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Abstract. Computational prediction of RNA- and DNA-binding residues from 
protein sequences offers a high-throughput and accurate solution to functionally 
annotate the avalanche of the protein sequence data. Although many predictors 
exist, the efforts to improve predictive performance with the use of consensus 
methods are so far limited. We explore and empirically compare a 
comprehensive set of different designs of consensuses including simple 
approaches that combine binary predictions and more sophisticated machine 
learning models. We consider both DNA- and RNA-binding motivated by 
similarities in these interactions, which should lead to similar conclusions. We 
observe that the simple consensuses do not provide improved predictive 
performance when applied to sequences that share low similarity with the 
datasets used to build their input predictors. However, use of machine learning 
models, such as linear regression, Support Vector Machine and Naïve Bayes, 
results in improved predictive performance when compared with the best 
individual predictors for the prediction of DNA- and RNA-binding residues. 
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1 Introduction 

Interactions between proteins and DNA/RNA are crucial for many cellular 
functions including regulation of gene expression, genome maintenance, 
recombination, replication and transcription, to name a few [1,2]. The DNA-binding 
and RNA-binding proteins occupy a relatively large fraction of eukaryotic genomes, 
in the order of 3 to 5% [3] and 2 to 8% [1], respectively. However, only a small 
fraction of these interactions was annotated so far, primarily since the experimental 
methods that are used to determine the protein-DNA and protein-RNA interactions 
are technically challenging and relatively expensive. These methods are unable to 
keep pace with the rapid accumulation of the protein, DNA and RNA sequences; the 
current NCBI’s RefSeq database includes over 10 million DNA and RNA transcripts 
and about 52 million non-redundant proteins from over 51 thousand organisms. As a 
solution, the currently available experimental data are used to develop time- and cost-
efficient computational tools that predict these interactions for the millions of the 
uncharacterized proteins. 



Many computational predictors of the protein-DNA and protein-RNA interactions 
from the protein sequence and structure have been published and reviewed in the 
literature over the past several years [1] [4,5,6,7,8,9,10,11]. We focus on the 
prediction from protein chains since these methods can find the binding proteins and 
residues in the vast and rapidly growing sequence databases. Differences in the design 
and outcomes generated by various predictors can be exploited to build consensus-
based predictors that take outputs generated by several individual predictors as the 
inputs. Research in related fields, such as sequence-based prediction of secondary 
structure and intrinsic disorder, shows that consensuses offer improved predictive 
performance when compared to the use of individual methods [12,13,14,15,16,17]. 
The differences in the design are also characteristic to the sequence-based prediction 
of DNA- and RNA-binding residues. The inputs to these methods, which represent 
information about each residue in the input protein sequence, differ in the scope and 
type of information used. The scope is defined based on the size of sequence 
segments centered on the predicted residues that are used to generate inputs, which 
varies widely between 3 and 41 residues [18,19]. The considered types include 
various combinations of information about amino acid composition, physiochemical 
properties of the input amino acids, evolutionary profiles, sequence conservation, and 
structural characteristics that are predicted from the sequence, such as secondary 
structure and solvent accessibility. Past methods also utilized different types of 
predictive models, primarily generated by machine learning algorithms including 
neural network [18,19], Support Vector Machine (SVM) [11,20,21,22], Naïve Bayes 
[23], regression [24], decision tree [25], and random forest [26,27,28].  

Consequently, a couple of studies investigated development of consensuses. Si et 

al. [29] developed MetaDBSite consensus that combines six DNA-binding predictors: 
DBS-pred [18], BindN [30], DP-Bind [24], DISIS [31], DNABindR [32], and BindN-
RF [28] using SVM model. This consensus was shown to outperform each of the six 
predictors [29]. Similarly, Puton et al. [10] proposed Meta2 consensus that combines 
three RNA-binding predictors: PiRaNhA [33], Pprint [34], and BindN+ [20]. 
Although this approach merges the input predictions based on a simple weighted 
average, it still outperforms each of the three input predictors [10]. However, these 
two studies have drawbacks. First, some of the methods that they combine are no 
longer maintained and thus cannot be used. For instance, the current version of 
MetaDBSite combines only BindN and DP-Bind. Second, they did not compare and 
explore different ways to generate the consensuses but simply demonstrated that a 
given design is successful.  

