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Abstract 

Intrinsically disordered regions lack stable structure in their native conformation but are nevertheless 
functional and highly abundant, particularly in Eukaryotes. Disordered moonlighting regions 
(DMRs) are intrinsically disordered regions that carry out multiple functions. DMRs are different 
from moonlighting proteins that could be structured and that are annotated at the whole-protein level. 
DMRs cannot be identified by current predictors of functions of disorder that focus on specific 
functions rather than multifunctional regions. We conceptualized, designed and empirically assessed 
first-of-its-kind sequence-based predictor of DMRs, DMRpred. This computational tool outputs 
propensity for being in a DMR for each residue in an input protein sequence. We developed novel 
amino acid indices that quantify propensities for functions relevant to DMRs and used evolutionary 
conservation, putative solvent accessibility and intrinsic disorder derived from the input sequence to 
build a rich profile that is suitable to accurately predict DMRs. We processed this profile to derive 
innovative features that we input into a Random Forest model to generate the predictions. Empirical 
assessment shows that DMRpred generates accurate predictions with area under receiver operating 
characteristic curve=0.86 and accuracy=82%. These results are significantly better than the closest 
alternative approaches that rely on sequence alignment, evolutionary conservation and putative 
disorder and disorder functions. Analysis of abundance of putative DMRs in the human proteome 
reveals that as many as 25% of proteins may have long (>30 residues) DMRs. A webserver 
implementation of DMRpred is available at http://biomine.cs.vcu.edu/servers/DMRpred/ 
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Introduction  

Intrinsically disordered regions (IDRs) lack stable structure in their native conformation1. Proteins 
with IDRs are prevalent in nature. According to some estimates around 20% of residues in 
Eukaryotic proteins are disordered2,3 and about half of human proteins have at least one long (>30 
consecutives residues) IDR4,5. Proteins with IDRs carry out numerous functions that rely on protein-
protein and protein-nucleic acids interactions (e.g., translation, transcription, and chromosome 
condensation), are involved in a variety of signaling functions, and facilitate regulation of protein 
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functions via posttranslational modifications2,6-14. Substantial efforts have been made to predict and 
computationally characterize IDRs15-17. There are over 40 methods that predict IDRs and some of 
them were empirically shown to provide very accurate predictions18-22. Moreover, progress has been 
made in recent years to predict functions of intrinsically disordered regions15. Example predictors 
include Anchor23, MoRFpred24, fMoRFpred25, and MoRFCHiBi26 that predict disordered protein-
protein binding regions, DFLpred27 that outputs putative disordered linkers, and DisoRDPbind28,29 
that predicts disordered protein-protein, -RNA and -DNA binding regions. High degree of plasticity 
of IDRs allows them to bind more than one ligand and carry out multiple functions30-32. According to 
our estimates in Ref. 15, about 37% of the functionally annotated IDRs in the DisProt database33 
perform multiple functions. 
 
Multifunctional (moonlighting) proteins were reviewed and discussed in Ref. 34. A moonlighting 
protein is a single polypeptide chain that has multiple autonomous and unrelated functions that 
cannot be simply associated with separate domains35. Example mechanisms that lead to the 
moonlighting activities include interactions with multiple ligands, presence of multiple 
oligomerization states, and expression in different cell types and cellular locations34,36. Whereas the 
multifunctionality of DMRs stems from their high degree of plasticity that allows a single IDR to 
bind multiple ligands, serve as a linker and/or perform entropic functions30-32. The moonlighting 
proteins can be predicted computationally from sequences and other information about these 
proteins, such as protein-protein interactions and gene expression profiles 35-38. However, these 
methods make predictions only at the protein level, not at the residue or sequence region level that is 
necessary to identify the multifunctional IDRs. Here, we use the term “moonlighting” to describe 
regions in the protein chain that perform more than one function. The disordered moonlighting 
regions (DMRs) are different from moonlighting proteins since they concern regions rather than 
complete protein chains and since they focus specifically on the intrinsic disorder. Recent research 
has revealed many examples of diverse and functionally important DMRs39-42. While many DMRs 
can be found in the DisProt database, a significantly larger number of these regions is awaiting to be 
discovered. Computational prediction of DMRs is necessary to find these regions among the large 
and growing number of IDRs. 
 
Current predictors of functions of IDRs do not predict DMRs and current methods that predict 
moonlighting proteins cannot be applied at the region level. To this end, we propose first-of-its-kind 
methods that accurately predicts DMRs from protein sequences, DMRpred. DMRpred aims to 
separate DMRs from other types of regions including monofunctional IDRs and structured regions. 
DMRpred uses a sophisticated predictive model to generate a numeric propensity for each residue 
being in a DMR. The particularly innovative aspects of this work are: 1) development of a new 
dataset of proteins with DMRs; 2) design and use of novel scales that quantify propensities of amino 
acids for functions that are relevant to DMRs; 3) use of an original approach to build predictive 
inputs that aggregate structural and functional characteristics based on putative IDRs; and 4) 
inclusion of the first attempt to quantify DMRs in the human proteome. 
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Table I. Annotations of functions for disordered regions in DisProt 7.0.3. We exclude 
posttranslational modifications since these are not intrinsic functions of IDRs. They are located in 
IDRs and DisProt does not provide their exact positions. 
 

Level 1 Level 2 
Entropic chain Flexible linker/spacer 

Entropic bristle 
Entropic clock 
Entropic spring 
Structural mortar 
Self-transport through channel 

Molecular recognition – assembler Assembler 
Localization (targeting) 
Localization (tethering) 
Prions (self-assembly, polymerization) 
Liquid-liquid phase separation/demixing (self-assembly) 

Molecular recognition – scavenger Neutralization of toxic molecules 
Metal binding/metal sponge 
Water storage 

Molecular recognition – effectors Inhibitor 
Disassembler 
Activator 
cis-regulatory elements (inhibitory modules) 
DNA bending 
DNA unwinding 

Molecular recognition – display site Limited proteolysis 
Molecular recognition – chaperone Protein detergent/solvate layer 

Space filling 
Entropic exclusion 
Entropy transfer 

Materials and methods 

Datasets and annotation of DMRs 

The data comes from two sources: DisProt43 and Protein Data Bank (PDB)44. We use DisProt 7.0.3 to 
collect disordered proteins and extract annotations of DMRs. We use PDB to collect structured 
proteins that are necessary to ensure that our model does not predict DMRs for them. After removing 
10 proteins from DisProt that have incorrect annotations (e.g., annotations out of bounds of protein 
chains) we parsed the remaining 693 proteins. They include 2,108 disordered regions with length 
ranging between 5 and 2,400 residues.  
 
