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INTRODUCTION

Prediction of the secondary structure content, defined

as the percentage amount of helices and strands in a pro-

tein, provides useful information for characterization of

the overall protein structure. The dictionary of secondary

structures of proteins (DSSP) annotates each amino acid

(AA) as belonging to one of eight secondary structure

types1: H (helix), G (310-helix), I (pi-helix), B (residue

in isolated-bridge), E (extended strand), T (hydrogen

bond turn), S (bend), and ‘‘_’’ (any other structure).

Typically these eight secondary structure types are

reduced to just three groups2: helix (which includes types

H, G, and I), strand (which includes types E and B), and

coil (which includes T, S, and the others). Although the

protein secondary structure content prediction can be

performed for eight-state representation,3–6 majority of

prior attempts, including this work, address the three-

state problem.

The first secondary content prediction effort was under-

taken in early 1970s when a multiple linear regression

(MLR) model was used to predict the content utilizing

the composition vector-based sequence representation for

a small set of 18 proteins.7 It was not until 1990s when

another content prediction approach was proposed.8 The

authors used composition vector, molecular weight of the

sequence and absence/presence of bound Heme group to

represent protein sequences and two neural networks to

perform the prediction. Still another method used the

composition vector representation and analytic vector

decomposition technique to predict the content.9 In late

1990s a MLR model was used on the sequence represen-

tation that for the first time used auto-correlation func-

tions based on hydrophobicity.10 Similar methods, which
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successful methods for prediction of the secondary structure is

based on multiple sequence alignment. However, multiple

alignment fails to provide accurate results when a sequence

comes from the twilight zone, that is, it is characterized by low

(<30%) homology. To this end, we propose a novel method for

prediction of secondary structure content through comprehen-

sive sequence representation, called PSSC-core. The method

uses a multiple linear regression model and introduces a com-

prehensive feature-based sequence representation to predict

amount of helices and strands for sequences from the twilight

zone. The PSSC-core method was tested and compared with

two other state-of-the-art prediction methods on a set of 2187

twilight zone sequences. The results indicate that our method

provides better predictions for both helix and strand content.

The PSSC-core is shown to provide statistically significantly

better results when compared with the competing methods,

reducing the prediction error by 5–7% for helix and 7–9% for

strand content predictions. The proposed feature-based

sequence representation uses a comprehensive set of physico-
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and composition moment vectors, frequency of tetra-peptides

associated with helical and strand conformations, various

property-based groups like exchange groups, chemical groups

of the side chains and hydrophobic group, auto-correlations

based on hydrophobicity, side-chain masses, hydropathy, and

conformational patterns for b-sheets. The PSSC-core method

provides an alternative for predicting the secondary structure

content that can be used to validate and constrain results of

other structure prediction methods. At the same time, it also

provides useful insight into design of successful protein

sequence representations that can be used in developing new

methods related to prediction of different aspects of the second-

ary protein structure.
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additionally introduced auto-correlation functions to rep-

resent protein sequences, and also used MLR models

were developed in early 2000s.11,12 Pilizota et al. per-

formed feature selection on the composition vector and

used the resulting representation and the MLR models

to perform prediction.13 Recently, a neural network

approach proposed a novel composition moment vector-

based sequence representation.14 Several researchers

investigated impact of a priori knowledge of structural

classes on the quality of the content prediction. These

methods generated separate MLR models for each struc-

tural class.11,15,16 Their main drawback is that they

require knowledge of the structural class of the input

sequence to perform prediction. This could be either

inferred based on the known secondary structure, or pre-

dicted, but structural class prediction is difficult and is

characterized by relatively low accuracy.17,18

While majority of the protein structure prediction meth-

ods use multiple sequence alignment, the secondary struc-

ture content prediction is usually performed based on clas-

sification of the sequences that are converted into a fea-

ture-based representation.11,12 Low homology sequences

pose a substantial challenge for structure prediction, since

sequence alignment requires at least �30% homology

between the query protein and protein(s) used to correctly

predict its structure.19 The proteins characterized by a

lower 20–30% homology with sequences that are used to

predict their structure are called twilight zone proteins.20

More than 95% of all sequence pairs detected in the twi-

light zone have different structures,20 which significantly

reduces the quality of prediction. For instance, prediction

of the secondary structure for homologous sequences by

the state-of-the-art alignment-based methods yields about

80% accuracy,21 while for the twilight zone sequences it

drops to only 65–68%.22 Similarly, in case of structural

class prediction accuracies for highly homologous protein

datasets reach over 90%, while they drop to about 57% in

case of the twilight zone sequences.17 Table I shows exam-

ple results for several twilight zone proteins used in this

paper. The results include accuracy of the predicted sec-

ondary structure with the best performing PSI-PRED

method and recently developed (using twilight zone pro-

teins) YASPIN methods,22 the content values inferred

from the predicted secondary structures, and the predic-

tions of the proposed method. We stress that although the

secondary structure prediction methods and the content

prediction methods have different goals and cannot be

directly compared (the secondary structure prediction

methods use proteins that we predict to build their predic-

tion model), the content information could be useful in

improving the prediction of the secondary structure for the

low homology proteins.

