finds useful 

applications. Misfolding, slow folding, and protein aggregation are responsible for 

some of the amyloid-related and other “conformational” diseases
2
. For instance, the 

information concerning the folding kinetics was shown to provide mechanistic and 

structural insight for formation of amyloid fibrils
3
. On the other hand, ultrafast folding 

proteins are utilized for benchmarking molecular dynamics simulations and testing 

protein folding theories since they allow for realistic simulations and direct 

comparison with experimental observations
4
. The folding kinetics and folding rates 

are experimentally determined using hydrogen exchange, spectroscopic, laser-induced 

temperature jumps, mass spectrometry and NMR.
5-10

, but the corresponding data are 

being accumulated at a relatively slow rate. The KineticDB
11

 and Protein Folding 

Database (PFD)
12

, the two most comprehensive databases for experimental data on 

protein folding kinetics, include only 90 and 52 entries, respectively, when compared 

with close to 9 millions of currently known nonredundant protein chains. A viable 

alternative to experimental methods is to use the experimental data from these 

databases to build computational models that estimate/predict the corresponding 
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kinetic information. This work is concerned with building such model to estimate the 

protein folding rates. 

 

Prior works reveal that the chain length is one of the key determinants of the 

folding rate for proteins with the three-state folding kinetics. The standard 

measurement of the folding rates, which is the logarithm of the folding rate measured 

(or extrapolated) in water, kf, is strongly anti-correlated with the chain length L 
13

. At 

the same time, the chain length is shown not to be correlated with the folding rate for 

two-state folders
13

. Prior works show that the magnitude of the correlation is on 

average, across both two-state and multi-state folders, at about 0.65
2,14,15

. Other 

factors, such as the topology of the protein fold, were also shown to affect the folding 

rates
16

. A wide range of topological characteristics of the protein fold was investigated 

to build structure-based predictors of the folding rate. Plaxco et al.
16

 proposed relative 

contact order (CO), which is defined as an average sequence separation between 

contacting residues, to estimate the folding rates of the two-state proteins. Subsequent 

works explored related residue-contact based characteristics including long-range 

order (LRO) 
17,18

, absolute contact order (Abs_CO)
19

, total contact distance (TCD)
20

, 

which combines LRO and CO, relative contact order
21

, geometric contacts
22

, 

elongation-sensitive contact order
23

, and multiple contact index (MCI)
24

. Overall, 

recent works indicate that the knowledge of short-, medium-, and long-range contacts 

allows for an accurate discrimination of the slow and fast folding proteins
24

. The 

folding rates were also investigated using other topological features such as protein 
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compactness, which is defined as a ratio between the accessible surface area and the 

ideal sphere of the same volume
25

. A recent study has shown that several related 

structural descriptors, such as radius of gyration, the radius of cross-section, and the 

coefficient of compactness, can be used to determine the folding rate
2
. Finally, a few 

approaches proposed to predict the folding rates using information concerning 

secondary protein structure
26,27

, which was computed with DSSP
28

. 

 

The above characteristics are either very simple, i.e., based solely on the chain 

length, or require the knowledge of the three-dimensional structure of the native folds. 

The large and growing gap between the number of known protein sequences and 

known protein structures
29

 motivates the development of methods that would rely 

solely on the knowledge of the protein sequence. Last few years observed 

development of several sequence-based predictors of folding rates. In one of the first 

attempts, an effective chain length, Leff
1
, which combines the chain length with 

information concerning secondary structure predicted with PSI-PRED
30 

and ALB
31

, 

was shown to correlate with the folding rates. More recently, amino acids 

composition-based index, CI
32

, and Ω value
33

, which is based on properties of amino 

acids including their rigidity and propensity for certain secondary structures, were 

used to build successful predictors. The most recent methods use more advanced 

sequence characteristics and different prediction algorithms. The SFoldRate method
22

 

applies linear regression and encodes the input protein sequence using 

custom-designed index that quantifies propensity of amino acids for formation of 
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contacts in the protein fold. The QRSM
34

 predictor applies a quadratic response 

surface model based prediction algorithm which utilizes combination of 49 

physicochemical, energetic, and conformational properties of amino acids. The 

PPFR
35

 method combines a wide range of sequence characteristics including the 

length, effective length, physiochemical properties of residues, and secondary 

structures predicted by PSI-PRED and PROTEUS
36

 as an input to a linear regression 

model to provide improved prediction quality. Similarly as PPFR, the PredPFR
37,38

 

predictor hybridized several sequence characteristics such as chain length, properties 

of amino acids, and secondary structure predicted with PSI-PRED to build a linear 

regression-based model. The last method has a drawback of not being able to predict 

folding rates for chains that are shorter than 50 amino acids. 

 

While the above sequence-based methods predict the folding rates that are 

relatively well correlated with the experimental measurements, they do not consider 

some of the characteristics that are utilized by the structure-based methods. For 

instance, surface area of the native structure was implicated to impact the folding 

rates
2
 and changes in kinetic and thermal stabilities were shown to results in up to 

manifold differences in folding rates
39,40

. Inclusion of additional characteristics could 

further improve the prediction quality and it also could reveal interesting insights into 

the folding process. To this end, we consider and analyze the relation between the 

folding rate and the solvent accessible surface, thermal stability and flexibility which 

are predicted from the protein sequence. Our work is also motivated by a recent result 
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that indicates that predicted topological characteristics provide useful input
41

. More 

specifically, folding rates of small single-domain proteins that fold through two-state 

kinetics were shown to be predictable using sequence-based predictions of 

residue-residue contacts in proteins of unknown structure. The authors show that 

estimates based on relatively inaccurate contact predictions are almost as good as the 

estimates that utilize the known contacts
41

. We propose three linear regression models, 

which apply a carefully crafted and selected feature sets to predict folding rates for 

two-state, multi-state, and mixed-state (unknown folding kinetics type) proteins. 

These features combine information about the sequence and the predicted secondary 

structure, residue flexibility, and solvent accessibility.  

Materials and Methods 

Datasets 

Three datasets are used in this study, and they include the D62 and D8 datasets 

from Jiang et al.
35

. The D62 dataset was originally introduced by Ivankov and 

Finkelstein et al.
1
 and it includes 37 two-state and 25 multi-state proteins. The D8 

dataset was extracted from the dataset of 77 proteins (denoted by D77) from Huang et 

al.
34

, by removing sequences that share 35% or larger pairwise sequence identity with 

the sequences in the D62 dataset. 

To accommodate for the remaining experimental data that were not included in the 

D62 and D77 datasets, we also prepared a new dataset based on depositions in the 

kineticDB
11

 database. We downloaded all 90 sequences with the known folding rates 
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from this database and removed the proteins that are already included in the D62 and 

D77 datasets. The remaining sequences were filtered to remove redundancy using 

BLASTCLUST
42

 at http://blast.ncbi.nlm.nih.gov/Blast.cgi with local identity 

threshold set at 25% and default minimal length coverage of 90%. The resulting set 

includes 24 proteins. Next, we removed the sequences which share 35% or larger 

pairwise sequence identity with any sequence in the D62 dataset. The final dataset 

consists of 16 sequences and is referred to as D16. 

The D62 dataset is used to build prediction models and to perform their evaluation. 

Since evaluation on the D62 dataset is somehow obscured by the fact that these data 

are used in model building, we perform additional tests on the D8 and D16 datasets, 

which include sequences that are dissimilar to sequences in the D62 dataset. 

Experimental folding rates in the three datasets are defined by decimal logarithms of 

protein folding rates in water in the absence of denaturant, i.e., log10(kf). The datasets 

are available for download from http://biomine.ece.ualberta.ca/PFR-AF/PFR-AF.html. 