 



 

 
 
 
 
 
 
 
 
 
 
Figure 1. Flow chart to define disordered moonlighting regions based on the functional annotations 
given in Table I and binding partner annotations defined in DisProt 7.0.3. 
 
DisProt 7.0.333 has two levels of functional annotations (Table I) which are separate from the binding 
partner annotations. We define DMR as a disordered region that has at least two distinct functions. We 
use the hierarchy of the functional annotations in DisProt to ensure that the functions used to annotate 
DMRs are distinct. We ensure that each DMR has at least two different level 1 annotations, at least two 
different level 2 annotations, or one level 1 annotation with at least one level 2 annotation under 
different level 1 category. Moreover, DMRs also include disordered regions that are annotated to have at 
least two different types of binding partners (e.g., DNA and protein). The annotations of binding 
partners include protein-protein, protein-DNA, protein-RNA, protein-lipid, protein-metal, protein-
inorganic salt and protein-small molecule binding. Our annotation protocol does not mix the annotations 
of functions and binding partners in order to secure a conservative set of multifunctional regions, i.e., a 
combination of a functional annotation and an annotation of a binding partner is not used to annotate 
DMRs. Detailed annotation protocol is shown in Figure 1. For a given disordered region in DisProt, we 
consider this region as one of the three classes:  

1 a disordered moonlighting regions (DMR), 
2 a non-disordered moonlighting region (NDMR) that includes monofunctional disordered regions 

(that have a known function) and structured regions, and  
3 a region of unknown type (UNK).  

UNK regions include disordered regions without functional annotation and regions in DisProt without 
any annotations. Residues in the UNK regions are excluded from our analysis. We do not use them to 
neither build nor assess the model. We include structured proteins collected from the Protein Data Bank 
(PDB)45 and residues from these proteins are annotated as the NDMR residues. Figure 1 explains how 
DMR residues, NDMR residues and UNK residues are annotated. For example, the protein region 
annotated using the path at the bottom of the Figure 1 has at least two different functional annotations 
that belong to different level 1 categories, and thus it is annotated as a DMR. We note that some of the 
monofunctional IDRs from our dataset could be re-labeled as DMRs in the future as additional and 
different functional annotations are collected. We accommodate for that by setting the evaluation criteria 
to allow for a small amount of false positives (non-DMRs predicted as DMRs). 
 
We define DMR residues and NDMR residues as residues that are in DMRs and NDMRs, respectively. 
We include all proteins that have annotated DMRs and proteins with residues annotated as either DMR 
or NDMR (both monofunctional and structured); we exclude proteins that contain only unknown 
annotations. Consequently, we select 139 out of the 693 proteins from DisProt that have 12,910 DMR 
residues. We also collect high-resolution structured monomer proteins from PDB using the following 
criteria: chain length ≥ 30 residues; resolution ≤ 2.0 Å; number of chains (asymmetric unit) = 1; number 

Region from DisProt

Annotated as 
disordered  

A protein region

Region from PDB: NDMR

No level 1 annotation

At least two different level 2 annotations or at least two different binding partners: DMR

Only one level 2 annotation and/or one type of binding partner: NDMR

No level 2 annotation or binding partner: UNK 

One level 1 annotation

At least one level 2 annotation under different level 1 category: DMR

No level 2 annotation under 
a different level 1 category 

At least two different level 2 annotations in 
the given level 1 category or at least two 
binding partners: DMR 

Otherwise: NDMR

At least two different level 1 annotations or at least two binding partners: DMR

No annotation: UNK 
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of chains (biological assembly) = 1, and number of entities = 1. We collected 2,927 such monomers in 
February 2017. We filter out proteins that have non-standard amino acids (AAs) or disordered residues 
(missing residue or marked as REMARK 465). This ensures that the selected proteins contain only 
standard AAs and are structured. Next, we select a representative subset of these proteins that share low 
sequence similarity. We run BlastClust46 with the length coverage > 70% and the identity threshold = 
25%. We pick one representative sequence from each of the 298 clusters to ensure that remaining 
proteins share low similarity. To balance the number of disordered and structured proteins, we randomly 
select 139 proteins from the set of 298 structured proteins. We combine the two sets of 139 proteins to 
form the dataset of 278 proteins. We divide these 278 proteins at random into two subsets of equal size, 
a training dataset that we use to design and parameterize the predictive model, and a test dataset to 
perform blind validation. We further subdivide the training dataset into four equally sized subsets 
(12.5% of the original dataset) to perform four-fold cross validation. We ensure that the training and test 
datasets as well as the four cross-validation folds share sequence identity below 25%. To do that, we run 
BlastClust on the 278 proteins, using the same parameters as above, and we place each of the resulting 
263 clusters that include similar sequences (≥ 25% identity) into one of the five protein sets that is 
chosen at random. The first four subsets (12.5% of the original dataset) constitute the four folds of the 
training set and the remaining fifth subset (50% of the original dataset) is used as the test dataset. We 
ensure that each of the five subsets has similar ratio of DMR to NDMR residues by randomly 
resampling clusters, if needed. The training dataset (with annotated cross-validation folds) and test 
dataset are available at http://biomine.cs.vcu.edu/servers/DMRpred/. The training (test) dataset includes 
140 (138) proteins with 6,261 (6,649) DMR residues and 16,466 (17,449) NDMR residues; the latter set 
of residues includes structured and monofunctional disordered residues. We did not balance the number 
of DMR and NDMR residues to ensure that the predictive model inferred from these data does not 
overpredict DMRs, i.e., it should predict a small fraction of residues as DMRs. 

Evaluation criteria 

The prediction is a numeric score between 0 and 1 that represents propensity for a given residue to be 
part of a DMR. The score can be also converted into a binary prediction using a threshold. A residue 
with a putative score greater than or equal to a given threshold is predicted as part of a DMR, otherwise 
it is predicted as part of a NDMR. We assess the predictive quality of the putative propensities with the 
receiver operating characteristic (ROC) curve and the area under ROC (AUCR). To plot the ROC curves 
and quantify AUCR values, we calculate true-positive rates (TPRs) and false-positive rates (FPRs) by 
comparing binary predictions with native annotations at different thresholds imposed on the predicted 
scores: 

TPR = TP/(TP + FN) = TP / number_of_DMR_residues   (1) 
FPR = FP/(FP + TN) = FP/ number_of_NDMR_residues   (2) 

where TP is the number of true positives (correctly predicted residues in DMRs), FN is the number of 
false negatives (predicted incorrectly residues that are part of DMRs), FP is the number of false positive 
(incorrectly predicted residues that are part of NDMRs), and TN is the number of true negatives 
(correctly predicted residues in NDMRs). Given TPR and FPR values generated at different thresholds 
ranging from 0 and 1, we plot the ROC curve and calculate the corresponding AUCR value. Moreover, 
we plot the precision-recall curves and calculate the area under the precision-recall curve (AUCPR). 
Recall and precision are defined as equation (5) and (4), respectively. 
 