This paper aims to improve accuracy of content pre-

diction for the twilight zone proteins without using the

sequence alignment. The prediction is performed in two

steps. First, the protein sequences of various lengths are

converted into a fixed size feature vector. Second, the fea-

ture vectors are fed into a prediction model to obtain the

content values. Similarly to the other prior works, we use

the MLR model to perform prediction. However, while

prior prediction methods use a simple composition vec-

tor and a few feature sets as the sequence representation,

our method proposes new, comprehensive, custom-

designed sequence representation that improves the qual-

ity of prediction. The PSSC-core method combines (1) a

set of features obtained via feature selection from a com-

prehensive set of features that were used in prior meth-

ods for prediction of secondary structure content, struc-

ture, structural class and function, and (2) a set of newly

proposed features.

The method uses two MLR models, one for helix con-

tent prediction that uses 46 features and another for

strand content prediction that uses 88 features to repre-

sent the sequences.

MATERIALS AND METHODS

Datasets

As the proposed prediction method aims at predicting

secondary structure content for the twilight zone proteins

Table I
Comparison of Example Predicted Content Values Based on the Predicted Secondary Structure with PSI-PRED and YASPIN Methods and the Results of the Proposed

PSSC-Core Method

PDB ID

Three-state accuracy
(Q3) of predicted

secondary structure

Secondary structure content

True content
Predicted based
on PSI-PRED

Predicted based
on YASPIN

Predicted by
PSSC-Core

PSI-PRED YASPIN Helix Strand Helix Strand Helix Strand Helix Strand

1UFXA 88.3 82.5 0.175 0.282 0.146 0.33 0.155 0.34 0.166 0.283
1K83K 85.8 81.7 0.367 0.217 0.358 0.267 0.333 0.275 0.356 0.216
1GRCA 82.1 77.8 0.311 0.231 0.344 0.274 0.335 0.278 0.312 0.237
1GLLO 79.6 74.5 0.343 0.228 0.385 0.156 0.395 0.226 0.348 0.224
1HZTA 77.4 67.4 0.226 0.253 0.258 0.263 0.316 0.284 0.232 0.245
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the corresponding datasets are characterized by controlled

levels of sequence homology.

The method was tested on the PDBSelect25 dataset,

which is a nonredundant representative subset of the

protein data bank (PDB) characterized by 25% average

sequence homology.23 This dataset also excludes PDB

sequences that satisfy the following criteria: (1) contain

more than 5% of nonstandard AAs, that is residues other

than the 20 common AAs that are typically denoted as

UNK in PDB files; (2) have less than 30 AAs; and (3) are

measured with a resolution greater than 3.5 Å and with

R-factor greater than 30%. We used PDBSelect25 version

from November 2004 that includes 2485 sequences. This

dataset was further processed to exclude sequences with

any number of nonstandard AAs. We note that none of

the remaining sequences includes helix fragments shorter

than three residues. As a result, the final dataset includes

2187 sequences.

The recently proposed prediction method12 used a

dataset of 704 sequences characterized by 30% homol-

ogy.24 Since this dataset is relatively small and includes

sequences with higher homology, it was combined with

the PDBSelect25 to show impact of the increased homol-

ogy on the prediction quality. Authors of Ref. 12 pro-

vided us with a list of 681 sequences from the original

dataset. This dataset was preprocessed using the same cri-

teria as for the PDBSelect25 dataset resulting in removal

of 39 sequences. After combining these sequences with

the PDBSelect25 dataset, the CD-HIT program25 was

used with the lowest homology filtration setting to

remove sequences with a homology higher than 40%.

The resulting dataset, referred to as LinPanPlus25,

includes 2483 sequences.

The PDBSelect90 list23 was used to create dataset used

to optimize parameters of our prediction method. The

original list from November 2004 included 8595 highly

homologous proteins, which were filtered using the same

criteria as for the PDBSelect25 dataset, resulting in 7544

sequences. Sequences with a homology level greater than

40% to sequences in PDBSelect25 and the dataset of 704

sequences used in Ref. 12 were removed using the CD-

HIT to eliminate bias between the design (performed

using this dataset) and testing (performed using PDBSe-

lect25 and LinPanPlus25 datasets) of the proposed

method. The resulting dataset, referred to as PDBSe-

lect90LH, includes 3987 sequences. This dataset was fur-

ther randomly divided into two subsets: 80% of the orig-

inal dataset was used to create dataset D1 and the

remaining 20% to create dataset D2.

Prediction model

The PSSC-core method performs prediction in two

steps. First, the protein sequences are represented as fea-

ture vectors. Next, two multiple linear regressions models

are used to predict helix and strand contents, see Figure 1.

We note that nonlinear regression models, which includes

quadratic, cubic, exponential, and Fourier transform co-

efficients were also tested and shown to provide lower

prediction quality than the linear models.26

The MLR models for helix and strand content predic-

tion are defined as:

ya ¼ a0 þ
Xna
i¼1

aifi

yb ¼ b0 þ
Xnb
i¼1

bifi

where ya and yb denote the predicted a-helix and b-

strand content, f denotes protein feature vector (also

referred to as the regression predictors) that includes na
and nb dimensions for helix and strand content predic-

tions, respectively, and a0,a1. . .an (and b0,b1, . . . ,bn) are

regression coefficients estimated using training data.

Since helix and strand content values are real numbers

normalized to the interval between zero and one, any

negative number prediction is rounded to zero, while

predictions greater than one are rounded to one.

