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Abstract. Computational prediction of RNA- and DNA-binding residues from 
protein sequences offers a high-throughput and accurate solution to functionally 
annotate the avalanche of the protein sequence data. Although many predictors 
exist, the efforts to improve predictive performance with the use of consensus 
methods are so far limited. We explore and empirically compare a comprehensive 
set of different designs of consensuses, including simple approaches that combine 
binary predictions and more sophisticated machine learning models. We consider 
both DNA- and RNA-binding motivated by similarities in these interactions, 
which should lead to similar conclusions. We observe that the simple consen-
suses do not provide improved predictive performance when applied to se-
quences that share low similarity with the datasets used to build their input pre-
dictors. However, use of machine learning models, such as linear regression, Sup-
port Vector Machine and Naïve Bayes, results in the improved predictive perfor-
mance when compared with the best individual predictors for the prediction of 
DNA- and RNA-binding residues. 

1 Introduction 

Interactions between proteins and DNA/RNA are at the heart of numerous cellular 
functions including regulation of gene expression, genome maintenance, recombina-
tion, replication and transcription, to name a few [1, 2]. The DNA-binding and RNA-
binding proteins occupy a relatively large fraction of eukaryotic genomes, in the order 
of 3 to 5% [3] and 2 to 8% [1], respectively. However, only a small fraction of these 
interactions was annotated so far, primarily since the experimental methods that are 
used to determine the protein-DNA and protein-RNA interactions are technically chal-
lenging and relatively expensive. These methods are unable to keep pace with the rapid 
accumulation of the protein, DNA and RNA sequences; the current NCBI’s RefSeq 
database [4] includes over 10 million DNA and RNA transcripts and about 52 million 
non-redundant proteins from over 51 thousand organisms. As a solution, the currently 
available experimental data are used to develop time- and cost-efficient computational 
tools that predict these interactions for the millions of the uncharacterized proteins. 

Many computational predictors of the protein-DNA and protein-RNA interactions 
from the protein sequence and structure have been published and reviewed in the liter-
ature over the past several years [1, 5-12]. We focus on the prediction from protein 
chains since these methods can find the binding proteins and residues in the vast and 



rapidly growing sequence databases. Differences in the design and outcomes generated 
by various predictors can be exploited to build consensus-based predictors that take 
outputs generated by several individual predictors as the inputs. Research in related 
fields, such as sequence-based prediction of secondary structure and intrinsic disorder, 
shows that consensuses offer improved predictive performance when compared to the 
use of individual methods [13-19]. The differences in the design are also characteristic 
to the sequence-based prediction of DNA- and RNA-binding residues. The inputs to 
these methods, which represent information about each residue in the input protein se-
quence, differ in the scope and type of information used. The scope is defined based on 
the size of sequence segments centered on the predicted residues that are used to gen-
erate inputs, which varies widely between 3 and 41 residues [20, 21]. The considered 
types include various combinations of information about amino acid composition, 
physiochemical properties of the input amino acids, evolutionary profiles, sequence 
conservation, and structural characteristics that are predicted from the sequence, such 
as secondary structure and solvent accessibility. Past methods also utilized different 
types of predictive models, primarily generated by machine learning algorithms includ-
ing neural network [20, 21], Support Vector Machine (SVM) [12, 22-24], Naïve Bayes 
[25], regression [26], decision tree [27], and random forest [28-30].  

Consequently, a couple of studies investigated development of consensuses. Si et al. 
[31] developed MetaDBSite consensus that combines six DNA-binding predictors: 
DBS-pred [20], BindN [32], DP-Bind [26], DISIS [33], DNABindR [34], and BindN-
RF [30] using SVM model. This consensus was shown to outperform each of the six 
predictors [31]. Similarly, Puton et al. [11] proposed Meta2 consensus that combines 
three RNA-binding predictors: PiRaNhA [35], Pprint [36], and BindN+ [22]. Although 
this approach merges the input predictions based on a simple weighted average, it still 
outperforms each of the three input predictors [11]. However, these two studies have 
drawbacks. First, some of the methods that they combine are no longer maintained and 
thus cannot be used. For instance, the current version of MetaDBSite combines only 
BindN and DP-Bind. Second, they did not compare and explore different ways to gen-
erate the consensuses but simply demonstrated that a given design is successful.  