Motivated by the fact that vast majority of the residues are located in NDMRs (they are “negatives”) we 
perform assessment of the propensities when FPR is low, at or below 5%. The 5% value accommodates 
for the possibility that some of the monofunctional IDRs could be in fact multifunctional because 
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additional, different functions of these regions are not yet determined. This also ensures that the 
corresponding predictions include putative DMR residues which are likely correctly predicted, i.e., only 
a small fraction of these predictions are false positives. Correspondingly, we calculate AUCRlowFPR that 
covers the low range of FPR values between 0 and 0.05. Since AUCRlowFPR values are rather small and 
difficult to assess directly, we compute AUCRratio = AUCRlowFPR/AUCRrandom_lowFPR, where AUCRlowFPR is 
divided by the AUCR of a random predictor (for which FPR always equals to TPR) in the same FPR 
range. This ratio quantifies the rate of improvement over a random predictor, i.e., ratio > 1 means that a 
given method is better than random and ratio = 2 means that this method is twice better than random. 
 
We also assess the binary predictions defined using the threshold that results in FPR = 5%. For the 
binary predictions, we use accuracy, precision, recall and Matthews Correlation Coefficient (MCC): 

Accuracy = (TP + TN)/number_of_all_residues    (3) 
Precision = TP/number_of_all_predicted_DMR_residues   (4) 
Recall = TP/number_of_all_native_DMR_residues    (5) 

MCC = (TP × TN – FP × FN)/sqrt((TP + FP)(TP + FN)(TN + FP)(TN + FN)) (6) 
The AUCR ranges between 0.5 and 1 where 0.5 denotes random prediction and 1 denotes perfect 
prediction. Accuracy, precision and recall range between 0 and 1 where 0 denotes that no residues were 
predicted correctly and 1 denotes perfect prediction. MCC ranges between -1 and 1, where -1 denotes 
that inverted prediction (all DMR residues are predicted as NDMR residues and vice versa), 0 denotes a 
random result and 1 denotes a perfect prediction. 
 

 

Figure 2. Architecture of DMRpred. 
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Architecture of DMRpred 

The architecture of DMRpred (Figure 2) includes three layers: 
1. Sequence profile: we represent the input sequence by a set of numeric values that quantify 

biophysical and structural properties of residues in this sequence.  
2. Feature representation: for each residue in the input protein we convert the profile into a set of 

features that quantify relevant properties for this residue and its neighbors in the sequence. 
3. Prediction: The features are input into a predictive model that generates the propensities for 

residues to be in DMRs. 

Sequence profile 
We consider several relevant biophysical and structural properties to define the sequence profile. They 
include sequence conservation, relative solvent accessibility, intrinsic disorder and a set of novel AA 
indexes (Figure 2). The indices quantify propensity of individual AA types to carry out functions that are 
relevant to DMRs. 
 
We compute conservation from the multiple sequence alignment produced with HHblits47. HHblits is 
based on profile – profile alignments computed with the hidden Markov models. It was shown in Ref. 47 
to be faster and more sensitive than the sequence-based alignment with PSI-BLAST48. To further reduce 
the runtime, we run HHblits against the Pfam database (as of February 2017), instead of the default 
UniProt20 database, and we iterate twice. Running HHblits against Pfam database is 12 times faster 
when compared to using UniProt20; average per protein runtime is 8 seconds vs. 102 seconds. Using the 
outputs of HHblits, we quantify the conservation in three ways: entropy, relative entropy (REntropy) and 
the local diversity (NEFF). The entropy is calculated using the 20 AA emission frequencies and relative 
entropy is calculated by considering the HHblits null model frequencies as the background frequency49. 
The NEFF(i) output from HHblits measures the diversity of sub-alignment for residue i that contains all 
sequences that have a residue at position i of the full alignment. A smaller entropy, larger relative 
entropy and smaller NEFF indicate a more conserved residue. We invert the values of entropy and NEFF 
by subtracting their values from the corresponding maximal value. This makes these values consistent 
with the other properties, where a larger number indicates a more conserved residue that has a higher 
chance to carry out function(s) relevant to DMRs. 
We calculate the relative solvent accessibility (RSA) with ASAquick50. ASAquick predicts the relative 
accessible surface area from a single sequence (without alignment). ASAquick is orders of magnitude 
faster than most of the other predictors of RSA that require multiple sequence alignment. It produces 
prediction in less than a second for a protein that is 500 residues long. We normalize the output of 
ASAquick to the 0 to 1 range where a larger number means that the corresponding residue is more 
solvent exposed. 
 
Intrinsic disorder is predicted with IUPred51,52. We selected this particular method since it is fast, was 
ranked as one of the top methods in several recent benchmarks15,19,21 and was utilized in several other 
disorder function predictors, such as DFLpred27 and DisoRDPbind28. We use both the short region and 
long region versions of IUPred. The output of IUPred ranges from 0 to 1 and larger numbers suggest a 
higher likelihood for the intrinsic disorder. 
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Table II. Propensities that quantify enrichment or depletion of amino acid types for specific 
functions/biding partners computed when using all residues in the training dataset as the background. 
Columns correspond to functions/binding partners where FUN_MC: molecular recognition – chaperone; 
FUN_ME: molecular recognition – effectors; FUN_MA: molecular recognition – assembler; FUN_EC: 
entropic chain; BIND_DNA: protein-DNA binding; BIND_PROT: protein-protein binding; and 
BIND_LIP: protein-lipid binding. For each amino acid, we list its fractional difference (FD) value 
defined based on the difference in composition between the query sample (residues in a given functional 
region) and the background sample. Positive FD values indicate enrichment and negative value indicates 
depletion. Statistical significance of the fractional difference is quantified with the p-values; p-value < 
0.01 is considered statistically significant. Bold font shows amino acids for which the FD values are 
significantly different.  