Evaluation of the model

The models were evaluated using resubstitution and

cross-validation. During resubstitution (also referred to

as the self consistency test) both training and testing data

are the same and therefore the results tend to overesti-

mate the quality of the model. The corresponding results

are reported to maintain consistency with the prior

research, although they should not be used for evaluative

or comparative purposes. To ensure statistical validity of

the results we performed 10-fold cross validation. In this

cross validation, out of the 10 equal size subsets of the

data, one is retained to test the prediction model, and

the remaining nine are used to generate the model. The

cross validation process is repeated 10 times, with each

of the 10 subsets used exactly once as the test data. The

results from these 10-folds are averaged to produce a ro-

bust estimate of the quality of the model.

Figure 1
The overall structure of the PSSC-core method.
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Generation of the model

The models are generated using training data using

these steps: (1) sequences from the training data are rep-

resented by feature vectors (46 and 88 features for helix

and strand content prediction, respectively) which

include the true content values; (2) pairwise collinearity

is computed for each pair of attributes, and for the col-

linear pairs the feature with a higher correlation with the

target content is kept, while the other feature is removed;

(3) best-fitting, with respect of the remaining features, of

the coefficients of the linear model is performed.

To be well-defined the MLR model requires that the

input features are not correlated. To identify correlated

features the MLR model was tested using 10-fold cross

validation on dataset D2 to establish cut-off thresholds

for the correlation coefficient values. The correlation

coefficient threshold was changed from 1.00 to 0.50 for

helix and strand separately, and the threshold leading to

the least 10-fold cross validation error was picked for

each secondary structure. Figure 2 shows how the resub-

stitution and 10-fold cross validation error change as the

correlation threshold decreases. Thresholds 0.64 and 0.66

were selected for helix and strand, respectively.

Feature selection

The first step of the prediction procedure requires

feature-based sequence representation. The proposed rep-

resentation was developed based on synergic combination

of a selected subset of features that were used in past

studies related to protein structure analysis and predic-

tion, and a set of newly proposed features. The subset of

features is selected based on a feature selection method

described below.

The used forward feature selection method first selects

the feature that has the highest absolute correlation co-

efficient value with the predicted content values. The sec-

ond feature is added to the model such that it leads to

the best two-variable model given that the first feature is

already included in the model.27 The method proceeds

by adding one feature at a time provided that the feature

leads to the least residual sum of squares (RSS) com-

pared with other features, which are currently not in the

model:

RSS ¼
Xs

i¼1

ðyobs
i � ypred

i Þ2

where yobs
i and ypred

i are the observed (true) and predicted

secondary structure contents for sequence i, respectively

and S is the total number of sequences in the training data-

set. Assuming that k features are already in the model; fea-

ture j is added to the model if the following inequality,

which is based on the F-statistic, is satisfied27

FStatj ¼ max
RSSk � RSSkþ1

RMSkþ1

� �
> FStatin

where RSSk is the residual sum of squares for the current

model, RSSkþ1 and RMSkþ1 are the residual sum of squares

and residual mean of squares, respectively, given that fea-

ture j is included in the model, and FStatin ¼ 2 is used.27

Protein sequence representation

The prediction of secondary protein content is usually

performed with an intermediate step, in which the pri-

mary sequence is converted into its feature representa-

tion. The existing protein secondary structure content

prediction methods use a limited set of features to

describe the primary sequence,7,8,10–14,16 while other

methods, such as those for prediction of protein struc-

ture, structural class or function use a more diverse and

larger number of features.17,18,28–35 As a follow up of

our previous feature selection based approach to protein

Figure 2
Prediction quality in function of correlation threshold for dataset D2; graph on the left (right) corresponds to helix (strand) content prediction.
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content prediction36 this paper performs a comprehen-

sive feature selection from the aggregated set of physico-

chemical features. Most importantly, a new set of features

is proposed and added to the selected features.

Feature selection from the existing feature sets

The feature sets proposed in prior research and their

original applications are summarized in Table II.

The features can be divided into three groups:

Index-based feature sets. These feature sets are

derived based on physicochemical AA indices, see Table

III, and include molecular weight, average isoelectric

point, and auto-correlation functions based on hydro-

phobicity and side chain masses. The molecular weight,

MolW, of a protein sequence is the result of adding up

the molecular weight MolWi (residue average) values of

its residues plus the mass of a water molecule (MolWH20)

that is approximately 18 Da.

MolW ¼ MolWH20 þ
XN
i¼1

MolWi

where N is the length of the protein, that is number of

AAs.

The average isoelectric point, pI, of a protein sequence

is computed based on the average isoelectric point pIi

values of its residues. The pI value shows the pH at

which a molecule carries no net electric charge and thus

it is immobile in an electric field41:

pI ¼ 1

N

XN
i¼1

pIi

An order n auto-correlation function is computed by

summing up the products of AA indices ai of every pair

of residues separated by n residues.

A
a
n ¼

1

N � n

XN�n

i¼1

aiaiþn

The autocorrelations are computed for:

� Two hydrophobicity indices: the Fauchere–Pliska’s

(FH) index42 and the Eisenberg’s (EH) index.43

� The relative side-chain masses M index.12

� Hydropathy index, Hp, proposed in Ref. 44, where it

was used to identify the hydrophilic and hydrophobic

regions of a protein.

Following on previous research we use six auto-corre-

lation functions based on FH, EH, and M,12 that is n ¼
[1. . .6], and nine function based on Hp.