Experiment Setup 

We use three types of tests to evaluate our model. The resubstitution 

(self-consistency) test generates and tests the predictive model on the same dataset; in 

our case we use the D62 dataset. We apply this test for consistency with prior reports 

1,16,17,20,26,32,34,35
, although we observe that these results could be overfitted. The 

jackknife test, also called leave-one-out test, uses n-1 chains, where n is the number of 

proteins in a given dataset, to generate the model which is tested on the remaining 
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protein chain. This is repeated n times, each time choosing a different test chain. This 

test is geared to utilize as much data as possible to generate the model, which is 

important in our case due to the limited size of the experimental data, while it still 

assures that the evaluation is performed for unseen samples. The independent test 

involves testing on a dataset that was not used to generate the model. In our case, we 

train the model on the D62 dataset and test it on the D8 and D16 datasets, 

respectively. 

Following prior works we use the Pearson correlation coefficient (PCC) between 

the predicted folding rate and the experimental (actual) folding rate to evaluate 

predictive models. PCC is defined as 

 1
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experimental folding rate, and y  is the average of yi.  

Since PCC measures only the linear correlation, we also compute the mean 

absolute error (MAE) to quantify the magnitude of the differences between the 

predictions and the actual values 
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Relative Solvent Accessibility, Flexibility and Thermal Stability 

We apply relative solvent accessibility (RSA), which is defined as the ratio of 
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solvent accessible surface area (ASA) of a residue observed in its three dimensional 

structure to that observed in an extended (Gly-X-Gly or Ala-X-Ala) tripeptide 

conformation, to predict the folding rates. The inclusion of the RSA values is 

supported by their strong correlation with key functional properties of proteins and 

active amino acid sites
43,44

 and the finding that the surface area is one of strong 

determinants for the folding rates
2
. The RSA values were used to categorize residues 

as buried or solvent exposed. The residue is considered to be buried if its (predicted) 

RSA < 25%, otherwise, it is assumed to be exposed. This is consistent with prior 

works on residue solvent accessibility that often indicate 25% as a suitable 

threshold
45,46

. We computed the RSA normalized using Ala-X-Ala tripeptide as 

suggested by Ahmad and colleagues
 47, 48

. The ASA values were predicted from the 

sequence using the Real-Spine 3.0 web server
49

, which is motivated by high quality of 

predictions generated by this method
50

. 

 

B-factor describes thermal fluctuations of an atom in the protein structure and is 

usually used to quantify flexibility or mobility of the corresponding residues. 

Research indicates that high-B-factor regions in protein sequence are characterized by 

a higher average flexibility
51

. Flexibility of the residues, expressed using B-factor, is 

strongly correlated with the solvent exposure and thermal stability
50

. The above 

combined with the observation that thermal stability impacts folding rates
40

 supports 

inclusion of (predicted) B-factor values in the proposed predictive model. The 

B-factor values were predicted from the protein sequence using PROFbval web 
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server
52,53

. 

 

We also investigate thermal stability of the protein fold as one of the factors that 

could impact the folding rates. Structural entropy was shown to be linearly related to 

thermostability and was used to identify residues involved in thermal stabilization in 

various protein families
54

. This concept was recently utilized to investigate thermal 

stability and design stable folds based on optimization of local structural entropy 

(LSE)
55

. We consider LSE values computed from the protein sequences using 

procedure developed by Bae et al.
55

 as one of the inputs for the proposed predictor.
 

Secondary Structure 

We utilize three web servers to predict the secondary structure, PSI-PRED
30

 

(version 2.6), PROTEUS
36

, and SSPRO (version 4.0)
56,57

, since secondary structure 

predictions are shown to be complementary and to work well in consensus 
58

. The 

selection of PSI-PRED was motivated by its use in numerous protein structure 

prediction methods
59,60, 

as well as its prior successful application in prediction of 

folding rates 
1,35,37,38

. PROTEUS was recently shown to provide favorable prediction 

accuracies when compared with several other secondary structure predictors
36

 and was 

also previously used in prediction of folding rates 
35

. SSPRO is part of the SCRATCH 

web server
57

 and this method, together with PSI-PRED, was ranked as one of the top 

secondary structure prediction servers in the EVA benchmark 
61,62

.  
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Feature Design 

We use five sources of input data including protein sequence, predicted secondary 

structure (SS), predicted solvent accessible surface (ASA), predicted B-factor, and 

local structure entropy (LSE), to encode the inputs for the proposed folding rate 

predictor. We also combine information concerning predicted secondary structure and 

solvent exposure, flexibility and solvent exposure, and flexibility and secondary 

structure. The following features were considered: 

− L: length of the protein chain (1 feature) 

− CV_i: composition of 20 amino acid types, where i = 1…20, which is defined as 

the count of amino acids of a given type divided by L. (20 features) 

− CV_i_x: composition of 20 amino acid types among buried and exposed residues, 

where x = {buried, exposed} and RSA was predicted using Real-Spine web server 

(20*2 = 40 features) 

− CV_y_z: composition of secondary structure y = {h, e, c}, where h is alpha-helix, 

e is beta-strand, and c is coil, predicted by web server z = {PSI-PRED, PROTEUS, 

SSPRO} (3*3 = 9 features) 

− CV_y_x_z: composition of secondary structure y predicted by web server z for 

residues predicted to be of type x, e.g., CV_h_buried_PSI-PRED denotes the 

composition of helix residues predicted by PSI-PRED which are buried, as 

predicted by Real-Spine. (3*2*3 = 18 features) 

− Avg_ASA_y_z: average solvent accessible surface predicted by Real-Spine for 

residues predicted by web server z to be in secondary structure of type y. We use 
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ASA, in contrast to RSA, to define these features. The RSA is used to predict 

exposed/buried residues. (3*3 = 9 features) 

− Avg_Bfactor_sequence: average B-factors predicted by PROFbval for the entire 

protein sequence. (1 feature) 

− Avg_Bfactor_x: average B-factors predicted by PROFbval for residues predicted 

by Real-Spine to be of type x. (2 features) 

− w_Bfactor_y_z: maximal, minimal and average B-factor values for secondary 

structure segments of type y predicted by web server z, where w = {min, max, 

average}. Using the following predicted secondary structure sequence 

CCCHHHHHHHHHHHCCHHHHHHHHCCEECC as an example, we first 

extract secondary structure segments (for coil CCC, CC, CC, CC; for helix 

HHHHHHHHHHH and HHHHHHHH; for strand EE), and next we compute 

average B-factors for each of these segments. Finally, among the average values 

for segments of each type of the secondary structure we find the minimal, 

maximal and average values. In case when there is no segment of a given type, we 

set the min, max and average to 0. (3*3*3 = 27features) 

− LSE: the local structure entropy estimated for the entire protein sequence. We use 

the procedure by Bae et al.
55

. We downloaded SCOP-35 database of tetra-peptides 

from http://sdse.life.nctu.edu.tw/index.cgi?xln=download. This database is used to 

compute LSE as an average of the L-3 local structure entropy values for all 

tetra-peptides in the input protein chain. (1 feature) 
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Prediction Model 

The folding rate prediction was performed using a linear regression predictor 

Rates = ∑
=

+
sk

j

ssjsj wxw
1

0  

where s = {two-state, multi-state, mixed-state} corresponds to the folding dynamics 

types, xsj is the j
th

 feature for the s
th

 folding dynamics type, ks is the number of features 

for the s
th

 folding dynamics type, and wsj is the j
th

 feature’s regression coefficient for 

the s
th

 folding dynamics type. The values of the regression coefficients were estimated 

from the data using WEKA (version 3.6.0), which is an open-source library of 

machine learning methods
63

. The linear regression was also used to develop three 

other recent folding rate prediction methods
32,33,35

.  