Amino 
Acid 

FUN_MC FUN_ME FUN_MA FUN_EC BIND_DNA BIND_PROT BIND_LIP 
FD p-value FD p-value FD p-value FD p-value FD p-value FD p-value FD p-value

A -0.119 0.205 0.420 0.000 0.126 0.115 -0.032 0.531 0.211 0.003 0.111 0.030 -0.208 0.040 

C 0.119 0.561 -0.391 0.068 -0.054 0.786 -0.669 0.000 -0.395 0.003 -0.447 0.000 -0.489 0.031 
D -0.081 0.603 0.164 0.225 0.066 0.509 -0.192 0.098 0.247 0.002 0.119 0.037 0.400 0.000 
E 0.723 0.000 0.017 0.920 0.048 0.647 1.109 0.000 0.073 0.284 0.536 0.000 0.334 0.001 
F -0.228 0.198 -0.514 0.001 -0.164 0.191 -0.579 0.000 -0.409 0.000 -0.419 0.000 -0.073 0.716 
G -0.202 0.048 0.376 0.000 0.233 0.003 0.042 0.610 -0.143 0.029 0.129 0.007 0.473 0.000 
H 0.411 0.028 0.138 0.517 0.089 0.597 -0.304 0.072 0.007 0.941 0.164 0.061 0.584 0.011 
I -0.175 0.222 -0.388 0.002 -0.449 0.000 -0.178 0.148 -0.307 0.001 -0.359 0.000 -0.244 0.106 
K 0.605 0.000 -0.076 0.386 0.445 0.000 0.292 0.005 1.123 0.000 0.388 0.000 0.370 0.001 
L -0.089 0.385 0.075 0.415 -0.195 0.026 -0.236 0.004 -0.326 0.000 -0.238 0.000 -0.250 0.021 
M 0.004 0.912 -0.426 0.017 -0.168 0.225 -0.355 0.022 -0.160 0.176 -0.372 0.000 -0.324 0.066 
N -0.242 0.087 -0.352 0.004 -0.203 0.052 -0.183 0.144 -0.269 0.003 -0.318 0.000 -0.385 0.012 
P 0.128 0.296 0.293 0.006 0.136 0.128 0.305 0.016 0.144 0.074 0.372 0.000 0.207 0.064 
Q -0.170 0.201 0.155 0.296 -0.184 0.095 0.358 0.002 -0.148 0.091 0.059 0.306 0.003 0.897 
R 0.252 0.157 0.142 0.360 0.237 0.039 0.011 0.987 0.316 0.000 0.025 0.752 -0.283 0.008 
S -0.338 0.002 0.334 0.001 0.284 0.001 0.210 0.015 0.246 0.000 0.218 0.000 -0.013 0.816 
T 0.006 0.942 -0.310 0.007 -0.123 0.188 -0.033 0.658 -0.216 0.005 -0.095 0.075 -0.133 0.212 
V -0.002 0.930 -0.433 0.000 -0.317 0.001 -0.290 0.005 -0.218 0.004 -0.310 0.000 -0.323 0.013 
W -0.318 0.189 -0.493 0.036 -0.623 0.002 -0.469 0.022 -0.724 0.000 -0.538 0.000 0.021 0.751 
Y -0.552 0.002 -0.324 0.061 -0.143 0.364 -0.609 0.000 -0.458 0.000 -0.458 0.000 -0.064 0.733 
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Table III. Propensities that quantify enrichment or depletion of amino acid types for specific 
functions/biding partners computed when using disordered residues in the training dataset as the 
background. Columns correspond to functions/binding partners where FUN_MC: molecular recognition 
– chaperone; FUN_ME: molecular recognition – effectors; FUN_MA: molecular recognition – 
assembler; FUN_EC: entropic chain; BIND_DNA: protein-DNA binding; BIND_PROT: protein-protein 
binding; and BIND_LIP: protein-lipid binding. For each amino acid, we list its fractional difference 
(FD) value defined based on the difference in composition between the query sample (residues in a 
given functional region) and the background sample. Positive FD values indicate enrichment and 
negative value indicates depletion. Statistical significance of the fractional difference is quantified with 
the p-values; p-value < 0.01 is considered statistically significant. Bold font shows amino acids for 
which the FD values are significantly different.  

Amino 
Acid 

FUN_MC FUN_ME FUN_MA FUN_EC BIND_DNA BIND_PROT BIND_LIP 
FD p-value FD p-value FD p-value FD p-value FD p-value FD p-value FD p-value

A -0.221 0.035 0.257 0.010 -0.001 0.872 -0.147 0.096 0.068 0.361 -0.018 0.834 -0.299 0.005 

C 3.385 0.000 1.368 0.004 2.626 0.000 0.279 0.523 1.352 0.001 1.136 0.001 1.013 0.031 
D -0.220 0.085 -0.012 0.744 -0.097 0.333 -0.314 0.004 0.058 0.580 -0.051 0.413 0.179 0.076 
E 0.154 0.076 -0.317 0.001 -0.292 0.000 0.417 0.000 -0.275 0.000 0.036 0.585 -0.099 0.533 
F -0.067 0.783 -0.418 0.017 0.007 0.963 -0.496 0.002 -0.287 0.029 -0.300 0.004 0.105 0.514 
G -0.405 0.000 0.022 0.548 -0.081 0.477 -0.220 0.010 -0.362 0.000 -0.161 0.004 0.096 0.789 
H -0.016 0.990 -0.208 0.172 -0.243 0.089 -0.512 0.000 -0.300 0.012 -0.190 0.051 0.097 0.834 
I 0.257 0.188 -0.067 0.611 -0.165 0.246 0.254 0.130 0.051 0.645 -0.026 0.817 0.152 0.347 
K -0.023 0.848 -0.432 0.000 -0.116 0.107 -0.213 0.012 0.301 0.000 -0.148 0.007 -0.163 0.116 
L 0.379 0.011 0.623 0.000 0.214 0.060 0.148 0.282 0.014 0.885 0.148 0.079 0.133 0.272 
M 0.078 0.782 -0.385 0.058 -0.106 0.515 -0.307 0.086 -0.092 0.544 -0.325 0.005 -0.269 0.168 
N 0.466 0.045 0.243 0.342 0.526 0.011 0.576 0.004 0.403 0.011 0.308 0.023 0.188 0.260 
P 0.093 0.505 0.254 0.037 0.099 0.328 0.256 0.082 0.106 0.300 0.330 0.000 0.171 0.171 
Q -0.153 0.274 0.172 0.301 -0.169 0.167 0.386 0.006 -0.133 0.202 0.075 0.382 0.022 0.982 
R 0.225 0.254 0.113 0.499 0.208 0.108 -0.011 0.895 0.288 0.008 -0.001 0.999 -0.310 0.010 
S -0.380 0.001 0.255 0.014 0.209 0.029 0.141 0.132 0.171 0.036 0.146 0.031 -0.069 0.479 
T 0.172 0.227 -0.197 0.164 0.019 0.886 0.127 0.369 -0.090 0.414 0.054 0.510 0.014 0.964 
V 0.478 0.004 -0.153 0.241 0.010 0.980 0.052 0.673 0.161 0.191 0.025 0.797 0.008 0.786 
W 0.528 0.306 0.103 0.793 -0.170 0.619 0.183 0.768 -0.388 0.144 0.020 0.997 1.255 0.003 
Y -0.283 0.244 0.071 0.647 0.356 0.075 -0.378 0.048 -0.144 0.383 -0.140 0.292 0.481 0.051 