To this end, we explore and empirically compare different ways to generate 
consensuses and we apply only the currently available and well-maintained input 
predictors. We investigate the use of simple consensuses and more sophisticated 
machine learning models. We consider the prediction of both the DNA-binding and 
the RNA-binding motivated by similarities in the main characteristics of these 
interactions, e.g., these binding residues in the protein are positively charged and have 
strong propensity to interact with the negatively charged phosphate backbone of DNA 
or RNA [35,36]. In other words, we expect similar conclusions for both types of 
binding.  



2 Materials and Methods 

2.1 Selection of Methods Included in the Consensus 

We selected eight out of 30 methods for the prediction of DNA- and RNA-binding 
residues. These methods were available as reliably working (i.e., able to predict large 
protein set) webservers as of Dec 2013 (when we collected the data) characterized by 
relatively low runtime (i.e., they predict a protein with 200 residues in under 10 
minutes). We applied the most recent versions of predictors that have multiple 
versions. The eight methods include five predictors of DNA-binding residues: DBS-
PSSM [37], two versions of DP-Bind [24, 35], ProteDNA [22], and BindN+ [20]; and 
three predictors of the RNA-binding residues: Pprint [34], BindN+ [20], and 
RNABindR [11] [21] [36]. For the DP-Bind, we use two “default” versions based on 
the kernel logistic regression (KLR), DP-Bind(klr), and an ensemble of three 
classifiers, DP-Bind(maj). For ProteDNA that has two modes, we use the balanced 
version, ProteDNA(B), that provides a better balance between sensitivity and 
specificity [22].  

2.2 Datasets and Evaluation Protocols 

Datasets were collected from the protein-DNA and protein-RNA complexes 
deposited in the Protein Data Bank (PDB) [38] as of Sept 2013. We annotated binding 
residues utilizing the most prevalent approach based on a cut-off distance at 3.5Å, i.e., 
a given residue is defined as binding if at least one of its atoms is closer than 3.5Å 
from an atom of the RNA/DNA [18]. We collected all 1935 DNA-binding and 981 
RNA-binding chains which have high-quality X-ray structures, i.e., resolution better 
than 2.5Å. Next, we improved the annotations of the binding residues by transferring 
these annotations between homologous proteins using procedure introduced in ref. 
[39]. Consequently, the number of annotated DNA- and RNA-binding residues was 
enlarged by 13.7% and 9.7%, respectively. The original redundant datasets were 
reduced to the non-redundant set 531 DNA- and RNA-binding chains. We divided 
this dataset into two subsets, the TRAINING and TEST datasets. The former is used 
to design our consensuses and includes 445 chains that were deposited into PDB 
before Sept 2010, the date when the most recent dataset used to build the considered 
eight predictors was collected. The latter dataset includes newer depositions to assure 
that we test on independent data that were not used to design the considered 
predictors. The dataset was clustered at 30% similarity using CD-HIT [40] and we 
removed from the TEST dataset all proteins that end up in clusters that include any of 
the proteins from the TRAINING set. This way the final version of the TEST dataset 
includes 65 chains that share low, <30%, similarity with the chains that are used to 
design our consensuses and that were used to design the input methods. The datasets 
are available at http://biomine.ece.ualberta.ca/ConsRNADNA/ConsRNADNA.htm. 

The predictors of DNA- and RNA-binding residues output either only the binary 
prediction (binding vs. non-binding) or binary prediction together with a real-valued 
propensity for binding. We evaluate both outputs and exclude residues with missing 



atomic coordinates in the source structure files (i.e., disordered residues) since we 
could not complete their annotation of binding. The binary predictions are assessed 
using accuracy = (TP+TN)/(TP+TN+FP+FN), sensitivity = TP/(TP+FN), specificity = 
TN/(FP+TN), and MCC = (TP×TN-FN×FP)/√[(TP+FN)×(TP+FP)×(TN+FP)× 
(TN+FN)], where TP is the number of true positives (correctly predicted binding 
residues), FN is the number of false negatives (incorrectly predicted binding 
residues), FP is the number of false positives (incorrectly predicted non-binding 
residues), and TN is the number of true negatives (correctly predicted non-binding 
residues). We primarily rely on the MCC given the unbalanced nature of our datasets, 
i.e., the number of binding residues is lower than the number of non-binding residues. 
The propensities are evaluated using Receiver Operating Curve (ROC), which is a 
plot of false positive rate (FPR = 1 – specificity), against the true positive rate (TPR = 
sensitivity). These two rates are computed by binarizing the propensities using 
thresholds and we report the area under the ROC curve (AUC).  