Table II
Features Used to Encode Protein Sequences and their Applications

Features Abbr. Application(s) Reference(s)

Index-based
Sequence length N Protein content, structural class and function

prediction
8, 17, 18, 28, 31

Average molecular weight (Table IV) MolW
Average isoelectric point (Table IV) pI
Auto-correlation functions based on FHi,,
EHi, and Mi indices (Table IV)

AFH
n , AEH

n , AM
n

Protein content and structural class prediction;
characterization of degree of similarity between
three-dimensional protein structures

10–12, 17, 18, 37, 38

Average hydrophobicities based on
FHi, and EHi indices

HEH
avr , HFH

avr
Protein structural class prediction 18

Sum of hydrophobicities based on
FHi, and EHi indices

HFH
sum, HEH

sum
Protein structural class prediction 18

Sum of three-running average of
hydrophobicities of FHi, and EHi indices

HFH
sum3, HEH

sum3
Protein structural class prediction 18

Composition moment vector
Composition vector CV Protein structure, structural class, and content

prediction
7–11, 14–18, 34, 39, 40

First and second order composition
moment vector

CMV1, CMV2 Protein content and structural class prediction 14, 17, 18

Property groups
Hydrophobicity groups HG Protein function prediction; characterization of

structural and functional relationships
18, 28, 31

R groups RG Protein structural class and content prediction 18, 32
Exchange groups XG Protein family and structural class prediction 18, 29, 32
Electronic groups EG Protein structure and structural class prediction 17, 18, 33
Chemical groups CG
Other groups OG Protein function and structural class prediction;

characterization of structural, and functional
relationships

18, 28, 31

L. Homaeian et al.

490 PROTEINS DOI 10.1002/prot



The sum, average and three-point running average of

hydrophobicity indices was also computed18:

H
b
sum ¼

XN
i¼1

bi

H
b
avr ¼

PN
i¼1

bi

N

H
b
sum3 ¼

XN�3

i¼1

ð
Xiþ3

j¼1

bjÞ=3

where bi ¼ {FH, EH}.

Finally, the cumulative density functions based on

Feuchere–Pliska’s and Eisenberg’s hydrophobic indices

were computed as:

HCumb
n ¼

PN�n
i¼1

Pi
j¼1 bj

� � Pi
j¼1 bj

� �
N � n

where bj is the AA index value for jth AA, N is the length

of the sequence, and n ¼ [1. . .6]. The functions were

computed based on the two hydrophobic indices, that is,

bj ¼ {FH, EH} and resulted in total of 12 features.

Composition vector and composition moment vec-
tor. Composition vector (CV) is defined as the composi-

tion percentage of each residue in the primary sequence.

Unlike composition vector, composition moment vector

(CMV) takes into account the position of each residue in

the sequence:

CMVk
i ¼

Pni
j¼1 n

k
ijQk

d¼0 ðN � dÞ

nij represents the jth position of the ith AA, ni is the fre-

quency of ith AA in the sequence, and k is the order of

the CMV. We apply CMVs for k ¼ 0, 1, 2. Note that

CMV for k ¼ 0 reduces to CV. The composition vector

was used extensively for both protein structure and con-

tent prediction (Table III), while CMV was recently pro-

posed for the protein content and structural class predic-

tion.14,17,18

Property groups. AAs can be clustered based on their

common properties, see Table IV, and composition is

computed for each of the groups and subgroups. Hydro-

phobicity group includes hydrophilic AAs, which are

water-soluble with ionized or polar side chains. Usually

they are located at the surface of a water-soluble protein.

In contrast, hydrophobic AAs are slightly soluble or in-

soluble. R group classification is based on molecular

weight, hydropathy, and isoelectric point.32 Exchange

groups are supported by statistical studies and cluster

AAs based on accepted point mutation to represent con-

servative replacements through revolution. Electronic

group classification is based on tendency of AAs to

accept or donate electrons.33 Chemical groups are

defined based on composition of chemical group that

constitute the side chains,33 see Table V. Finally, other

Table III
List of Physicochemical Amino Acid Indices Used to Derive the Protein Sequence Representation

Amino acid Code Index

Physicochemical index

MolW pI FH EH M Hp E

Alanine A 1 71.0791 6.01 0.42 0.62 0.115 1.8 4.8
Cysteine C 2 103.1437 5.07 1.34 0.29 0.36 2.5 0.6
Aspartate D 3 115.0887 2.77 �1.05 �0.9 0.446 �3.5 0.5
Glutamate E 4 129.1157 3.22 �0.87 �0.74 0.55 �3.5 1.1
Phenylalanine F 5 147.1772 5.48 2.44 1.19 0.7 2.8 5.3
Glycine G 6 57.0521 5.97 0 0.48 0.00076 �0.4 3.0
Histidine H 7 137.1414 7.59 0.18 �0.4 0.63 �3.2 0.6
Isoleucine I 8 113.16 6.02 2.46 1.38 0.13 4.5 17.8
Lysine K 9 128.1792 9.74 �1.35 �1.5 0.48 �3.9 1.67
Leucine L 10 113.16 5.98 2.32 1.06 0.13 3.8 12.16
Methionine M 11 131.1977 5.47 1.68 0.64 0.577 1.9 0.67
Asparagine N 12 114.104 5.41 �0.82 �0.78 0.446 �3.5 0.46
Proline P 13 97.1171 6.48 0.98 0.12 0.323 �1.6 �0.08
Glutamine Q 14 128.131 5.65 �0.3 �0.85 0.55 �3.5 0.54
Arginine R 15 156.188 10.76 �1.37 �2.53 0.777 �4.5 1.07
Serine S 16 87.0784 5.68 �0.05 �0.18 0.238 �0.8 1.9
Threonine T 17 101.1054 5.87 0.35 �0.05 0.346 �0.7 6.6
Valine V 18 99.133 5.97 1.66 1.08 0.33 4.2 35.25
Tryptophan W 19 186.2139 5.89 3.07 0.81 1 �0.9 0.65
Tyrosine Y 20 163.1756 5.67 1.31 0.26 0.82 �1.3 5.27
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groups are defined based on molecular weights, that is