 
A unique to DMRpred part of the profile is the propensity of AAs to carry out functions that are relevant 
to DMRs. We quantify these AA indices with Composition Profiler53. The indices measure enrichment 
or depletion of specific AA types in the corresponding functional IDRs. First, we extract all functional 
IDRs from the training dataset. We consider the functions that we use to define DMRs and that have at 
least 1000 residues; the latter ensures that we have enough data for statistical analysis. We cover seven 
functions:  molecular recognition – chaperone (FUN_MC), molecular recognition – effectors 
(FUN_ME), molecular recognition – assembler (FUN_MA), entropic chain (FUN_EC), protein-DNA 
binding (BIND_DNA), protein-protein binding (BIND_PROT) and protein-lipid binding (BIND_LIP). 
For each of the seven functions we use the corresponding regions as a query to run the Composition 
Profiler. The Profiler compares a given query to a background. We consider two types of background 
(BG): all residues and disordered residues from the training dataset. The former type of background 
results in the computation of differences between a specific set of functional residues and a generic set 
of all AAs. The latter type focuses on the differences between a specific set of functional residues, which 
are disordered, and a set of all disordered AAs. For each of the 20 AAs, the Composition Profiler 
outputs a fractional difference of the composition between the query and the background. Positive 
(negative) fractional differences indicate enriched (depleted) AAs. The Profiler also outputs p-values 



  

10 

that measure statistical significance of the fractional differences. We consider p-value < 0.01 as 
statistically significant. Tables II and III provide the fractional differences for the 20 AA types, the 
seven functions and two backgrounds. 

Feature representation 
Using the sequence profile, we empirically generate a rich set of features to represent every residue in 
the input sequence. The features quantify information about individual biophysical and structural 
properties and their combinations, e.g., we combine conservation and solvent accessibility.  
We generate features for each residue by considering the information about the residue itself and its 
neighbors in the sequence. The use of the neighboring residues is inspired by the fact that the disordered 
moonlighting residues form regions composed of consecutive AAs that share certain functional and 
structural properties. We define neighbors using two types of sequence windows: a sliding window of a 
fixed length (defined based on size of native DMRs in the training dataset) centered on the residue that 
we currently predict; and the putative disordered regions (disordered window) that includes this residue 
(Figure 2). To the best of our knowledge, we are the first to use the latter window type. We do not pad 
windows for residues at the termini of the sequence and accordingly the features are normalized by the 
length of the window. The length of the second type of the windows varies and is determined by the 
length of the putative disordered regions generated with IUPred_short and IUPred_long. The use of the 
fixed size sliding windows is motivated by the design of related methods, such as MoRFpred24, 
fMoRFpred25, DisoRDPbind28 and DFLpred27. Using the individual and combined biophysical and 
structural properties that are quantified for individual residues and based on the two types of windows, 
we compute 1588 features for each residue in the input protein chain. A detailed description of these 
features can be found in the Supplement. 

Design of the predictive model 
We use the feature vector for each of the 22,727 residues in the training dataset to generate a predictive 
model using a machine learning algorithm. This model outputs a propensity score that a given residue is 
a DMR residue. We consider three algorithms: Logistic regression54, Naive Bayes55 and Random 
Forest56 using their implementations in the Weka platform57.  
 
We conduct feature selection for the logistic regression and Naive Bayes algorithms. Random Forest 
algorithm automatically selects features when building the trees. We use the best-first search to 
implement the selection. First, we calculate the AUCR values when using individual features to make 
predictions on each of the four training folds, and we rank the features by their averaged (over the four 
training folds) AUCR values. We run the 4-folds cross validation on the training dataset using the 
logistic regression and Naive Bayes with the top-ranked feature to initialize the set of selected features. 
Next, we add the next-ranked feature to the current feature set if this results in a higher average AUCR 
than the AUCR obtained before the feature was added. We scan the sorted feature set once.  

Results 

Selection of the DMRpred’s predictive model 

We parameterize the three considered algorithms and compare their predictive performance using the 
training dataset to select the model that offers favorable predictive quality. Unlike logistic regression and 
Naive Bayes algorithms that do not require parametrization, we perform a grid search to find optimal 
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parameters for the Random Forest. We select parameters that result in the highest AUCR measured with 
the 4-fold cross validation on the training dataset. Based on suggestions from Ref. 58, we consider the 
number of trees = {27, 28, 29, 210}, the number of features randomly selected for each tree node = 
{log2(N),  sqrt(N)} where N is the total number of features = 1588, and % of samples for each tree node 
(bag percent) = {20%, 30%, 40%, 50%}. There are total of 32 combinations of parameter values.  
 
Table IV. Results based on 4-fold cross validation on the training dataset. 
 
Algorithm ACC PREC Recall MCC AUCR AUCRratio AUCPR 

Random Forest 0.837 0.803 0.536 0.560 0.868 15.314 0.742 
Logistic Regression 0.813 0.772 0.452 0.488 0.867 11.275 0.618 
Naive Bayes 0.769 0.603 0.414 0.358 0.795 4.140 0.305 
 
Table IV summarizes the results that correspond the highest AUCR based on the cross validation on the 
training dataset for the three algorithms. We report the average accuracy, precision, recall, MCC, AUCR, 
AUCRratio and AUCPR over the 4 cross validation folds. We implement DMRpred using the Random 
Forest model that secures the best value for all measures. The parameters that were used to generate this 
model are: number of trees = 512, number of features per tree node = 39, and bag percent = 30%. 
 
Table V. Comparison of DMRpred with designs that do not use: predicted RSA (No RSA), sequence 
conservation (No CON), putative intrinsic disorder (No ID), AA indices (No AAI), sliding windows (No 
SWIN), windows based on predicted IDRs (No IDWIN) and any windows (No WIN). The results are 
based on bootstrapping cross validation on the training dataset and are ranked by the AUCR value. + 
means that DMRpred is significantly better than a given configuration (p-value < 0.01). Results are 
sorted in the descending order by AUCR. 
 