Feature Selection 

The set of 128 features was processed using feature selection to reduce the 

dimensionality. We apply two different feature selection strategies, a filter-based and a 

wrapper-based
64

.  

The filter-based approach was implemented using correlation-based feature 

selection (CFS) method
65

. This method favors features that are highly correlated with 

the output (folding rate), and uncorrelated with each other. The selection criterion is 

defined a ratio between a correlation-based estimate of the predictive value of a given 

feature set and their estimated redundancy. The CFS method was demonstrated to 

reduce the dimensionality while maintaining or even improving performance of the 
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subsequent prediction
65

. For efficiency, we used best-first search with forward feature 

selection to search through the space of the feature sets. This feature selection method 

was also used to design the PPFR method
35

.  

The wrapper-based method
66

 was implemented by utilizing linear regression 

models (which are subsequently used to perform folding rate prediction) built on 

selected subsets of features. Similarly as for the CFS method, we use best-first search 

with forward feature selection to generate feature sets; this method is denoted as 

Wrapper-BF. We also considered greedy stepwise search with forward feature 

selection; this variant is referred to as Wrapper-GS.  

The feature selection was performed for each of the three folding dynamics types 

using jackknife tests on the D62 dataset to avoid overfitting. The filter-based CFS 

method generates a different set of features for each of the jackknife folds, while the 

wrapper-based method generates one feature set for the entire jackknife test. As a 

result total of five feature sets were generated:    

1. Only the features selected using CFS in all 62 folds were accepted; this set is 

denoted by CFS-100%folds 

2. The features selected using CFS in at least 50% of the 62 folds were accepted; this 

set is denoted by CFS-50%folds 

3. The features selected using CFS in at least 1 of the 62 folds were accepted. Since 

the number of such features is relatively large, they were further processed by 

using a wrapper-based approach to remove redundant/irrelevant features. We start 

with a feature from this set that has the highest jackknife-based PCC when used 

Page 15 of 58

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics



 16 

for prediction of folding rates on the D62 dataset and we incrementally add 

additional features drawn from this set which further increase the correlation. This 

is repeated until the inclusion of any of the remaining features does not improve 

correlation. The final feature set is denoted by CFS-Wrapper-1fold. 

4. The features selected using Wrapper-BF method. 

5. The features selected using Wrapper-GS method. 

Each of these five feature sets was further processed by removing 

irrelevant/redundant features. This was performed by computing PCC of the 

predictions generated by a linear regression model computed from a given set of 

features using jackknife test on the D62 dataset. We start with a given feature set and 

we remove these features that do not result in decrease of the correlation coefficient. 

Once the final five feature sets are found, we compute correlations for linear 

regression models using jackknife tests on D62 and independent test on D8, see Table 

1. We do not use the D16 dataset to perform feature selection. This dataset is used 

exclusively to test the final design of the proposed predictor, which allows verifying 

whether overfitting occurred. In case of the models for two-state and multi-state 

chains we use the corresponding 37 and 25 chains from the D62 dataset, respectively.  

 

Results in Table 1 agree with prior works that indicate that wrapper-based feature 

selection usually results in feature sets that perform better in the subsequent 

prediction
64

. The three wrapper-based feature sets perform similarly well on the 

jackknife test on the D62 dataset, but only the Wrapper-GS set performs equally well 
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on the independent test on the D8 dataset. This suggests that this feature set allows for 

good quality predictions for sequences that share low identity with the sequences used 

to derive the model. Therefore, the Wrapper-GS feature set, which is shown in Table 2, 

was selected to implement the proposed folding rate predictor. 

 

The selected feature sets are compact as they include only 5 to 9 features, 

depending on the target kinetics type. Although the structural entropy-based LSE 

feature was not retained, the features based on the other two data sources introduced 

in this work, namely solvent accessibility and B-factor, are included. Although 

sequence length was selected for all three models, we observe that its correlation with 

the folding rates is lower for the two-state proteins, which is consistent with prior 

reports
13

. We note that for two-state proteins the strongest correlations, which are 

higher than the correlation for the chain length, were obtained for features that are 

based on predicted solvent accessibility, B-factor and secondary structure. The 

predicted solvent accessibility is most frequently used, i.e., it appears in 5 out of 9, 2 

out of 5 and 3 out of 6 features for the two-state, multi-state and mixed-state models, 

respectively. At the same time, the predicted B-factor and secondary structure are also 

used to compute multiple features in each of the models. The secondary structure used 

in the mixed-state model comes exclusively from the PSI-PRED, while the 

predictions from SSPRO were not utilized. The only purely sequence-based features 

that were found useful are the chain length in all three models and composition of Ile 

in the two-state model. As our feature selection strives to remove redundant and 
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irrelevant features, we conclude that the information coming from the considered 

predicted sequence characteristics are complementary to the sequence length. Detailed 

discussion of the selected features is included in the Results and Discussion section. 

Results and Discussion 

Factors Governing Folding Rates 

We have built three linear-regression models for prediction of folding rates of 

two-state, multi-state and mixed-state (unknown folding kinetics) proteins, 

respectively, using the D62 dataset, see Figure 1. The sign of the coefficients indicates 

whether a given feature is positively or negatively correlated with the experimental 

folding rate. We caution the reader that the magnitude of coefficients should not be 

compared between features (although it could be compared for the same features, 

such as L, in different models), since the feature values are in different ranges. The 

regression models not only reveal which features (factors) are related to the folding 

rate, but most importantly they also indicate which of these factors are 

complementary with each other, i.e., which could be used in tandem to improve 

predictions. Our analysis concentrates on features that have high absolute correlation 

coefficients, >0.28 (see Table 2), for each of the three folding kinetics types. 

 

Figure 1 reveals that the protein length L is negatively correlated with the 

experimental folding rates in the three models. Since the folding rate is the inverse of 

the actual folding time, this suggests that larger proteins need more time to fold. The 

Page 18 of 58

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics



 19 

length is a major determinant for the multi-state chains with PCC = -0.8, is also 

strongly correlated for the mixed-state sequences with PCC = -0.61, but its PCC 

equals only -0.33 for the two-state proteins, see Table 2. These correlations are 

consistent with the corresponding coefficients in the three regression models where 

the largest magnitude is observed for the multi-state model, followed by mixed-state 

and two-state models. This agrees with results of Galzitskaya et al.
13

 which show that 

length is a weaker determinant for the two-state proteins. The use of the length in the 

regression model is also consistent with results by Ivankov et al.
1
 and Jiang et al.

35
.  

 

The CV_e_exposed_psipred and CV_I are negatively correlated with 

experimental folding rate for the two-state chains, and they also have negative 

coefficients in the corresponding prediction model. The first correlation translates into 

an observation that increased content of solvent exposed beta-strands (as predicted by 

PSI-PRED and Real-Spine) slows down the folding in the two-state proteins. A 

similar observation that implicates increased beta-strand content was shown in ref
 27, 35

, 

but here we show that this concerns solvent exposed structures. The content of the 

solvent exposed strands has slightly stronger correlation of -0.66 when compared with 

the correlation for the content of all predicted strands which equals -0.61. Our model 

also suggests that increased content of Ile (I) may slow down the folding process for 

the two-state chains. This is consistent with other works
33,35,67

, where this relation is 

explained by the ability of Ile to form geometric contacts and the fact that Ile has 

branched side chain, which enlarges the number of potential conformations
68,69,70

. 
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The Min_Bfactor_c_segment_proteus and CV_A_exposed are positively 

correlated with the experimental folding rates for the two-state proteins and have 

positive coefficients in the associated predictive model. The first feature quantifies 

predicted flexibility of the most conserved coil segment and it indicates that increased 

flexibility of coils results in faster folding. The second feature suggests that increased 

content of exposed Ala also facilitates faster folding of two-state folders. Although the 

increased content of Ala was recently implicated in faster folding in ref
22

, our work 

demonstrates that a stronger correlation, 0.37 vs. 0.19, concerns the content of the 

solvent exposed Ala residues. Since free energy changes during folding are dominated 

by the changes in the conformational entropy, we hypothesize that the above relation 

could be explained by a relatively low conformational entropy of Ala
71

. 