2.3 Considered Consensus Designs 

We consider a comprehensive set of simple consensuses designed as the best 
performing (highest MCC on the TRAINING dataset) combinations of k methods, k = 
2, …, N where N is the number of considered predictors of RNA- or DNA-binding 
residues. The binary predictions of the k methods are combined using logical OR and 
logical AND. The latter design assumes that a given residues is predicted as binding 
only if all k methods predict it as binding; otherwise this residue is predicted as non-
binding. The former design predicts a given residue as binding if any of the k methods 
predicts it as binding. We used these two operators individually and mixed them 
together. For instance, given N = 3 for the prediction of the RNA-binding residues, we 
explore designs that include “1 AND 2”, “1 AND 2 AND 3”, “1 OR 3”, “1 OR 2 OR 
3”, “(1 AND 3) OR 2”, “1 AND (2 OR 3)”, etc.  In total, we considered 10 and 116 
designs for the prediction of RNA-binding residues (N = 3) and DNA-binding 
residues (N = 5), respectively. We select one, best-performing consensus (i.e., 
consensus that provides the highest value of MCC on the TRAINING dataset) for the 
prediction of DNA-binding residues and for the prediction of RNA-binding residues. 

We also utilize more sophisticated designs where the predictions for a given 
residue, including both binary values and propensities, from the N methods are 
combined using predictive models generated by five different popular types of 
machine learning algorithms. We include the linear logistic regression (LLR), C4.5 
decision tree (C4.5), k-nearest neighbor (kNN), SVM, and Naïve Bayes (NB) using 
the implementations from the WEKA platform [41]. Each of these classifiers was 
parameterized based on five-fold cross validation on the TRAINING dataset. We use 
grid search to select parameters that provide the maximal value of MCC. For LLR, we 
adjust the number of boosting iterations n = {0, 1, …, 10}; for C4.5 we parameterize 
confidence factor c = {0.05, 0.1,…, 0.5} and minimal number of instances per leaf 
node m = {1, 2, …, 5} that are used for pruning; for kNN we optimize number of 
neighbors k = {1, 2, …, 30}; for SVM we use the Gaussian kernel and find the best 
values of complexity parameter C = {2-3, 2-1, …, 23} and width of the kernel gamma = 



{2-2, 20, …, 28}. Since all these consensuses generate real-values propensity as the 
output, we binarize it to obtain the binary prediction (binding vs. non-binding) by 
selecting a threshold that gives maximal value of MCC on the TRAINING dataset. 

Table 1. Results of empirical assessment of predictors of the DNA- or RNA-binding residues 
on the TEST dataset. Significance of the difference in MCC and AUC values between the best 
performing method and other methods for a given binding type was assessed based on 10 tests 
that utilize 70% of randomly chosen proteins; if the measurements are normal, as tested using 
the Anderson–Darling test at 0.05 significance, we use the paired t-test; otherwise we use the 

Wilcoxon rank sum test; + (=) in the Sig column denotes that the difference was (was not) 
significant at p-value <0.05. AUC values could not be computed for DP-Bind(maj), 

MetaDBSite, ProteDNA(B), Meta2, and the two simple consensuses since these methods 
provide only the binary predictions. The highest MCC and AUC values for each type of 

binding are given in bold font. Individual predictors are denoted with italics. 

  Method Accuracy Sensitivity Specificity MCC Sig AUC Sig 

D
N

A
-binding

 

ML consensus LLR 0.857 0.594 0.873 0.304 
 

0.839 
 

ML consensus C4.5 0.889 0.485 0.915 0.301 = 0.789 + 
ML consensus kNN 0.810 0.682 0.818 0.287 + 0.826 + 
ML consensus SVM 0.823 0.648 0.834 0.286 + 0.742 + 
ML consensus NB 0.805 0.664 0.814 0.273 + 0.829 + 
Simple consensus 0.890 0.424 0.919 0.267 + 

  
DBS-PSSM 0.771 0.721 0.774 0.266 + 0.810 + 
BindN+ 0.865 0.482 0.888 0.256 + 0.806 + 
DP-Bind(maj) 0.810 0.598 0.823 0.247 + 

  
DP-Bind(klr) 0.814 0.590 0.828 0.246 + 0.794 + 
MetaDBSite consensus 0.898 0.325 0.933 0.221 + 

  
ProteDNA(B) 0.937 0.093 0.990 0.158 + 

  

R
N

A
-binding

 