Feature set ACC PREC Recall MCC AUCR AUCRratio AUCPR 
DMRpred 0.837 0.803 0.536 0.560 0.868 15.314 0.742 
No RSA 0.810+ 0.770+ 0.436+ 0.476+ 0.861+ 13.387+ 0.721 
No SWIN 0.823 0.784 0.493 0.521 0.856+ 14.941 0.736+ 
No AAI 0.816+ 0.770+ 0.461+ 0.493+ 0.854+ 13.457+ 0.722 
No IDWIN 0.793+ 0.731+ 0.383+ 0.420+ 0.854+ 10.092+ 0.688+ 
No CON 0.787+ 0.707+ 0.356+ 0.391+ 0.823+ 10.375+ 0.660+ 
No WIN 0.782+ 0.711+ 0.340+ 0.381+ 0.818+   7.450+ 0.615+ 
No ID 0.773+ 0.686+ 0.307+ 0.346+ 0.781+   8.679+ 0.591+ 

 

Analysis of the DMRpred’s predictive model 

DMRpred combines sequence conservation, predicted RSA, putative IDRs and AA indices that quantify 
propensity for functions that are relevant to DMRs to define the sequence profile. It also uses two types 
of windows to generate features: sliding windows and windows based on predicted IDRs. We assess 
contributions of different parts of the profile and different window types to the predictive performance 
of our model. To do that we run the 4-fold cross validation on the training dataset with the best 
performing Random Forest model that excludes features that utilize a given part of the profile or a given 
type of window. We run the grid search to parametrize the Random Forest model for each subset of 
features. Table V summarizes results for each of these configurations. We report the average AUCR, 
accuracy, precision, recall, MCC, AUCR, AUCRratio and AUCPR computed over the 4 folds. We also 
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evaluate statistical significance of the differences between DMRpred and each of the other 
configurations. We bootstrap the cross-validation results by randomly selecting 50% proteins 100 times, 
and we run paired t-test between these 100 measurements to evaluate the significance. We validated 
normality of these measurements using the Anderson-Darling test at the 0.05 significance. 
 
DMRpred significantly outperforms all other configurations in accuracy, precision, recall, MCC, AUCR, 
and AUCRratio. The only exception where the decrease is not statistically significant is when the sliding 
windows are not used. The AUCPR is also significantly smaller for the configurations without the sliding 
window, without the window based on the predicted IDRs, and when we do not use sequence 
conservation and putative intrinsic disorder. This means that all elements of the sequence profile as well 
as the use of the disorder region-based windows significantly contribute to the DMRpred’s predictive 
performance. In other words, their use results in a significant increase of at least one measure of 
predictive quality. Based on the magnitudes of the decrease in AUCR values, the most relevant 
information for the prediction of DMRs includes the putative intrinsic disorder, the use of both types of 
windows to compute features, and sequence conservation. These factors are well-grounded in the 
characteristics of DMRs that are by definition disordered and include functional residues that are 
typically highly conserved. The windows are needed to capture differences in the intrinsic characteristics 
of DMRs (which form segments in the sequence) and the residues that surround these regions.   
 

Empirical comparison with alternative approaches to predict disordered 
moonlighting regions 

We compare the predictive performance of DMRpred with several alternative approaches that could be 
used to identify DMRs. Since DMRs are a subset of IDRs, they can be perhaps identified using 
predictors of disordered regions. Thus, we include three predictors of disordered regions: the popular 
Espritz59 and IUPred52 methods and one of the newest methods, SPOT-disorder60, which is a successor 
of another popular method SPINE-D61. We use the three available versions of Espritz that were designed 
based on the three main sources of disorder annotations: NMR structures (Espritz_NMR), X-ray 
structures (Espritz_X-ray) and the DisProt database (Espritz_DisProt), and two available versions of 
IUPred: long and short. We also include four representative methods that predict specific types of 
functional IDRs. They include DisoRDPbind28 that predicts disordered protein-DNA, protein-RNA and 
protein-protein binding regions, Anchor62 that generates putative disordered protein-binding regions, and 
two methods that predict molecular recognition features (MoRFs): MoRFpred24 and fMoRFpred25. 
MoRFs are protein-binding IDRs that undergo disordered-to-order transition upon interaction. Inclusion 
of these four methods is motivated by the fact that DMRs carry out multiple functions that include 
binding to proteins and nucleic acids. Moreover, DMRs should include evolutionarily conserved 
residues. Thus, we also use sequence conservation computed from alignments produced with HHblits to 
identify disordered moonlighting residues47. Finally, we include a default/typical approach to predict 
functional residues/regions that relies on the sequence alignment. We run PSI-BLAST48 with default 
parameters for each protein in the test dataset against all proteins in the training dataset. Using the most 
similar training protein we copy its annotations onto the test protein for the positions with identical 
residues or conservative substitutions in the alignment. Residues that are not aligned as assumed to be 
NDMRs. 
 
We use the corresponding author-provided webservers or implementations to run the abovementioned 
tools. We use the MoRFpred and fMoRFpred webservers to collect their predictions, which we utilize as 
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a proxy for the propensities for DMR residues. We utilize standalone software for Anchor and Espritz 
and the DisoRDPbind’s webserver to obtain its three propensity scores for protein-protein, protein-DNA 
and protein-RNA binding. Because DMRs carry out multiple functions, we combine two or three 
DisoRDPbind’s scores to represent the propensity that a given residue binds multiple partners. We 
combine the scores in two ways: as average of the two highest scores among the three scores 
DisoRDPbind produces; and as average the three scores. We run HHblits for each sequence in the test 
set against the default UniProt20 database to compute the conservation scores. We calculate entropy and 
relative entropy49 from the 20 AA emission frequencies and use the NEFF(i) scores for each residue i 
that are directly output by HHblits to produce three estimates of conservation.  
 

 

Figure 3. ROC curves for DMRpred and the other best-performing predictors (having highest AUCR on 
the corresponding test dataset) from each group of methods. Panel A shows results on the complete test 
dataset (Table 6) while panel B is for a version of the test dataset with only monofunctional IDRs and 
DMR (Table 7). Alignment-based results generated with PSI-BLAST are shown with a single point 
since this approach generates only binary predictions. 
 
Table VI compares the predictive performance of these approaches with DMRpred on the test dataset. 
We sort the methods by AUCR within each group defined by their typical prediction target: DMRs, 
functional IDRs, all IDRs, MoRFs, and predictions based on sequence conservation. We rank these 
groups based on the highest within-group AUCR values. We assess statistical significance of the 
differences between the predictive performance of DMRpred and each of the other 15 methods. We 
bootstrap the results by randomly selecting 50% of test proteins 100 times, and we run paired t-test 
between these 100 measurements to evaluate the significance. The measurements are normal based on 
the Anderson-Darling test at the 0.05 significance. We also show the ROC curves (Figure 3A) and 
precision-recall curves (Figure 4A) for DMRpred and one best-performing predictor having the highest 
AUCR or AUCPR, respectively, from each group of methods. We visualize the results generated using 
the alignment with the PSI-BLAST using a single point since this approach generates only binary 
predictions. 
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Table VI. Assessment of predictions on the test dataset. + means that DMRpred is significantly better 
than a given other method (p-value < 0.01). Accuracy, precision, recall and MCC are calculated at 5% 
false positive rate (see Materials and Methods for details). The best results for each measure of 
predictive performance are shown in bold font. NA (not available) is due to the fact that PSI-BLAST 
provides only the binary predictions. 
 