 

Our model also indicates that the Max_Bfactor_e_segment_proteus, which 

quantifies the maximal predicted B-factor value for predicted strand segments, is 

negatively correlated with the experimental folding rate for the multi-state proteins. 

This suggests that increased flexibility of strand segments results in slower folding. 

Related works
27,35

 show that formation of longer strand segments slows down folding 

of multi-state folders. Our results indicate that the correlation with the folding rates 

improves from -0.22 to -0.29 when considering flexibility of these segments rather 

than their size. 
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The model for the mixed-state proteins reveals that 

Min_Bfactor_c_segment_psipred, which quantifies minimal predicted B-factor value 

for the predicted coil segments, is positively correlated with the experimental folding 

rate. This is consistent with the model for the two-state folders and shows that flexible 

coils accelerate folding. On the other hand, Avg_Bfactor_exposed and 

CV_e_exposed_psipred, which correspond to the average predicted B-factor of the 

exposed residues and the content of the predicted exposed strands, respectively, are 

negatively correlated with the experimental folding rate. The latter finding is also 

consistent with the model for the two-state folders and we observe improved 

correlation, -0.33 vs. -0.31, when considering the content of the solvent exposed and 

all strand segments, respectively. We observe that the correlation between the average 

B-factors of the exposed residues that equals -0.37 is stronger than the correlation for 

the buried residues which is -0.23. The exposed residues are more flexible than the 

buried residues, i.e., they have higher B-factors, which is expected. We hypothesize 

that increased flexibility of residues, and in particular surface residues, would enlarge 

the number of potential conformations which in turn would elongate the folding 

process. 

 

The selected sequence composition-based features with |PCC| ≥ 0.2, see Table 2, 

include CV_I and CV_P_buried that are negatively correlated with the folding rate, 

and CV_A_exposed and CV_P_exposed that are positively correlated. Recent results, 

which do not consider the solvent exposure, confirm that Ile (I) is negatively 

Page 21 of 58

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics



 22 

correlated while Ala (A) is positively correlated
22

. At the same time, Ouyang and 

Liang et al.
22

 show that Pro (P) is negatively correlated when considering only the 

protein sequence and positively correlated when considering structure-based residue 

contacts. Our models could help in resolving this conflicting conclusion since they 

suggest that exposed Pro is positively correlated while buried Pro is negatively 

correlated with the folding rate. 

Comparative Study 

Table 3 lists predictions of the proposed method for the Prediction of Folding 

Rates based on solvent Accessibility and Flexibility (PFR-AF). The predictions are 

based on the mixed-state proteins model (assuming no prior knowledge of the kinetics 

type) using resubstitution and jackknife tests on the D62 dataset, and when testing our 

model on the D8 and D16 datasets. PCC values achieved by PFR-AF equal 0.88, 0.84, 

0.85, and 0.71 for the resubstitution, the jackknife and the tests on D8 and D16 

datasets, respectively. We compare these results, as well as results using the models 

for two-state and multi-state proteins on the D62 dataset, with the existing solutions to 

demonstrate predictive quality of the proposed method. Since some existing methods 

predict folding rates expressed using natural logarithm, ln(kf), while other methods, 

like the proposed PFR-AF, use logarithm of base 10, the PCC values were always 

computed using the same base (PCC between the experimental and the predicted rates 

in the base 10 are equal to the PCC in the natural base), while the MAE values were 

computed in base 10 after converting between the bases, if necessary. 
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Following the prior reports we compare the PCC values between the experimental 

folding rates and the predicted folding rates computed using the resubstitution test on 

the D62 dataset, see Table 4. We caution the reader that these predictions may overfit 

the dataset as the prediction model is designed and tested on the same set of proteins. 

The comparison includes five structure-based predictors CO
16

, Abs_CO
19

, LRO
17

, 

TCD
20

, and SSC
26

, and three sequence-based methods Leff
1
, CI

32
, and PPFR

35
. The 

results include predictions with the mixed-state model on the entire D62 dataset, and 

the predictions for the two-state and multi-state proteins from D62 using the 

corresponding two-state and multi-state models, respectively. We observe that 

sequence-based methods provide predictions that are overall comparable or better 

than the predictions of the structure-based methods. This could be explained by the 

fact that the sequence-based predictors utilize models that combine multiple features, 

while structure-based methods are usually based on a single descriptor. The proposed 

PFR-AF method provides favorable correlations for all three models. This is likely 

since PFR-AF applies a well designed and complementary set of features that describe 

not only the sequence, but also sequence-derived characteristics like solvent 

accessibility and flexibility. The lower correlations obtained by the mixed-state model 

are consistent with results of other sequence-based methods. They indicate that the 

folding rates associated with proteins that fold in two-state or multi-state kinetics are 

governed by different factors which, when put together, may to some extent interfere 

with each other.  
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Table 5 compares PCC values from the jackknife test on the D62 dataset. We 

compare the proposed PFR-AF, a structure-based method K-Fold
21

, and five 

sequence-based methods including PredPFR
 37,38

, SFoldRate
22

, QRSM
34

, CI
32

, and 

PPFR
35

. The reason to include a structure-based method that was not considered in 

Table 4 is that the K-Fold, which is a web server based on a linear kernel SVM 

predictor that utilizes the relative contact order, was designed and tested using 

cross-validation test. Most importantly, the more stringent jackknife test results (when 

compared with resubstitution test) demonstrate that this method provides superior 

predictions, PCC = 0.74, when compared with other structure-based methods from 

Table 4, i.e., best performing method has PCC equal -0.61. Among the 

sequence-based methods, the Leff method cannot be tested using jackknife test (since 

it was developed using the entire D62 dataset), and we added three most recent 

methods, PredPFR, SFoldRate and QRSM when compared with Table 4. We observe 

that PFR-AF obtains comparable results for both tests on the D62 dataset. The 

proposed method provides equivalent or better results for the two-state and multi-state 

models when compared with the other two methods, CI and PPFR. When considering 

the mixed-state model, PFR-AF outperforms K-Fold, PredPFR, SFoldRate and CI, 

provides similar prediction to the predictions of PPFR, and is outperformed only by 

QRSM. We observe that the jackknife test results for the QRSM shown in Table 5 are 

based on a larger D77 dataset
34

. Since the D62 dataset is a subset of the D77 dataset, 

the results in Table 5 are based on jackknife predictions on the D77 dataset which are 
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constrained to the proteins from the D62 dataset. We compare the two datasets by 

computing maximal pairwise sequences identity (MPSI) between a given chain and 

all other chains in the same dataset using the EMBOSS
72,73

 server at 

http://www.ebi.ac.uk/Tools/emboss/align/index.html. This is motivated by the usage 

of the jackknife test where all but one sequence are used to derive the predictive 

model, which means that the most similar sequence to the single test sequence could 

be used to compute the predictions. Figure 2 shows the distribution of the MPSI 

values for the D77 and D62 datasets. The distributions show that about 47% of 

sequences in D62 have MPSI values below 20% and no sequence in D62 has MPSI 

values larger than 80%. In contrast, only about 29% of sequences in the D77 dataset 

have MPSI value below 20% and 22% have MPSI values that are larger than 80%. 