To this end, we explore and empirically compare different ways to generate consen-
suses and we apply only the currently available and well-maintained input predictors. 
We investigate the use of simple consensuses and more sophisticated machine learning 
models. We consider the prediction of both the DNA-binding and the RNA-binding 
motivated by similarities in the main characteristics of these interactions, e.g., these 
binding residues in the protein are positively charged and have strong propensity to 
interact with the negatively charged phosphate backbone of DNA or RNA [37, 38]. In 
other words, we expect similar conclusions for both types of binding.  

2 Materials and Methods 

2.1 Selection of methods included in the consensus 

We selected eight out of about 30 methods that are available for the prediction of 
DNA- and RNA-binding residues. These are all methods that were available as reliably 



working (i.e., able to predict large dataset of proteins) webservers as of December 2013 
(when we collected the data) which are characterized by relatively low runtime (i.e., 
they predict an average sized protein chains with 200 residues in under 10 minutes). 
We applied the most recent versions of predictors that have multiple versions. The eight 
methods include five predictors of DNA-binding residues: DBS-PSSM [39], two ver-
sion of DP-Bind [26, 37], ProteDNA [24], and BindN+ [22]; and three predictors of the 
RNA-binding residues: Pprint [36], BindN+ [22], and RNABindR [12, 23, 38]. For the 
DP-Bind, we use two “default” versions based on the kernel logistic regression (KLR) 
classifier, DP-Bind(klr), and an ensemble of three classifiers, DP-Bind(maj). For the 
ProteDNA which offers two modes, we use the balanced version, ProteDNA(B), that 
provides a better balance between sensitivity and specificity [24].  

2.2 Datasets 

The datasets were collected from the protein-DNA and protein-RNA complexes de-
posited in the Protein Data Bank (PDB)[40] as of September 2013. We annotated the 
binding residues utilizing the most prevalent approach based on the cut-off distance at 
3.5Å, i.e., a given residue is considered as binding if at least one of its side chain or 
backbone atoms is closer than 3.5Å from an atom of the RNA/DNA molecule [20]. We 
collected all 1935 DNA-binding chains and 981 RNA-binding chains which have high-
quality X-ray structures, i.e., resolution better than 2.5Å. Next, we improved the anno-
tations of the binding residues by transferring these annotations between homologous 
proteins using procedure introduced in ref. [41]. Consequently, the number of annotated 
DNA- and RNA-binding residues was enlarged by 13.7% and 9.7%, respectively. The 
original redundant datasets were reduced to the non-redundant set 531 DNA- and RNA-
binding chains. We divided this dataset into two subsets, the TRAINING and TEST 
datasets. The former dataset is used to design our consensuses and includes 445 chains 
that were deposited into PDB before September 2010, the date when the most recent 
dataset used to build the considered eight predictors was collected. The latter dataset 
includes newer depositions to assure that we test on independent data were not used to 
design the considered predictors. Moreover, the original dataset was clustered at 30% 
similarity using CD-HIT [42] and we removed from the TEST dataset all proteins that 
ended up in clusters that included any of the proteins from the TRAINING set. This 
way the final version of the TEST dataset includes 65 chains that share low, <30%, 
similarity with the chains that are used to design our consensuses and that were used to 
design the input methods.  

2.3 Evaluation  

The predictors of DNA- and RNA-binding residues output either only the binary 
prediction (binding vs. non-binding) or binary prediction together with a real-valued 
propensity for binding. We evaluate both outputs and exclude residues with missing 
atomic coordinates in the source structure files (i.e., disordered residues) since we could 
not complete their annotation of binding. The binary predictions are assessed using ac-
curacy = (TP+TN)/(TP+TN+FP+FN), sensitivity = TP/(TP+FN), specificity = 



TN/(FP+TN), and MCC = (TP×TN-FN×FP)/√[(TP+FN)×(TP+FP)×(TN+FP)× 
(TN+FN)], where TP is the number of true positives (correctly predicted binding resi-
dues), FN is the number of false negatives (incorrectly predicted binding residues), FP 
is the number of false positives (incorrectly predicted non-binding residues), and TN is 
the number of true negatives (correctly predicted non-binding residues). We primarily 
rely on the MCC given the unbalanced nature of our datasets, i.e., the number of binding 
residues is lower than the number of non-binding residues. The propensities are evalu-
ated using Receiver Operating Curve (ROC), which is a plot of false positive rate (FPR 
= 1 – specificity), against the true positive rate (TPR = sensitivity). These two rates are 
computed by binarizing the propensities using thresholds and we report the area under 
the ROC curve (AUC).  