ML consensus LLR 0.920 0.257 0.939 0.128  0.731  
ML consensus SVM 0.919 0.249 0.938 0.123 + 0.618 + 
ML consensus NB 0.931 0.215 0.952 0.121 = 0.727 + 
Meta2 consensus 0.768 0.526 0.774 0.116 + 

  
ML consensus kNN 0.927 0.218 0.947 0.115 + 0.711 + 
BindN+ 0.841 0.399 0.854 0.114 + 0.706 + 
Simple consensus 0.915 0.244 0.933 0.113 + 

  
RNABindR 0.714 0.575 0.718 0.105 + 0.712 + 
ML consensus C4.5 0.942 0.154 0.965 0.100 + 0.610 + 
Pprint 0.773 0.433 0.782 0.084 + 0.667 + 

3 Results and Discussion 

The predictive performance of the considered individual methods, the best 
performing simple consensus and the considered five machine learning consensuses 
on the TEST dataset for the prediction of the DNA-binding and the RNA-binding 
residues is summarized in Table 1. The methods are sorted by their MCC values. We 
also include results for the two published consensuses: MetaDBSite [29] for the 
DNA-binding and the Meta2 consensus by Puton et al. [10] for the RNA-binding; 
their predictions were collected using the corresponding webservers.  



The selected simple consensuses (with the best predictive performance on the 
TRAINING dataset) include the AND-based combinations: “BindN+ AND DBS-
PSSM” for the prediction of DNA-binding residues, and “BindN+ AND RNABindR 
AND Pprint” for the RNA-binding residues. The simple consensus for the DNA-
binding residues includes two methods that have the highest MCC on the TRAINING 
dataset (0.3 and 0.26) and excludes the other three predictors, which suggests that 
these three methods do not provide further value for the consensus. The simple 
consensus for the RNA-binding combines all three considered predictors.  

Although these simple consensuses provide improvements in predictive quality 
when compared with the individual predictors on the TRAINING dataset (MCC 
higher by 0.01 and 0.04 for the DNA-and RNA-binding, respectively), Table 1 
reveals that this does not translate into the TEST dataset. The simple consensuses 
obtain the same predictive performance as the best individual method, MCC of 0.267 
vs. 0.266 of the best individual method DBS-PSSM for the DNA-binding and 0.113 
vs. 0.114 of the best BindN+ for the RNA-binding. The reason is that TEST shares 
low sequence similarity with TRAINING set. This results in differences in predictions 
of individual methods between the two datasets that negatively affect accuracy of the 
simple consensus designs. In fact, the simple consensuses that obtain the best results 
on the TEST dataset for the DNA-binding “BindN+ OR DBS-PSSM AND DP-
Bind(klr) OR ProteDNA(B)” and for the RNA-binding “BindN+ AND RNABindR” 
secure higher MCCs that equal 0.291 and 0.118, respectively, on that dataset. We 
conclude that the consensuses that rely on the simple designs are unlikely to provide 
improved predictive performance when applied to sequences that share low similarity 
with the datasets used to build their input predictors.  

 

  

Fig. 1. ROC generated on the TEST dataset for the best performing ML consensus and the 
considered individual predictors that generate real-values propensity scores for prediction of 

DNA-binding and RNA-binding residues. 

Table 1 demonstrates that consensuses based on certain machine learning models 
offer improved predictive performance when compared with the best individual 
predictors. In particular, the linear regression (LLR model) secures the highest MCC 
and AUC values for prediction of both RNA- and DNA-binding residues, and these 
values are significantly higher than the values offered by the individual predictors. 
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The ROCs of the LLR consensus and the corresponding individual predictors that 
generate real-values propensities are compared in Figure 1. These curves reveal that 
this consensus outperforms the other methods for virtually entire range of the FPR 
values, except for the low FPR<0.04 for the RNA-binding where Pprint offers slightly 
higher TPR values. Two other machine learning models, SVM and NB, also offer 
improvements for the prediction of RNA- and DNA-binding residues. The other two 
models, C4.5 and kNN, provide improvements for the prediction of DNA-binding 
residues but not for the prediction of the RNA-binding residues. To sum up, we 
observe that consensuses that rely on certain more sophisticated models provide 
improved predictive performance, even when tested using chains that share low 
sequence similarity with proteins that were used to build their input predictors. 