Prediction target Methods Accuracy Precision Recall MCC AUCR AUCRratio AUCPR 
Disordered 
moonlighting 
regions 

DMRpred 0.820 0.788 0.474 0.511 0.856 14.638 0.748 
PSI-BLAST 0.692+ 0.269+ 0.068+ -0.004+ NA NA NA 

Disordered 
regions 

SPOT-disorder 0.773+ 0.701+ 0.308+ 0.353+ 0.840+ 8.294+ 0.632+ 
IUPred-long 0.756+ 0.654+ 0.247+ 0.288+ 0.792+ 5.697+ 0.552+ 
Espritz_NMR 0.746+ 0.616+ 0.210+ 0.245+ 0.781+ 4.369+ 0.518+ 
IUPred-short 0.723+ 0.495+ 0.126+ 0.135+ 0.745+ 2.259+ 0.466+ 
Espritz_X-ray 0.741+ 0.595+ 0.193+ 0.224+ 0.739+ 3.573+ 0.470+ 
Espritz_DisProt 0.694+ 0.154+ 0.024+ -0.058+ 0.663+ 0.411+ 0.338+ 

Functional 
disordered  
regions 

DisoRDPbind_AvgTwoHigh 0.739+ 0.584+ 0.184+ 0.213+ 0.790+ 4.270+ 0.526+ 
DisoRDPbind_AvgThree 0.726+ 0.512+ 0.137+ 0.149+ 0.775+ 2.757+ 0.484+ 
Anchor 0.734+ 0.562+ 0.169+ 0.193+ 0.746+ 3.681+ 0.485+ 

Sequence 
conservation 

NEFF 0.719+ 0.461+ 0.107+ 0.108+ 0.754+ 1.552+ 0.466+ 
Entropy 0.706+ 0.333+ 0.065+ 0.030+ 0.699+ 2.817+ 0.406+ 
Relative entropy 0.705+ 0.318+ 0.061+ 0.022+ 0.698+ 1.042+ 0.398+ 

MoRF regions fMoRFpred 0.707+ 0.284+ 0.041+ 0.004+ 0.474+ 0.955+ 0.255+ 
MoRFpred 0.703+ 0.298+ 0.055+ 0.012+ 0.470+ 1.382+ 0.270+ 

 

 

Figure 4. Precision-recall curve for DMRpred and the other best-performing predictors (with highest 
AUCPR on the corresponding test dataset) from each group of methods. Panel A shows results on the 
complete test dataset (Table 6) while panel B is for a version of the test dataset with only 
monofunctional IDRs and DMR (Table 7). Alignment-based results by PSI-BLAST are shown with a 
single point since PSI-BLAST generates only binary predictions. 
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Table VI reveals that DMRpred offers the best predictive performance and that it significantly 
outperforms all other methods for all considered measures (p-value < 0.01). DMRpred’s AUCRratio = 
14.6 which means that its AUCR for predictions at low FPR (< 5%) is about 14.6 times better than 
random. This represents about 75% improvement over the second best SPOT-disorder that secures 
AUCRratio = 8.3. DMRpred’s AUCR = 0.86. This high value is reflected in the ROC curve shown in 
Figure 3A. We note a relatively large gap between ROC for DMRpred and the other methods for FPRs ≤ 
0.2. High FPRs are not practical since they result in the number of false positives that is higher than the 
numbers of true positive; this is because only about 27% of residues in the test dataset are DMR 
residues. Interestingly, DMRpred has a steep ROC curve for very low FPRs. It finds 15.1% of native 
DMR residues without producing any false positives. DMRpred also secures the highest AUCPR value. 
From Figure 3A, we observe that the precision-recall curve for DMRpred is well above the 
corresponding curves of all other methods, especially for the values of recall < 23% where precision = 
100%. Moreover, our predictor obtains precision = 90% (80%) at recall of 27% (47%). This again 
highlights the ability of DMRpred to provide high quality predictions for very low FPRs, which is 
crucial given that number of NDMR residues is larger than the number of DMRs. Using predictions 
calibrated to a low false positive rate (FPR) = 5%, DMRpred’s accuracy = 82% and precision = 78.8%, 
which means it correctly predicts 82% of residues and 78.8% of the putative DMR residues. In contrast, 
the other approaches make correct predictions for between 70% and 77% of residues, and between 15% 
and 70% of the predicted DMR residues. DMRpred also secures much higher recall, MCC, and 
AUCRratio when compared to the other methods.  Recall = 47.4% means it correctly finds 47.4% of 
native DMR residues when it’s FPR = 5%, i.e., the fraction of NDMR residues incorrectly predicted as 
DMR is only 5%. As expected, predictors of disorder have on average higher recall than the predictors 
of functional disordered regions and MoRFs. This is because only a subset of the disordered regions are 
targeted by the methods that predict functional disordered regions and MoRFs. We note that DMRpred 
has better recall than the disorder predictors for the low values of FPR (Figure 3A), which again points 
to DMRpred’s ability to provide substantially more accurate predictions of DMRs. However, this trend 
reverses for the higher values of FPR > 0.3 where the higher recall for the disorder predictors stems 
from the fact that all DMRs are disordered regions (Figure 3A). Finally, DMRpred’s MCC = 0.51, 
which indicates strong correlation between the predicted DMR annotations and the native DMR 
annotations. This is compared to the second best MCC = 0.35 that is secured by SPOT-disorder. 
 
The predictors of the intrinsically disordered residues (SPOT-disorder, the three versions of Espritz and 
the two versions of IUPred) offer significantly lower predictive performance, compared to DMRpred, 
because they predict all IDRs irrespective of their function(s) while majority of IDRs are not DMRs. 
Correspondingly, these methods over-predict DMRs. For instance, for the same predicted positive rate = 
25% (number of predicted DMR residues divided by number of native DMR residues), DMRpred 
generates only 29 false positives while SPOT-disorder produces 268 false positives and the three Espritz 
versions generate between 613 and 1,254 false positives. The lower than DMRpred’s recall for the 
disorder predictors stems from the fact that they predict a smaller number of true positives for the fixed 
at 5% false positive rate that is used in this tests. However, their recall is still higher than the recall of 
methods that predict MoRFs, functional disordered regions and methods that rely on the sequence 
conservation, which is because these are optimized to predict a broader category of all disordered 
residues.   
 