2.4 Considered consensus designs 

We consider a comprehensive set of simple consensuses designed as the best per-
forming (i.e., securing the highest MCC score on the TRAINING dataset) combinations 
of k methods, k = 2, …, N where N is the number of considered predictors of RNA- or 
DNA-binding residues. The binary predictions of the k methods are combined using 
logical OR and logical AND operators. The latter design assumes that a given residues 
is predicted as binding only if all k methods predict it as binding; otherwise this residue 
is predicted as non-binding. The former design predicts a given residues as binding if 
any of the k methods predict it as binding. We used these two operators individually 
and mixed them together. For instance, given N = 3 for the prediction of RNA-binding 
residues, we explore designs that include “1 AND 2”, “1 AND 2 AND 3”, “1 AND 3”, 
“1 OR 3”, “1 OR 2 OR 3”, “(1 AND 3) OR 2”, “1 AND (2 OR 3)”, etc.  In total, we 
considered 10 and 116 designs for the prediction of RNA-binding residues (N = 3) and 
DNA-binding residues (N = 5), respectively. We select one, best-performing consensus 
(i.e., consensus that provides the highest value of MCC on the TRAINING dataset) for 
the prediction of DNA-binding residues and for the prediction of RNA-binding resi-
dues. 

We also utilize more sophisticated designs where the predictions for a given residue, 
including both binary values and propensities, from the N methods are combined using 
predictive models generated by five different popular types of machine learning algo-
rithms. We include the linear logistic regression (LLR), C4.5 decision tree (C4.5), k-
nearest neighbor (kNN), SVM, and Naïve Bayes (NB) using the implementations from 
the WEKA platform [43]. Each of these classifiers was parameterized based on five-
fold cross validation on the TRAINING dataset. We use grid search to select parameters 
that provide the maximal value of MCC. For LLR, we adjust the number of boosting 
iterations n = {0, 1, …, 10}; for C4.5 we parameterize confidence factor c = {0.05, 
0.1,…, 0.5} and minimal number of instances per leaf node m = {1, 2, …, 5} that are 
used for pruning; for kNN we optimize number of neighbors k = {1, 2, …, 30}; for 
SVM we use the Gaussian kernel and find the best values of complexity parameter C = 
{2-3, 2-1, …, 23} and width of the kernel gamma = {2-2, 20, …, 28}. Since all these 
consensuses generate real-values propensity as the output, we binarize it to obtain the 



binary prediction (binding vs. non-binding) by selecting a threshold that gives maximal 
value of MCC on the TRAINING dataset. 

 
  Method Accuracy Sensitivity Specificity MCC Sig AUC Sig 

D
N

A
-binding

 

ML consensus LLR 0.857 0.594 0.873 0.304  0.839  
ML consensus C4.5 0.889 0.485 0.915 0.301 = 0.789 + 
ML consensus kNN 0.810 0.682 0.818 0.287 + 0.826 + 
ML consensus SVM 0.823 0.648 0.834 0.286 + 0.742 + 
ML consensus NB 0.805 0.664 0.814 0.273 + 0.829 + 
Simple consensus 0.890 0.424 0.919 0.267 +   
DBS-PSSM 0.771 0.721 0.774 0.266 + 0.810 + 
BindN+ 0.865 0.482 0.888 0.256 + 0.806 + 
DP-Bind(maj) 0.810 0.598 0.823 0.247 +   
DP-Bind(klr) 0.814 0.590 0.828 0.246 + 0.794 + 
MetaDBSite consensus 0.898 0.325 0.933 0.221 +   
ProteDNA(B) 0.937 0.093 0.990 0.158 +   