This demonstrates that D62 dataset is characterized by lower pairwise sequence 

identity than the D77 dataset, which could influence the jackknife-based estimate of 

the PCC values in Table 5.   

 

We also perform tests on the D8 and D16 datasets, see Table 6, which aim at 

quantifying the predictive performance on chains that are dissimilar to the chains 

(from the D62 dataset) used to design and compute the predictive model. The 

relations between the experimental folding rates and the predictions from the PFR-AF, 

the PPFR which is the second best method on these datasets, and the structure-based 

K-Fold method are visualized in Figure 3. The scatter plots show that PFR-AF 

computes folding rates that are positioned closer to the diagonal line which denotes 
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perfect predictions. The results demonstrate that PFR-AF outperforms the other 

considered methods, and they demonstrate a similar level of performance for both the 

jackknife test on D62 and the tests on both independent datasets. This suggests that 

the proposed predictor is capable of high quality predictions even in the absence of 

sequence similarity. A relatively high PCC of 0.81 for QRSM on the D8 dataset is 

likely since these chains were included in the D77 dataset that was used to design this 

method. The PPFR, K-Fold, PredPFR and SFoldRate are shown to obtain relatively 

good correlations of about 0.5 to 0.65 on the D16 dataset. 

 

Furthermore, we computed MAE between the experimental and the predicted 

rates for the proposed PFR-AF, K-Fold, PredPFR, SFoldRate, QRSM and PPFR, see 

Table 7. The average errors, which were computed for the jackknife tests on D62 and 

for the tests on the D8 and D16 datasets, complement the PCC values that only reveal 

the degree of the linear correlation. The natural logarithm based predictions of 

PredPFR, SFoldRate and QRSM were converted into base 10 to compute the MAE 

values. The PFR-AF provides predictions with the lowest MAE on all three datasets. 

The average absolute errors of the proposed methods are about 0.8 to 0.9 in the base 

10 logarithm, which translates into estimates that on average differ by less than one 

order of magnitude from the experimental rates. This should be considered as 

relatively accurate considering that the log10(kf) values in the three datasets range 

between -3 and 6, which corresponds to 9 orders of magnitude difference. To compare, 

the errors of the most recent PredPFR method range between 0.9 and 1.3 where MAE 
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of 1.3 corresponds to an estimate of kf that is about 2.5 times worse than the 

corresponding estimate with MAE of 0.9 provided by the PFR-AF. 

 

Finally, we investigate potential complementarity between the proposed PFR-AF 

and the two recent well-performing methods, PPFR and QRSM, characterized by high 

PCC and relatively low MAE values when jackknife tested on the D62 dataset. The 

average MAE of the PFR-AF for ten chains from D62 for which the proposed method 

makes the largest errors (1RA9, 1GXT, 256B, 1PIN, 1LOP, 1A6N, 1CBI, 1PNJ, 

3CHY, and 1FNF90) equals 1.69, while the MAE values of PPFR and QRSM for 

these chains equal 1.56 and 0.38, respectively. On the other hand, the average MAE 

the PFR-AF for ten chains for which our model makes the smallest errors (1BRS, 

1CSP, 1URN, 1OPA, 1EAL, 1G6P, 1SRL, 2PDD, 1CEI, and 1MJC) equals 0.12, 

while the MAEs equal 0.58 and 0.59 for the PPFR and QRSM, respectively. Figure 4 

shows a detailed comparison of predictions for the D62 dataset. The x-axis on Figure 

4 corresponds to the sequences in D62 which are sorted in ascending order by MAE 

values of predictions by PFR-AF. We observe that the maximal MAE of PFR-AF is 

lower than the MAE for 5 and 14 predictions by PPFR and QRSM, respectively, and 

that PFR-AF provides the lowest MAE for 26 sequences. At the same time, 

predictions of PPFR and QRSM are better (have lower MAE) than the prediction of 

the proposed method for 25 and 21 out of the 62 sequences, respectively, and these 

two methods provide the lowest MAE for 19 and 17 chains, respectively. The above 

suggests that although on average PFR-AF produces predictions with the lowest MAE, 
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the other two methods outperform it on some sequences supporting the claim that the 

existing and the proposed methods are complementary. 

Regression Models Based on Other Protein Properties 

We investigate whether usage of other protein properties could lead to regression 

models with comparable correlations and MAEs. We use the same design procedure 

as for PFR-AF, but instead of using the features computed from the sequence, 

predicted secondary structure, solvent accessibility and B-factor, we consider two 

scenarios, (1) we use each of the three predicted structural properties separately; and 

(2) we apply the long range order (LRO) values as suggested in ref
41

, the 49 

physicochemical, energetic, and conformational properties of amino acids based on 

ref
34

, and the combination of these approaches. The LRO values were predicted from 

the sequence using PROFcon
74

 as explained in ref
41

. The 49 properties were taken 

from http://www.cbrc.jp/~gromiha/fold_rate/property.html
34

. The first scenario allows 

quantifying the advantage of combining information coming from these three 

structural properties, while the second one aims at finding whether multivariate 

regression based on other protein properties could compete with the proposed method. 

Table 8 compares correlations and errors obtained with regressions that are based on 

the above six feature sets. Although the jackknife results on the D62 dataset are 

comparable for the PFR-AF and the regressions based on the predicted secondary 

structures and the predicted solvent accessibility, only the proposed model performs 

similarly well on the D8 and D16 datasets.  
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Case Studies 

A short polypeptide motif BBA5 (PDB id: 1T8J)
75

, one of the sequences in the 

D16 dataset, is an extensively studied 23-residues chain that folds at a microsecond 

timescale. This motif consists of three structural regions, (1) hairpin region (residues 

1-8); (2) alpha-helical region (residues 12-23); and (3) a loop region (residues 9-11) 

which connects the hairpin with the helix
76

, see Figure 5A. The structure is stabilized 

by a hydrophobic core formed between the helix and the hairpin
77

. The rapid folding 

of this chain is due to the swift formation of the secondary structures
78

. This chain is 

characterized by a very low maximal pairwise sequence identity of 14.3% to the 

sequences in the D62 dataset, which were used to derive the proposed prediction 

model. The prediction error (predicted folding rate minus the experimental rate) 

generated by PFR-AF equals -0.2. This prediction, which comes from the mixed-state 

model, benefits from features that use the predicted secondary structure and the 

predicted solvent exposure. Except for Phe8, Leu14, and Ala15, all residues are 

solvent exposed. The actual secondary structure computed with DSSP includes 35% 

of helical residues and 65% of coil residues, and there are no strands. The mixed-state 

model from Figure 1 predicts the rate as follows (the curly brackets list the 

corresponding features) 

Ratemixed-state =  – 11.1231*0 {CV_P_buried} – 5.9942*0 {CV_e_exposed_psipred} 

        – 2.1851*0.218235 {Avg_Bfactor_exposed} – 0.0106*23 {L}  

       + 0.6957*–0.589 {Min_Bfactor_h_segment_psipred} 

    + 0.6151*0.262727 {Min_Bfactor_c_segment_psipred} + 5.888 
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   =   – 0.4768652985 {Avg_Bfactor_exposed} – 0.2438 {L}  

       – 0.4097673 {Min_Bfactor_h_segment_psipred} 

    + 0.1616033777 {Min_Bfactor_c_segment_psipred} + 5.888 

   =  4.92 

We observe that this chain does not have buried Pro (CV_P_buried = 0) and its 

predicted secondary structure does not include solvent exposed strands 

(CV_e_exposed_psipred = 0). The Pro4, which is the only proline in this chain, is 

solvent exposed, see Figure 5A. The predicted rate is influenced by the predicted 

B-factors of the exposed residues (with value of 0.22 which suggests that they are 

relatively flexible) and the helical residues (with value of -0.59 which suggests that 

they are relatively rigid), which lower the predicted value. At the same time, the 

relatively high predicted flexibility of the coil segment (value of 0.26) adds to the 

predicted rate. The final result shows that flexibility of the coil shortens the folding 

time, while the relative rigidity of the helix and the flexibility of the exposed residues 

elongate the time. 