tiny, small, and bulky AAs are less than 80 Da, between

80 and 101 Da, and more than 120 Da, respectively,28

polarity, aromaticity, and charge.

The forward feature selection was performed on the

above features using the PDBSelect90LH dataset sepa-

rately for helix and strand content. The following 44 fea-

tures were selected to represent sequences for helix con-

tent prediction:

� average isoelectric point of the sequence;

� composition vector for Alanine (A), Phenylalanine (F),

and Leucine (L);

� first order composition moment vector for Alanine

(A), Isoleucine (I), Leucine (L), Methionine (M), Thre-

onine (T), and Tryptophan (W);

� second order composition vector for Alanine (A), Glu-

tamate (E), Methionine (M), and Threonine (T);

� C exchange group;

� following four chemical groups of the side chains:

CAROM, CH2, CO, and OH.

� small and polar-uncharged other groups;

� auto-correlation based on Feuchere-Pliska’s hydropho-

bic index for n ¼ 1, 2, 3, 4, 5, and 6;

� sum over the Feuchere-Pliska’s hydrophobic index;

� auto-correlation based on Eisenberg’s hydrophobic

index for n ¼ 1, 2, 3, 4, and 6;

� auto-correlation based on average side chain masses

index for n ¼ 1, 2, and 6;

� cumulative density for Eisenberg’s hydrophobic index

for n ¼ 1, 4, and 5;

� auto-correlation based on hydropathy index for n ¼ 2,

3, 4, 7, and 8.

Similarly, the following 67 features were selected to

represent sequences for strand content prediction:

� composition vector for Alanine (A), Cysteine (C), Iso-

leucine (I), Methionine (M), Threonine (T), and Valine

(V);

� first-order composition vector for Alanine (A), Cyste-

ine (C), Glutamate (E), Glycine (G), Histidine (H),

Table IV
Property Groups of Amino Acids

Groups Subgroups AAs Groups Subgroups AAs

R groups Nonpolar aliphatic AVLIMG Hydrophobicity groups Hydrophobic VLIMAFPWYCG
Polar uncharged SPTCNQ Hydrophilic basic KHR
Positively charged KHR Hydrophilic acidic DE
Negative DE Hydrophilic polar with

uncharged side chain
STNQ

Aromatic FYW
Exchange groups (A) C Electronic groups Electron donor DEPA

(C) AGPST Weak electron donor VLI
(D) DENQ Electron acceptor KNR
(E) KHR Weak electron acceptor FYMTQ
(F) ILMV Neutral GHWS
(G) FYW Special AA C

Other groups Charged DEKHRVLI Other groups Tiny AG
Polar DEKHRNTQSYW Bulky FHWYR
Aromatic FHWY Polar-uncharged NQ

Table V
Chemical Composition of the Side Chains

AA Associated chemical groups AA Associated chemical groups

A CH CO NH CH3 M CH CO NH CH2 CH2 S CH3

C CH CO NH CH2 SH N CH CO NH CH2 CO C NH2

D CH CO NH CH2 CO COO� P CHRING CO NHRING CH2RING CH2RING CH2RING
E CH CO NH CH2 CH2 CO COO� Q CH CO NH CH2 CH2 CO C NH2

F CH CO NH CH2 CAROM CHAROM CHAROM
CHAROM CHAROM CHAROM

R CH CO NH CH2 CH2 CH2 NH C NH2 NH2
þ

G CH2 CO NH S CH CO NH CH2 OH
H CH CO NH CH2 CAROM CHAROM N CHAROM NH T CH CO NH CH CH3 OH
I CH CO NH CH2 CH CH3 CH3 V CH CO NH CH CH3 CH3

K CH CO NH CH2 CH2 CH2 CH2 NH3
þ W CH CO NH CH2 CAROM CAROM CAROM NH CHAROM

CHAROM CHAROM CHAROM CHAROM
L CH CO NH CH2 CH CH3 CH3 Y CH CO NH CH2 CAROM CHAROM CHAROM CHAROM

CHAROM CAROM OH
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Isoleucine (I), Leucine (L), Methionine (M), Aspara-

gine (N), Glutamine (Q), and Valine (V);

� second-order composition vector for Alanine (A), Cys-

teine (C), Aspartate (D), Glutamate (E), Glycine (G),

Histidine (H), Isoleucine (I), Lysine (K), Leucine (L),

Methionine (M), Asparagine (N), Glutamine (Q), Argi-

nine (R), and Valine (V);

� negative R-group;

� hydrophobic hydrophobicity group;

� following two chemical groups of the side chains: CH2

and OH;

� polar, tiny, bulky, and polar-uncharged other groups;

� auto-correlation based on Feuchere–Pliska’s hydropho-

bic index for n ¼ 1, 2, 3, 4, and 6;

� average over the Feuchere–Pliska’s hydrophobic

index;

� sum over three-point averages of the Feuchere–Pliska’s

hydrophobic index;

� auto-correlation based on Eisenberg’s hydrophobic

index for n ¼ 1, 2, 3, 4, 5, and 6;

� auto-correlation based on average side chain masses

index for n ¼ 1, 2, 4, and 6;

� cumulative density for Feuchere–Pliska’s hydrophobic

index for n ¼ 1, 3, 4, and 6;

� auto-correlation based on hydropathy index for n ¼ 2,

3, 4, 5, 7, 8, and 9.