R
N

A
-binding

 

ML consensus LLR 0.920 0.257 0.939 0.128  0.731  
ML consensus SVM 0.919 0.249 0.938 0.123 + 0.618 + 
ML consensus NB 0.931 0.215 0.952 0.121 = 0.727 + 
Meta2 consensus 0.768 0.526 0.774 0.116 +   
ML consensus kNN 0.927 0.218 0.947 0.115 + 0.711 + 
BindN+ 0.841 0.399 0.854 0.114 + 0.706 + 
Simple consensus 0.915 0.244 0.933 0.113 +   
RNABindR 0.714 0.575 0.718 0.105 + 0.712 + 
ML consensus C4.5 0.942 0.154 0.965 0.100 + 0.610 + 
Pprint 0.773 0.433 0.782 0.084 + 0.667 + 

Table 1. Results of empirical assessment of predictors of the DNA- or RNA-binding residues on 
the TEST dataset. Significance of the difference in MCC and AUC values between the best 
performing method and other methods for a given binding type was assessed based on 10 tests 
that utilize 70% of randomly chosen proteins; if the measurements are normal, as tested using the 
Anderson–Darling test at 0.05 significance, we use the paired t-test; otherwise we use the 
Wilcoxon rank sum test; + (=) in the Sig column denotes that the difference was (was not) 
significant at p-value <0.05. AUC values could not be computed for DP-Bind(maj), MetaDBSite, 
ProteDNA(B), Meta2, and the two simple consensuses since these methods provide only the 
binary predictions. The highest MCC and AUC values for each type of binding are given in bold 
font. Individual predictors are denoted with italics. 

3 Results and discussion 

The predictive performance of the considered individual methods, the best perform-
ing simple consensus and the considered five machine learning consensuses on the 
TEST dataset for the prediction of the DNA-binding and the RNA-binding residues is 
summarized in Table 1. The methods are sorted by their MCC values. We also include 
results for the two published consensuses: MetaDBSite [31] for the DNA-binding and 
the Meta2 consensus by Puton et al. [11] for the RNA-binding; their predictions were 
collected using the corresponding webservers.  



The selected simple consensuses, which are characterized by the best predictive per-
formance on the TRAINING dataset, include the AND-based combinations: “BindN+ 
AND DBS-PSSM” for the prediction of DNA-binding residues, and “BindN+ AND 
RNABindR AND Pprint” for the RNA-binding residues. Although these consensuses 
provide improvements in predictive quality when compared with the individual predic-
tors on the TRAINING dataset (increase in MCC by 0.01 and 0.04 for the DNA-and 
RNA-binding, respectively), Table 1 reveals that this did not translate into the TEST 
dataset. The simple consensuses obtain the same predictive performance as the best 
individual method, MCC of 0.267 vs. 0.266 of the best individual method DBS-PSSM 
for the DNA-binding and 0.113 vs. 0.114 of the best BindN+ for the RNA-binding. The 
reason is that TEST dataset shares low sequence similarity with the TRAINING set. 
This results in differences in predictions of individual methods between the two datasets 
that negatively affect accuracy of the simple designs of the consensus. In fact, the sim-
ple consensuses that obtain the best results on the TEST dataset for the DNA-binding 
“BindN+ OR DBS-PSSM AND DP-Bind(klr) OR ProteDNA(B)” and for the RNA-
binding “BindN+ AND RNABindR” secure higher MCCs that equal 0.291 and 0.118, 
respectively, on that dataset. We conclude that the consensuses that rely on the simple 
design that combines binary predictions are unlikely to provide improved predictive 
performance when applied to sequences that share low similarity with the datasets used 
to build their input predictors.  

 

Fig. 1. ROC generated on the TEST dataset for the best performing ML consensus and the con-
sidered individual predictors that generate real-values propensity scores for prediction of DNA-

binding and RNA-binding residues. 