 

A 
ML 

consensus 
LLR 

BDS-PSSM BindN+ 
DP-

Bind(maj) 
DP-

Bind(klr) 
Prote 

DNA(B) 

ML consensus LLR 
 

0.62 0.76 0.58 0.57 0.07 

BDS-PSSM 0.62 
 

0.45 0.48 0.45 0.05 

BindN+ 0.76 0.45 
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DP-Bind(klr) 0.57 0.45 0.40 0.87 
 

0.05 

ProteDNA(B) 0.07 0.05 0.08 0.05 0.05 
 

B 
ML 
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BindN+ RNABindR Pprint 

ML consensus LLR 
 

0.62 0.41 0.39 

BindN+ 0.62 
 

0.39 0.38 

 RNABindR 0.41 0.39 
 

0.34 

Pprint 0.39 0.38 0.34 
 

Fig. 2.   Correlations between pairs of individual predictors and between the best performing 
ML consensus and each individual predictor for the prediction of DNA-binding residues (panel 
A) and RNA-binding residues (panel B). We use heat maps where darker colors correspond to 
higher Phi correlation coefficients, values of correlations are given for each pair of methods. 

Figure 2 provides insights that may explain why consensuses are successful. It 
gives values of the Phi correlation coefficient (PhiCC), which is an equivalent of the 
Pearson correlation coefficient for a pair of binary variables, between the binary 
predictions of all pairs of the individual methods and between the binary predictions 
of our LLR consensus and each individual predictor. Except for the pair of DP-
Bind(maj) and DP-Bind(klr) methods that share very similar design [24, 35] and 
consequently secure high correlation close to 0.9, the predictions of the other 
individual methods are only modestly correlated with the PhiCC values < 0.5 for the 
DNA-binding and < 0.4 for the RNA-binding. This could be explained by substantial 
differences in the design of these methods. For instance, BindN+ uses information 
concerning physiochemical properties of the input amino acids, sequence alignment, 
evolutionary profiles, and the SVM model. DP-Bind uses regression model and inputs 
that solely rely on the evolutionary profiles. DBS-PSSM also uses the evolutionary 



profiles but with the neural network model. RNABindR applies SVM model and the 
evolutionary profiles. We also note the low correlations for any pair of methods for 
the prediction of DNA-binding residues that includes ProteDNA(B). This method 
predicts a subset of DNA-binding residues that bind transcription factors, which is 
why it secures low sensitivity (Table 1) and has low correlations. The modest levels 
of correlations between individual predictors are exploited by the consensus. In other 
words, since all individual predictors offer relatively good predictive performance and 
their predictions are substantially different (modestly correlated), these predictions 
likely complement each other. A similar observation was made in the context of the 
sequence-based prediction of intrinsic disorder [42]. Figure 2 reveals that the LLR-
based consensus has higher correlations with the individual methods compared to the 
correlations between these methods (except for the DP-Bind); values in the first row 
or column in the heat maps are higher than the remaining values in the same column 
or row, respectively. More specifically, the correlations with the consensus 
predictions are >0.57 for the prediction of DNA-binding residues and >0.39 for the 
prediction of RNA-binding residues, except for ProteDNA(B) that under-predicts the 
binding residues. This combined with the fact that our consensus obtains higher 
predictive performance means that it effectively takes advantage of this 
complementarity between the input predictors. 

Finally, we analyze predictive performance of the two existing consensuses. The 
MCC of MetaDBSite is relatively low and lower than MCC of some of the considered 
individual predictors (Table 1). The reason is that this approach is currently 
implemented a simple consensus “BindN AND DP-Bind” since the other four 
predictors that it was originally designed to include are no longer available. The 
Meta2 consensus for the prediction of RNA-binding residues outperforms its input 
predictors Pprint and BindN+ (Table 1). This consensus is based on a weighted 
average, which is more complex than our simple consensus designs, but is less 
sophisticated than our machine learning designs. Correspondingly, Meta2 provides 
lower predictive performance than our consensuses based on LLR, SVM and NB 
models. 

4 Conclusions and Future Work 

To conclude, our empirical study suggests that sequence-based prediction of RNA- 
and DNA-binding residues would benefit from the use of machine learning 
consensuses. Such consensuses exploit complementarity between individual 
predictors to generate predictions with significantly higher predictive quality when 
compared with the individual predictors, even for the chains characterized by low 
sequence similarity with the proteins used to develop these predictors.  

As a potential future work, a majority vote based consensus and other classifiers, 
including SVMs with other types of kernels, could be considered. Moreover, potential 
overlap between predictions of RNA-binding and DNA-binding residues (i.e., 
whether and how many RNA-binding residues are predicted by predictors of DNA-
binding residues and vice versa) should be investigated. 
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