The selected features confirm high quality of the com-

position and composition moment vectors (13 and 31 fea-

tures based on these feature sets were selected for predic-

tion of helix and strand content, respectively), although

different and relatively small subsets of AAs for these fea-

tures were selected for each of the predictions (secondary

structures). The high value of hydrophobicity based fea-

tures was also confirmed (20 and 25 features computed

based on hydrophobicity were selected for prediction of

helix and strand content, respectively). Both hydrophobic

indices used in prior research provided useful features for

prediction of both helix and strand contents.11,12 Finally,

information related to the side chains was also found use-

ful. The selected features in both cases include informa-

tion about the CH2 and OH chemical groups of the side

chains, while additionally composition of CAROM and

CO groups was selected in case of helices.

New feature sets

The feature based sequence representation used by the

PSSC-core uses two more features for the helix predic-

tion representation and 21 more for the strand prediction

representation. They were based on the following two

feature sets:

� auto-correlation functions based on a new index devel-

oped based on statistical analysis of conformational

patterns of b-sheets;

� frequency of tetra-peptides associated with helical and

strand conformations.

Both feature sets were applied for prediction of the

strand content, while the second one was applied only

for the helix content prediction. These features were

not processed by feature selection since they were spe-

cifically designed and tested to improve the content

prediction.

Although the hydrophobicity, hydropathy, and side

chain masses based autocorrelation functions reflect

local, with respect to the sequence, structural arrange-

ments, the long range interactions that are characteris-

tic for b-sheets are not covered by the feature sets pro-

posed in the past. Therefore, a new index was devel-

oped based on statistical analysis of long range

interactions between strands that form a b-sheet. The

index was computed based on complementary pairs of

AAs Ai and Aj that belong to two b-strands that are

connected by hydrogen bonds to form the sheet. The

conditional probability distributions of these pairs are

defined as:

pðAi : AjÞ ¼
NðAi : AjÞ

N

where N(Ai : Aj) denotes the number of pairs Ai : Aj

in b-sheets collected based on PDB release No. 103,

and N is the total number of these pairs.

The index values, Ei, are computed as:

Ei ¼
100pðA1ÞLðAiÞP20
i¼1 pðA1ÞLðAiÞ

where LðAiÞ ¼
P20

j¼1 pðAi : AjÞ log2
pðAi :AjÞ
pðAiÞpðAjÞ, and p(Ai)

and p(Aj) are the probabilities of Ai and Aj in b-sheets

collected based on PDB release No. 103. The correspond-

ing index values, denoted as E, are shown in Table III.

The index was used to compute auto-correlation func-

tions AE
n for n ¼ [1,. . .,19] and thus resulted in adding

19 new features for the sequence representation used for

prediction of strand content. The optimal number of

autocorrelation functions was selected based on maximi-

zation of the prediction quality for the PDBSelect25

dataset (using 10-fold cross validation).

The final set of features that are based on polypeptide

composition was derived based on statistical analysis of

the D1 and D2 datasets. The objective was to find a set

of polypeptides of the same length that are frequently

observed in each of the helix and strand structures. For

each secondary structure one feature was computed as

the sum of frequencies of all frequent polypeptides in

the corresponding protein sequence. We experimented

with di-, tri-, and tetra-peptides, and concluded that

the best results are achieved for the tetra-peptides.26
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The procedure to extract the set of tetra-peptides is as

follows:

� scan dataset D1 and report the frequency of each poly-

peptide observed in helix (strand) across the entire

dataset;

� normalize each frequency based on the frequency of

the same polypeptide when disregarding the secondary

structure;

� sort polypeptides with regard to the normalized fre-

quencies;

� based upon a threshold, keep the most frequent poly-

peptides.

The cut-off thresholds were found based on 10-fold

cross validation with dataset D2. For each threshold, a

corresponding set of tetra-peptides was generated from

D1 and the corresponding two attributes together with

the remaining attributes that constitute the proposed fea-

ture based sequence representation were used to perform

10-fold cross validation tests with dataset D2. The thresh-

olds for helix content prediction are as follows: l þ
0.7r0 for helix and l þ 0.9r0 for strand. The thresholds

for strand content prediction are as follows: l þ 0.5r0

for helix and l þ 0.3r0 for strand; where l and r0 are

the mean and standard deviation of the frequencies,

respectively.

The final feature-based sequences representation, which

incorporates features from feature selection and the new

feature sets, includes 46 (44 from the feature selection

and 2 from the new feature sets) features for helix con-

tent prediction model and 88 (67 from the feature selec-

tion and 21 from the new feature sets) features for strand

content prediction model.