  
 
Table 1 demonstrates that consensuses based on certain machine learning models 

offer improved predictive performance when compared with the best individual predic-
tors. In particular, the linear regression (LLR model) secures the highest MCC and 
AUC values for prediction of both RNA- and DNA-binding residues, and these values 
are significantly higher than the values offered by the individual predictors. The ROCs 
of the LLR consensus and the corresponding individual predictors that generate real-
values propensities are compared in Figure 1. These curves reveal that this consensus 
outperforms the other methods for virtually entire range of the FPR values, except for 
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the low FPR<0.04 for the RNA-binding where Pprint offers slightly higher TPR values. 
Two other machine learning models, SVM and NB, also offer improvements for the 
prediction of RNA- and DNA-binding residues. The other two models, C4.5 and kNN, 
provide improvements for the prediction of DNA-binding residues but not for the pre-
diction of the RNA-binding residues. To sum up, we observe that consensuses that rely 
on certain more sophisticated models provide improved predictive performance, even 
when tested using chains that share low sequence similarity with proteins that were 
used to build their input predictors. 

Fig. 2.  Correlation between pairs of individual predictors (narrow bars) and the best perform-
ing ML consensus and each individual predictor (wide bars) for the prediction of DNA-binding 

residues (black bars) and RNA-binding residues (gray bars). 

 
Figure 2 provides insights that may explain why consensuses are successful. It gives 

values of the Phi correlation coefficient (PhiCC), which is an equivalent of the Pearson 
correlation coefficient for a pair of binary variables, between the binary predictions of 
all pairs of the individual methods (thin bars) and between the binary predictions of our 
LLR consensus and each individual predictor. Except for the pair of DP-Bind(maj) and 
DP-Bind(klr) methods that share very similar design [26, 37] and consequently secure 
high correlation close to 0.9, the predictions of the other methods are only modestly 
correlated with the PhiCC values < 0.5 for the DNA-binding and < 0.4 for the RNA-
binding. This could be explained by substantial differences in the design of these meth-
ods. For instance, BindN+ uses information concerning physiochemical properties of 
the input amino acids, sequence alignment, evolutionary profiles, and the SVM model. 
DP-Bind uses regression model and inputs that solely rely on the evolutionary profiles. 
DBS-PSSM also uses the evolutionary profiles but with the neural network model. 
RNABindR applies SVM model and the evolutionary profiles. We also note the low 
correlations for any pair of methods for the prediction of DNA-binding residues that 
includes ProteDNA(B). This method predicts a subset of DNA-binding residues that 
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bind transcription factors, which is why it secures low sensitivity (Table 1) and has low 
correlations. The modest levels of correlations between individual predictors are ex-
ploited by the consensus. In other words, since all individual predictors offer relatively 
good predictive performance and their predictions are substantially different (modestly 
correlated), these predictions must complement each other. A similar observation was 
made in the context of the sequence-based prediction of intrinsic disorder [16]. The 
wide bars in Figure 2 suggest that the LLR-based consensus has higher correlation with 
the individual methods, >0.57 for the prediction of DNA-binding residues and >0.39 
for the prediction of RNA-binding residues (except for ProteDNA(B) which under-pre-
dicts the binding residues). This combined with the fact that our consensus obtains 
higher predictive performance means that it effectively takes advantage of this comple-
mentarity between the input predictors. 

Finally, we analyze predictive performance of the two existing consensuses. The 
MCC of MetaDBSite is relatively low and lower than MCC of some of the considered 
individual predictors (Table 1). The reason is that this approach is currently imple-
mented a simple consensus “BindN AND DP-Bind” since the other four predictors that 
it was originally designed to include are no longer available. The Meta2 consensus for 
the prediction of RNA-binding residues outperforms its input predictors Pprint and 
BindN+ (Table 1). This consensus is based on a weighted average, which is more com-
plex than our simple consensus designs, but is less sophisticated than our machine 
learning designs. Correspondingly, Meta2 provides lower predictive performance than 
our consensuses based on LLR, SVM and NB models. 

To summarize, our empirical study suggests that sequence-based prediction of RNA- 
and DNA-binding residues would benefit from the use of machine learning consen-
suses. Such consensuses exploit complementarity between individual predictors to gen-
erate predictions with significantly higher predictive quality when compared with the 
individual predictors, even for the chains characterized by low sequence similarity with 
the proteins used to develop these predictors.  
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