 

The GW domain of the Internalin B protein
79

 (PDB id: 1M9S, residues 391-466), 

which is named for the conserved Gly-Trp (GW) dipeptide in the C-terminal of this 

protein, includes 76 residues. This chain is included in the D16 dataset and its 

maximal pairwise sequence identity to the sequences in the D62 dataset equals 23.5%. 

The GW domain resembles SH3 domain
79

 and includes several beta-strands and a 

3/10 helix, see Figure 5B. About 45% residues are buried and 55% are solvent 
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exposed. The secondary structure assigned with DSSP includes 4% helices, 22% 

strands and 74% coils. The folding rate of this domain is lower than that of the BBA5 

motif, and equals 1.74. The prediction from PFR-AF based on the mixed-state model 

is computed as 

Ratemixed-state =  – 11.1231* 0.04 {CV_P_buried}  

    – 5.9942*0.313725 {CV_e_exposed_psipred} 

        – 2.1851* 0.394510 {Avg_Bfactor_exposed} – 0.0106*76 {L}  

       + 0.6957*–0.53 {Min_Bfactor_h_segment_psipred} 

    + 0.6151*0.2525 {Min_Bfactor_c_segment_psipred} + 5.888 

   =  – 0.444924 {CV_P_buried}  

    – 1.880530395 {CV_e_exposed_psipred} 

        – 0.862043801 {Avg_Bfactor_exposed} – 0.8056 {L}  

       – 0.368721 {Min_Bfactor_h_segment_psipred} 

    + 0.15531275 {Min_Bfactor_c_segment_psipred} + 5.888 

   = 1.68 

Our prediction slightly underestimates the experimental rate by 0.06. The features 

employed in the model capture essential information about this domain, which results 

in the accurate estimate. The CV_P_buried quantifies the impact of Pro that is 

predicted to be buried, but the largest impact on the prediction comes from the 

relatively high flexibility of the exposed strands (CV_e_exposed_psipred) and the 

solvent exposed residues (Avg_Bfactor_exposed), and the fact that this is a longer 

chain with 76 residues (L). We also note the effects of the predicted rigid helix 
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(Min_Bfactor_h_segment_psipred) and the predicted flexible coil segment 

(Min_Bfactor_c_segment_psipred), which are similar to what we show for the BBA5 

motif case study. 

Conclusions 

Protein folding is an open problem with many aspects that require research 

attention. One of such aspects is the timescale, which may vary substantially between 

proteins. We have built a simple model for prediction of the folding rate given the 

knowledge of the protein sequence that improves over the existing solutions. Our 

work is motivated by the premise that certain structural properties that are predicted 

from the sequence, such as solvent accessibility, secondary structure and residue 

flexibility, influence the folding rate. We propose three linear-regression based models 

that address prediction of the rate for proteins with the two-state, the multi-state and 

unknown (either two or multi-state) folding kinetics. We also analyze these models to 

reveal potentially interesting relations between certain topological and structural 

properties of proteins (that are predicted from the sequences) and the folding rates. 

The empirical evaluation that involves three datasets and tests on sequences that 

share low identity with the sequences used to derive the predictive models 

demonstrate that the proposed prediction method, referred to as PFR-AF, provides 

favorable prediction quality when compared with modern methods, including 

sequence- and structure-based methods. This could be explained by the fact that 

existing sequence-based methods do not apply information concerning flexibility and 

solvent accessibility, while the structure-based methods usually use only one 
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topological descriptor, such as residue contacts, and thus they do not benefits from 

fusing multiple sources of information. The predictions generated by PFR-AF are 

characterized by high correlation with the experimental rate, between 0.7 and 0.95 

depending on the dataset, and the lowest (among the competitors) mean absolute 

errors, between 0.75 and 0.9, as measured using out-of-sample tests. Two case studies 

concerning proteins with low sequences identity are used to support our findings.   

We observe that although the solvent exposure- and flexibility-based features used 

by proposed method are characterized by moderate correlations with the folding rates, 

they complement each other and the other features based on chain length and 

secondary structure resulting in an accurate prediction method. Analysis of the 

proposed models reveals several interesting observations: (1) chain length is one of 

the key determinants of the folding rate, which is consistent with prior works
 2,13,14,15

; 

(2) Inclusion of exposed Ala may accelerate the folding of two-state proteins, which is 

likely due to the low conformational entropy of this amino acid; (3) Increased content 

of Ile in two-state proteins may reduce the folding speed due to the ability of this 

residue to form geometric contacts 
67,68,69,70

; (4) Inclusion of buried Pro may 

decelerate folding; (5) Increased flexibility of coil segments facilitates faster folding; 

(6) Proteins with larger content of solvent exposed strands may fold at a slower pace; 

(7) Increased flexibility of strand segments in multi-state proteins may result in slower 

folding; and (8) Increased flexibility of the solvent exposed residues elongates the 

folding, which is likely due to an enlarged number of potential conformation, and this 

relation also holds, with lower correlation, for buried residues. The above factors may 
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provide useful clues into the protein folding process.  
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Figure Legends 

Figure 1. Prediction models for two-state, multi-state and mixed-state proteins. The 

variables are grouped by the sign of the regression coefficients and ordered by the 

magnitude of the coefficients. 

Figure 2. Distribution of maximal pairwise sequence identity (MPSI) values for the 

D66 and D77 datasets. 

Figure 3. Scatter plots of predictions generated by the PFR-AF (panel A), PPFR 

(panel B), and K-Fold (panel C), which are shown on y-axis, against the experimental 

values of folding rates, which are shown on x-axis, for the predictions on the D8 and 

D16 datasets. Linear regressions are shown using solid lines with the corresponding 

coefficients of determination R
2
 (the squared PCC between a given set of predictions 

and the actual folding rates). 

Figure 4. The MAE (y-axis) of the PFR-AF, PPFR and QRSM based on the jackknife 

test on the D62 dataset where sequences (x-axis) are sorted in ascending order by 

MAE values for predictions by PFR-AF. 

Figure 5. (A) The structure of the polypeptide motif BBA5 (PDB id: 1T8J). (B) The 

structure of the GW domain of the Internalin B proteins (PDB id: 1M9S, residues 

391-466). The Pro residues, including Pro4 in 1T8J and Pro416 in 1M9S, are shown 

using spheres. The structures are shown in cartoon representations with a color 

gradient that represents the B factor values where blue denotes low values and red 

denotes high values. Since 18TJ was resolved using NMR, we display the B-factors 

predicted by PROfbval web server. The figure was plotted using Pymol
80

. 
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Table 1. Pearson correlation coefficients between the experimental and the predicted 

folding rates using five considered feature sets and linear regression models computed 

using jackknife tests on D62 and independent test on D8. The two-state and multi-state 

models were computed using 37 two-state and 25 multi-state chains from the D62 

dataset, respectively. 
 