RESULTS AND DISCUSSION

Experimental setup

We compared our PSSC-core with methods proposed

by Lin and Pan12 and Zhang et al.11; these papers pro-

vide a solid baseline for comparison as they describe

recent and the best performing methods. They were com-

prehensively tested on a relatively large protein set (over

700 sequences) and compared with many methods

including neural networks,8 MLR models7,11 and vector

decomposition.9 The Lin and Pan’s method was shown

to provide the best predictions.12 Analysis of test results

that accompany the most recent neural network and

MLR-based prediction methods13,14 indicates that they

are characterized by lower prediction quality than the

Lin–Pan’s method. Additionally, we also compare our

method with the most accurate method, which was pro-

posed by Zhang et al.,11 that uses a priori structural class

information assuming, and similarly to12 we assume that

the a priori knowledge of structural class is not provided.

Following11,12 the mean absolute error is used to

measure the accuracy of a content prediction model sep-

arately for helix and strand:

e ¼
PS

i¼1 yobs
i � y

pred
i

������
S

where S is the number of sequences in the dataset for

which the prediction is performed, yobs
i and y

pred
i are the

observed (true) and predicted secondary structure con-

tents for sequence i, respectively. The standard deviation

of the prediction error, r, is also reported:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXS

i¼1

ðe � jyobs�
i y

pred
i jÞ2

S � 1

s

On the basis of the data used during the tests, we

observed that the actual (true) content values range

between 0 and 0.93 and between 0 and 0.75 for strands

and helices, respectively. Therefore, a given absolute error

value for helix content prediction should be considered

as relatively larger when compared with the same abso-

lute error for strand content prediction. To this end, we

also computed and reported normalized prediction error

for both helices and strands

p ¼

PS
i¼1

yobs
i

�y
pred

i

yobs
max�yobs

min

������ 3 100

S

where yobs
max and ypred

max are the observed (true) maximal

and minimal value of the corresponding secondary struc-

ture content. This error index quantifies, in percent, the

average ratio between the absolute prediction error and

the corresponding range of the content values. As a

result, it allows to properly scale the errors between the

predictions for helices and strands.

Experimental results

The results are reported for two large protein sets, see

Table VI. The first dataset (PDBSelect25) includes 2187

twilight zone sequences. The second dataset (LinPan-

Plus25) that includes 2483 sequences is a result of merg-

ing the PDBSelect25 with a smaller dataset of 704

sequences used in Ref. 12. Four methods are compared:

(1) method proposed in Ref. 12; (2) method proposed in

Ref. 11; (3) MLR method based on feature selection

(PSSC-core without newly proposed features); and (4)

PSSC-core. Although the resubstitution (in-sample) test

results are reported for consistency with prior works, the

10-fold cross validation results are used to compare our

method with the method proposed in Refs. 11 and 12.

The PSSC-core method provides very good results for

both strand and helix content predictions. Overall, the

strand content can be predicted with a higher quality
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than the helix content, even when considering normal-

ized error p. This is especially valuable in the context of

the secondary structure prediction, in which the helices

are usually predicted with higher accuracy than the

strands.22 The results for the PDBSelect25 dataset, which

includes twilight zone proteins, are characterized by

lower quality than the results for the LinPanPlus25 data-

set, which includes some sequences with higher homol-

ogy. This confirms that content prediction is more diffi-

cult for low homology sequences.

Although the differences in errors between the PSSC-

core and the two competing methods may seem small

(about 1%), they provide relatively large reduction of the

overall error values that oscillate around 12%. On the ba-

sis of Table VI, for the PDBSelect25 dataset PSSC-core

reduces errors by 0.7/12.5 ¼ 6% and by 0.6/12.4 ¼ 5%

for helix content prediction when compared with the

methods proposed by Lin and Pan and Zhang et al.,

respectively. For strand content prediction the corre-

sponding improvements equal 1/11.7 ¼ 9% and 0.8/11.5

¼ 7%. Similarly, for the LinPanPlus25 dataset, the reduc-

tion of the error for helix equals 0.8/12 ¼ 7% and 0.7/

11.9 ¼ 6%, and for strand it equals 0.9/11.3 ¼ 8% and

0.8/11.2 ¼ 7%, when compared with Lin and Pan’s and

Zhang et al.’s methods, respectively. This shows that

PSSC-core provides consistent improvements for predic-

tion of both helix and strand content. In short, the error

reduction ranges between 5–7% for helix and 7–9% for

strand content prediction when compared to the state-of-

the-art competing methods.

Table VI shows that the features developed based on

feature selection (see feature selection results in Table

VI) provided about 70% of the improvement for helix

content prediction, that is, 0.4/0.6 and 0.5/0.7 for the

PDBSelect25 and LinPanPlus25 datasets, respectively,

while the remaining 30% of the improvement was due

to the proposed new features (see PSSC-core results in

Table VI). At the same time, the improvements for the

strand content prediction come in about 60% due to

the new features, that is, 0.2/0.8 and 0.3/0.8 for the

PDBSelect25 and LinPanPlus25 datasets, respectively,

and in 40% because of the feature selection. The latter,

larger improvement is due to the fact that the newly

proposed features were designed focusing on the strand

content prediction. We also note that the Zhang et al.’s

method is slightly more accurate than Lin and Pan’s

method for the problem that concerns low homology

sequences. In contrast, the latter method was shown

superior when compared with the former when

sequences characterized by higher homology were con-

sidered.12 Finally, we note that the improved accuracy

of the PSSC-core method comes as a trade-off for

using more features. The proposed method uses more

features (46 and 88) than the methods in Refs. 11 and

12 (less than 20 per each secondary structure). At the

same time, computation of all these features can be

accomplished with a single pass through the protein

sequence.