Feature set Test type Two-state Multi-state Mixed-state 

Jackknife D62 0.51 0.76 0.74 CFS-100%folds 

Independent D8 not applicable
1 

not applicable
1 

0.62 

Jackknife D62 0.73 0.01 0.40 CFS-50%folds 

Independent D8 not applicable
1 

not applicable
1 

0.36 

Jackknife D62 0.95 0.97 0.85 CFS-Wrapper-1fold 

Independent D8 not applicable
1 

not applicable
1 

0.75 

Jackknife D62 0.95 0.87 0.90 Wrapper-BF 

Independent D8 not applicable
1 

not applicable
1 

0.58 

Jackknife D62 0.94 0.87 0.84 Wrapper-GS 

Independent D8 not applicable
1 

not applicable
1 

0.85 
 

1The independent test on the D8 dataset concerns only the mixed-state predictions since this set is too small to be further subdivided to 

perform tests for the two-state and multi-state chains separately. 
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Table 2. Features selected using the Wrapper-GS method for the two-state, multi-state 

and mixed-state kinetics together with their Pearson correlation coefficients with the 

experimental folding rates. The features are order by the decreasing absolute value of 

their correlation coefficients. 

 

Folding kinetics Feature Input data PCC 

CV_e_exposed_psipred RSA
1
 and SS

2 
-0.66 

Min_Bfactor_c_segment_proteus B-factor
3
 and SS 0.38 

CV_A_exposed RSA and sequence 0.37 

CV_I Sequence -0.33 

L Sequence -0.33 

CV_P_buried RSA and sequence -0.27 

CV_L_exposed RSA and sequence -0.06 

Min_Bfactor_h_segment_psipred B-factor and SS 0.04 

Two-state 

(9 features) 

CV_c_buried_proteus RSA and SS -0.01 

L Sequence -0.80 

Max_Bfactor_e_segment_proteus B-factor and SS -0.29 

CV_P_exposed RSA and sequence 0.20 

Max_Bfactor_h_segment_psipred B-factor and SS -0.16 

Multi-state  

(5 features) 

CV_F_exposed RSA and sequence -0.13 

L  Sequence -0.61 

Min_Bfactor_c_segment_psipred B-factor and SS 0.45 

Avg_Bfactor_exposed RSA and B-factor -0.37 

CV_e_exposed_psipred RSA and SS -0.33 

CV_P_buried RSA and sequence  -0.18 

Mixed-state 

(6 features) 

Min_Bfactor_h_segment_psipred B-factor and SS 0.16 

 
1 RSA: predicted relative solvent accessible surface 
2 SS: predicted secondary structure 
3 B-factor: predicted flexibility of residues 
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Table 3. Folding rates predicted using the mixed-state model of the proposed PFR-AF 

method for the resubstitution and jackknife tests on the D62 dataset, and based on the 

tests on the low sequence identity datasets D8 and D16 when training the models using 

the D62 dataset. 

 
Predicted folding rate 

log10(kf) Dataset PDB ID Kinetics type 

Experimental 

folding rate 

log10(kf) Resubstitution Jackknife 

1PIN two-state 4.1 2.48 2.237 

2PDD two-state 4.3 4.121 4.106 

2ABD two-state 2.9 2.671 2.655 

256B two-state 5.3 3.594 3.432 

1IMQ two-state 3.2 2.364 2.257 

1LMB two-state 3.7 3.427 3.378 

1FNF90 two-state -0.4 0.956 1.09 

1WIT two-state 0.2 1.353 1.537 

1TEN two-state 0.5 1.502 1.565 

1SHG two-state 0.6 1.406 1.51 

1SRL two-state 1.7 1.543 1.525 

1PNJ two-state -0.5 0.875 1.031 

1SHF two-state 2 1.731 1.703 

1PSF two-state 1.4 1.89 1.921 

1CSP two-state 2.9 2.877 2.872 

1C9O two-state 3.1 2.58 2.541 

1G6P two-state 2.7 2.599 2.588 

1MJC two-state 2.3 2.099 2.09 

1LOP two-state 2.9 1.422 1.335 

1C8C two-state 3 2.297 2.266 

1HZ6 two-state 1.8 2.262 2.297 

1PGB57 two-state 2.6 2.427 2.416 

1FKB two-state 0.7 0.405 0.382 

2CI2 two-state 1.7 2.116 2.179 

1AYE two-state 3 2.612 2.566 

1URN two-state 2.5 2.559 2.559 

1APS two-state -0.7 0.652 0.77 

1RIS two-state 2.6 2.009 1.973 

1POH two-state 1.2 1.593 1.615 

1DIV two-state 2.6 2.264 2.203 

2VIK two-state 3 1.589 1.527 

1L2Y two-state 5.4 4.728 4.648 

1VII two-state 5 4.182 4.084 

1BDD two-state 5.1 4.077 3.977 

1ENH two-state 4.6 4.392 4.367 

2ACY two-state 0.4 0.68 0.704 

1L8W two-state 0.7 0.08 -0.322 

1A6N multi-state 0.5 1.963 2.051 

1CEI multi-state 2.5 2.326 2.297 

2CRO multi-state 1.6 2.724 2.903 

2A5E multi-state 1.5 1.891 1.939 

D62 

1TIT multi-state 1.6 1.345 1.311 
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1HNG multi-state 0.8 1.64 1.687 

1FNF94 multi-state 2.4 1.88 1.853 

1IFC multi-state 1.5 1.163 1.095 

1EAL multi-state 0.6 0.709 0.706 

1OPA multi-state 0.6 0.689 0.689 

1CBI multi-state -1.4 0.001 0.133 

1QOP268 multi-state -1.1 -0.879 -0.851 

1AON multi-state 0.3 0.862 0.883 

1BRS multi-state 1.5 1.499 1.493 

3CHY multi-state 0.4 1.843 1.908 

2RN2 multi-state 0 1.224 1.287 

1RA9 multi-state 2 0.196 -0.011 

1QOP396 multi-state -3 -2.064 -1.849 

1PHP175 multi-state 1 0.449 0.395 

1PHP219 multi-state -1.5 -0.838 -0.749 

1BNI multi-state 1.1 2.334 2.43 

2LZM multi-state 1.8 1.246 1.195 

1UBQ multi-state 2.6 2.308 2.296 

1SCE multi-state 1.8 2.065 2.075 

1GXT multi-state 1.9 0.113 -0.076 

   
Predicted rate log10(kf) 

non-redundant dataset 
1HRC two-state 3.8 2.324 

1YCC two-state 4.18 2.533 

1NYF two-state 1.97 1.732 

1PKS two-state -0.46 1.195 

2AIT two-state 1.8 2.107 

2HQI two-state 0.08 1.215 

1PBA two-state 3 3.196 

D8 

1HX5 multi-state 0.32 0.825 

   
Predicted rate log10(kf) 

non-redundant dataset 

1BA5 two-state 2.56 4.195 

1E0L two-state 4.6 3.334 

1FEX two-state 3.56 4.039 

1GV2 two-state 3.78 4.366 

1JMQ two-state 3.65 3.033 

1JO8 two-state 1.09 1.399 

1JYG two-state 3.95 4.026 

1K0S two-state 3.21 0.872 

1M9S two-state 1.74 1.683 

1N88 two-state 0.87 2.086 

1PRB two-state 5.99 4.383 

1RFA two-state 3.65 3.118 

1SPR two-state 3.78 2.14 

1T8J two-state 5.12 4.92 

1U5P two-state 4.78 4.426 

D16 

2A3D two-state 5.3 4.999 
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Table 4. Comparison of PCC values between the experimental folding rates and the rates 

predicted by the proposed PFR-AF method, five structure-based methods including CO, 

Abs_CO, LRO, TCD and SSC, and three sequence-based methods including Leff, CI and 

PPFR using the resubstitution test on the D62 dataset. Best results are shown in bold. 

 
structure-based methods sequence-based methods Folding 

kinetics CO
a
 Abs_CO

a
 LRO

a
 TCD

a
 SSC

a 
Leff

a
 CI

b
 PPFR

b
 PFR-AF 

Two-state -0.57 -0.64 -0.79 -0.79 0.64 -0.61 0.73 0.92 0.97 
Multi-state 0.43 -0.44 -0.34 0.23 -0.01 -0.77 0.70 0.92 0.93 
Mixed-state 0.12 -0.57 -0.61 -0.19 0.42 -0.73 0.72 0.85 0.88 
 

a Results from ref. 32 
b Results from ref. 35 
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Table 5. Comparison of PCC values between the experimental folding rates and the rates 

predicted by the proposed PFR-AF method, a structure-based method K-Fold, and five 

sequence-based methods including PredPFR, SFoldRate, QRSM, CI, and PPFR using the 

jackknife test on the D62 dataset. Best results are shown in bold and “n/a” indicates that a 

given method does not offer a separate model for prediction of two-state or multi-state 

chains. 

 
Folding 

kinetics 
K-Fold

a 
PredPFR

b 
SFoldRate

c 
QRSM

d
 CI

e
 PPFR

d
 PFR-AF 

Two-state n/a n/a n/a n/a 0.73 0.87 0.94 
Multi-state n/a n/a n/a n/a 0.70 0.87 0.87 

Mixed-state 0.74 0.72 0.27 0.89 0.73 0.82 0.84 
 

a Results from the K-Fold web server at http://gpcr2.biocomp.unibo.it/cgi/predictors/K-Fold/K-Fold.cgi 
b Results from the PredPFR web server at http://www.csbio.sjtu.edu.cn/bioinf/FoldingRate/; four sequences were too short to be 

predicted (<50 amino acids) and were excluded from evaluation 
c Results from the SFoldRate web server at http://gila.bioengr.uic.edu/lab/tools/foldingrate/fr0.html 
d Results from ref. 35 
e Results form ref. 32 
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Table 6. Comparison of PCC values between the experimental folding rates and the rates 

predicted by the proposed PFR-AF method, a structure-based method K-Fold, and four 

sequence-based methods including PredPFR, SFoldRate, QRSM, and PPFR when testing 

on the D8 and D16 datasets. The PFR-AF method was designed on the D62 dataset, 

while the predictions of other methods are based on the corresponding web servers. Best 

results are shown in bold. 
 

Dataset K-Fold
a 

PredPFR
b 

SFoldRate
c 

QRSM PPFR
 

PFR-AF 

D8 0.14 0.31 0.03 0.81
d
 0.76

f 
0.85 

D16 0.46 0.48 0.50 -0.38
e
 0.65 0.71 

 

a Results from the K-Fold web server at http://gpcr2.biocomp.unibo.it/cgi/predictors/K-Fold/K-Fold.cgi 
b Results from the PredPFR web server at http://www.csbio.sjtu.edu.cn/bioinf/FoldingRate/; six sequences in D16 were too short to be 

predicted (<50 amino acids) and were excluded from evaluation 
c Results from the SFoldRate web server at http://gila.bioengr.uic.edu/lab/tools/foldingrate/fr0.html 
d Jackknife results from ref. 34, where chains from the D8 dataset were included in the D77 dataset used in the jackknife test 
e Results from the QRSM web server at http://bioinformatics.myweb.hinet.net/foldrate.htm 
f Results from ref. 35 
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Table 7. Comparison of MAE values between the experimental folding rates and the rates 

predicted by the proposed PFR-AF method, a structure-based method K-Fold, and four 

sequence-based methods including PredPFR, SFoldRate, QRSM, and PPFR when testing 

on the D62, D8 and D16 datasets. Best results are shown in bold. Predictions were 

converted into log10(kf), if necessary, and compared against the experimental rate in the 

same base. 

 
Test method K-Fold

a 
PredPFR

b 
SFoldRate

c 
QRSM PPFR PFR-AF 

Jackknife test on D62 0.95 0.91 2.71 1.07
d
 0.93

g
 0.75 

Independent test on D8 1.38 1.32 2.95 1.12
e 

1.18
g
 0.89 

Independent test on D16 1.35 1.29 2.28 4.00
f
 1.31 0.83 

 

a Results from the K-Fold web server at http://gpcr2.biocomp.unibo.it/cgi/predictors/K-Fold/K-Fold.cgi 
b Results from the PredPFR web server at http://www.csbio.sjtu.edu.cn/bioinf/FoldingRate/; four sequences in D62 and six sequences 

in D16 were too short to be predicted (<50 amino acids) and were excluded from evaluation 
c Results from the SFoldRate web server at http://gila.bioengr.uic.edu/lab/tools/foldingrate/fr0.html 
d Results from ref. 34 
e Jackknife results from ref. 34, where chains from the D8 dataset were included in the D77 dataset used in the Jackknife test 
f Results from the QRSM web server http://bioinformatics.myweb.hinet.net/foldrate.htm 
g Results from ref. 35 
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Table 8. Comparison of PCC and MAE values between the experimental folding rates 

and the rates predicted by the proposed PFR-AF method, and results obtained using 

multivariate regressions based on features generated from predicted secondary structure 

(SS), solvent accessibility (SA), B-factor (Bf), long range order (LRO), physicochemical, 

energetic, and conformational properties (PECP), and combination of the long range 

order and the physicochemical, energetic, and conformational properties (LRO+ PECP). 

The second column lists features used in each regression model where L is the sequence 

length, i = 1,…,20 is the amino acid type, k = 1,…,49 denotes the physicochemical, 

energetic, and conformational property type, x = {buried, exposed}, y = {h,e,c}, and z = 

{PSI-PRED, PROTEUS, SSPRO}. The last six columns on the right show the PCC and 

MAE values computed using jackknife test on D62 dataset, and results obtained on the 

D8 and D16 dataset when using models trained on the D62 dataset. Best results are 

shown in bold. 

 

Number of 

features 

PCC MAE Inputs Considered features
1
 

all selected D62 D8 D16 D62 D8 D16 

SS L, CV_i, CV_y_z, CV_i_y_z 210 10 0.87 0.47 0.22 0.68 1.33 2.02 

SA L, CV_i, CV_i_x, Avg_ASA_i 81 10 0.83 -0.46 0.52 0.76 2.52 1.64 

Bf L, CV_i, Avg_Bfactor_sequence, 

Avg_Bfactor_i 

42 10 0.79 0.83 0.26 0.82 1.07 1.76 

LRO L, CV_i, Avg_LRO_sequence, 

Avg_LRO_i 

42 5 0.66 0.18 0.47 1.15 1.35 1.71 

PECP L, CV_i, index_k 70 4 0.67 0.29 0.50 1.13 1.40 1.74 

LRO 

+PECP 

L, CV_i, Avg_LRO_sequence, 

Avg_LRO_i, index_k 

91 4
2
 0.67 0.29 0.50 1.13 1.40 1.74 

PFR-AF see ”Feature Design” section  128 6 0.84 0.85 0.71 0.75 0.89 0.83 

 
1see the “Feature Design” section for the explanation of the acronyms 
2the same features were selected from both PECP and PECP+LRO feature sets 
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Figure 1. Prediction models for two-state, multi-state and mixed-state proteins. The variables are 
grouped by the sign of the regression coefficients and ordered by the magnitude of the coefficients. 

460x197mm (600 x 600 DPI)  

 

 

Page 54 of 58

John Wiley & Sons, Inc.

PROTEINS: Structure, Function, and Bioinformatics

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



PROTEINS: Structure, Function, and Bioinformatics 

John Wiley & Sons, Inc. 

 
 
 
 

 
 



PROTEINS: Structure, Function, and Bioinformatics 

John Wiley & Sons, Inc. 

 



PROTEINS: Structure, Function, and Bioinformatics 

John Wiley & Sons, Inc. 

 

 
 

 