The statistical significance of the differences in predic-

tion quality between the proposed method and the com-

peting methods was measured using a paired t-test over

the 10-fold cross validation results. The results are sum-

marized in Table VII.

The results indicate that the differences between the

PSSC-core and both competing method are statistically

significant at 99.95% significance level for both datasets

and secondary structures. As the standard significance

level is usually set at 95% to assume that the results of a

given method are significantly better than results of com-

peting methods, we conclude with high confidence that

the proposed method provides statistically significant

improvements over previously reported research.

Scatter plots shown in Figure 3 for the helix content

prediction and in Figure 4 for strand content prediction

provide further insight into the quality of the predictions

by the PSSC-core and the other two methods. The fig-

Table VI
Comparison of Resubstitution and 10-Fold Cross Validation Prediction Results on the PDBSelect25 and LinPanPlus25 Datasets for the Proposed PSSC-Core Method, the

Method that Applied only the Feature Selection Based Sequence Representation and the Two Competing Methods

Data Method

Helix Strand

Resubstitution
10-fold cross
validation Resubstitution

10-fold cross
validation

e(r) p e(r) p e(r) p e(r) p

PDBSelect25 Lin and Pan's method12 0.114 (0.09) 12.3 0.116 (0.09) 12.5 0.086 (0.07) 11.4 0.088 (0.07) 11.7
Zhang et al.'s method11 0.113 (0.09) 12.2 0.115 (0.09) 12.4 0.085 (0.07) 11.4 0.087 (0.07) 11.5
Feature selection 0.108 (0.09) 11.6 0.111 (0.09) 12.0 0.082 (0.07) 10.9 0.085 (0.07) 11.3
PSSC-core 0.107 (0.09) 11.5 0.109 (0.09) 11.8 0.077 (0.06) 10.2 0.080 (0.07) 10.7

LinPanPlus25 Lin and Pan's method12 0.110 (0.09) 11.8 0.112 (0.09) 12.0 0.083 (0.07) 11.1 0.085 (0.07) 11.3
Zhang et al.'s method11 0.109 (0.09) 11.7 0.111 (0.09) 11.9 0.083 (0.07) 11.0 0.084 (0.07) 11.2
Feature selection 0.104 (0.09) 11.1 0.106 (0.09) 11.4 0.080 (0.07) 10.6 0.082 (0.07) 10.9
PSSC-core 0.102 (0.09) 11.0 0.105 (0.09) 11.2 0.075 (0.06) 10.0 0.078 (0.07) 10.4
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ures show results of the 10-fold cross-validation where x-

axis corresponds to the true content values, while the y-

axis shows the predicted content values.

The results of our method are clustered visibly closer

to the diagonal, which represents perfect predictions.

Similar patterns are observed for both PDBSelect25

(upper rows) and LinPanPlus25 datasets (lower rows).

CONCLUSIONS

Prediction of secondary structure content is an impor-

tant and difficult computational challenge, especially

when considering low homology sequences for which

sequence alignment-based methods are characterized by

relatively low quality predictions. The PSSC-core method,

on the other hand, provides not only an accurate alterna-

tive for predicting the secondary structure content but

also provides useful insight into the design of successful

protein sequence representations that can be used in

other methods related to prediction of different aspects

of the secondary protein structure.

The PSSC-core method was shown to provide very

good prediction quality for prediction of both helix and

strand content for proteins in the twilight zone. Our

method reduced the prediction errors by 5–7% for helix

and 7–9% for strand content prediction tasks when com-

pared with other state-of-the-art prediction methods.

The improvement is mostly due to new, comprehensive

and feature-based sequence representations. Two repre-

Table VII
Statistical Significance Test Between the Results of the Two Competing Method and the Proposed PSSC-Core Method for the PDBSelect25 and LinPanPlus25 Datasets;

Positive t-Value Indicates that the Proposed Method Provided More Accurate Predictions

Dataset

Helix Strand

Method in Ref. 12 Method in Ref. 11 Method in Ref. 12 Method in Ref. 11

t-Value

Significance

t-Value

Significance

t-Value

Significance

t-Value

Significance

Yes/no Level Yes/no Level Yes/no Level Yes/no Level

PDBSelect25 6.21 Yes 99.95% 6.95 Yes 99.95% 10.80 Yes 99.95% 9.64 Yes 99.95%
LiPanPlus25 6.78 Yes 99.95% 6.59 Yes 99.95% 10.47 Yes 99.95% 8.22 Yes 99.95%

Figure 3
Scatter plots showing the quality of the helix content prediction; the upper row shows results on the PDBSelect25 dataset, while the lower row shows results for the

LinPanPlus25 dataset.
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sentations, for helix and strand content predictions,

which utilize a synergic combination of features selected

from the agglomerated set of features used in the past

predictions of various aspect of protein structure and a

set of newly designed features, were proposed. They

include variety of physicochemical information concern-

ing composition and composition moment vectors, fre-

quency of tetra-peptides associated with helical and

strand conformations, exchange groups, chemical groups

of the side chains, hydrophobic group, and auto-correla-

tion functions based on hydrophobicity, side-chain

masses, hydropathy, and conformational patterns for b-

sheets.
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