DisoRDPbind, Anchor, MoRFpred and fMoRFpred generate putative IDRs that interact with DNA, 
RNA or proteins, instead of multi-functional DMRs, some of which may also implement functions that 
do not involve binding to nucleic acids and proteins (e.g., entropic regions and metal-binding regions). 
The relatively low recall of these four methods compared to DMRpred (Table III) suggest that they find 
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only a small subset of DMRs. The low predictive performance of the conservation scores (MCC < 0.11 
and recall < 0.11) suggests that using the evolutionary conservation alone is not sufficient to separate 
DMRs and non-DMRs. This is because many of the NDMR residues could be conserved, including 
residues that interact with one ligand (residues in the monofunctional structured and disordered regions) 
and residues that are crucial for structural integrity of the protein fold. Moreover, the low predictive 
quality of PSI-BLAST (MCC = 0, precision = 26.9% and recall = 6.8%) is likely due to the fact that the 
test dataset shares low sequence similarity with the training proteins (< 25%) and thus alignment cannot 
find reliably similar chains to transfer the DMR annotations. 
 
Table VII. Assessment of predictions on a version of the test dataset that includes only monofunctional 
IDRs and DMRs (structured regions are excluded). + means that DMRpred is significantly better than a 
given other method (p-value < 0.01). Accuracy, precision, recall and MCC are calculated at 5% false 
positive rate (see Materials and Methods for details). The best results for each measure of predictive 
performance are shown in bold font. NA (not available) is due to the fact that PSI-BLAST provides only 
the binary predictions. 
 

Prediction target Methods Accuracy Precision Recall MCC AUCR AUCRratio AUCPR 
Disordered 
moonlighting 
regions 

DMRpred 0.595 0.880 0.294 0.319+ 0.687 11.140 0.772 
PSI-BLAST 0.454+ 0.479+ 0.068+ -0.037+ NA NA NA 

Disordered 
regions 

SPOT-disorder 0.548+ 0.833+ 0.208+ 0.231+ 0.601+ 3.348+ 0.650+ 
Espritz_NMR 0.478+ 0.654+ 0.080+ 0.059+ 0.544+ 0.831+ 0.572+ 
IUPred-long 0.497+ 0.728+ 0.117+ 0.115+ 0.532+ 1.645+ 0.587+ 
IUPred-short 0.453+ 0.444+ 0.032+ -0.041+ 0.526+ 0.611+ 0.554+ 
Espritz_X-ray 0.456+ 0.481+ 0.039+ -0.026+ 0.489+ 0.774+ 0.536+ 
Espritz_DisProt 0.434+ 0.000+ 0.000+ -0.167+ 0.378+ 0.000+ 0.448+ 

Functional 
disordered 
regions 

Anchor 0.458+ 0.513+ 0.044+ -0.013+ 0.530+ 0.746+ 0.557+ 
DisoRDPbind_AvgTwoHigh 0.483+ 0.680+ 0.089+ 0.076+ 0.519+ 1.524+ 0.568+ 
DisoRDPbind_AvgThree 0.460+ 0.527+ 0.047+ -0.007+ 0.497+ 0.677+ 0.534+ 

Sequence 
conservation 

Entropy 0.449+ 0.395+ 0.028+ -0.059+ 0.510+ 0.527+ 0.539+ 
Relative entropy 0.453+ 0.455+ 0.035+ -0.037+ 0.504+ 0.752+ 0.538+ 
NEFF 0.472+ 0.626+ 0.070+ 0.042+ 0.472+ 1.773+ 0.526+ 

MoRF regions MoRFpred 0.456+ 0.488+ 0.040+ -0.024+ 0.485+ 0.905+ 0.528+ 
fMoRFpred 0.447+ 0.358+ 0.023+ -0.071+ 0.413+ 0.511+ 0.476+ 

 

Empirical comparison with alternative approaches on dataset with mono-
functional IDRs and DMRs 

DMRpred predicts DMRs, which are a subset of IDRs that are multifunctional. While current 
predictors of IDRs and functions of IDRs fairly accurately differentiate between structured and 
disordered residues18-21, a unique feature of DMRpred is that it is capable to distinguish between 
monofunctional and multifunctional IDRs (DMRs).  
 
We test and compare this feature of DMRpred with the other 15 considered approaches. Results of an 
empirical comparison of predictive performance of these methods on a version of the test dataset that 
includes only the monofunctional IDRs and multifunctional IDRs (DMRs) (i.e., test dataset where 
structured residues are removed) are shown in Table VII.  Figures 3B and 4B show the 
corresponding ROC curves and precision-recall curves, respectively. Like on the complete test 
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dataset, DMRpred secures the best results across the entire and comprehensive spectrum of measures 
of predictive performance. In particular, it obtains AUCR close to 0.7 and AUCRratio slightly above 
11. The latter means that DMRpred outperforms a random predictor by 11 folds when generating 
predictions characterized by low false positive rates. Table VII shows that our tool achieves 88% 
precision, close to 30% recall and MCC = 0.32 at the low 5% false positive rate. The differences in 
the predictive performance between DRMpred and each of the other 15 methods are statistically 
significant (p-value < 0.01). As expected we observe that the disorder predictors (SPOT-disorder, 
Espritz and IUPred) struggle to separate mono and multifunctional IDRs. They secure AUCR ≤ 0.6 
and AUCRratio < 3.4. The other alternative predictors offer an even lower predictive quality with 
AUCR ≤ 0.53 and AUCRratio < 1.8. Lastly, we observe that the results on this dataset are overall worse 
than on the original test dataset that also includes structured residues. This trend extends over all 
considered methods and is expected since it is relatively easier to differentiate between DMR 
residues and structured residues compared to DMR vs. monofunctional IDR residues. Moreover, as 
we mention in Materials and Methods, some of the monofunctional IDRs could be re-labeled as 
DMRs as additional and different functional annotations are discovered in the future. This issue 
contributes to the lower predictive performance since the fraction of potentially mislabeled non-
DMR residues is higher in this test dataset compared to the original dataset that includes structured 
residues.  

Case study 

We use the serine/threonine-protein phosphatase 2B (DisProt ID: DP00092) from the test dataset to 
illustrate predictions by DMRpred. This protein has two IDRs, one at the N-terminus (positions 1 to 
13 63), and the other at the C-terminus (positions 373 to 521 63). The first IDR has no functional 
annotations or binding partners in DisProt and by our definition it is annotated as unknown (neither 
DMR nor NDMR). The second IDR includes a protein-binding region where calmodulin binds 
(positions 373 to 468) 63-65 and an auto-inhibitory domain (positions 371 and 511) 64,65, which define 
it as DMR. Figure 5 plots the outputs of DMRpred, and other methods with the highest AUCR for a 
given prediction target (Table VI), except the MoRF predictors that have AUCR < 0.5. DMRpred’s 
scores (red line) at the C-terminus are high, which correctly suggests a DMR there. The scores for 
the structured catalytic domain (positions 14 to 373; blue horizontal line) and the N-terminus are low, 
suggesting that there are no DMRs there. We argue that DMRpred’s prediction for the IDR at the N-
terminus is possibly correct, given that this extensively studied protein does not yet have a functional 
annotation for this short region. To compare, SPOT-disorder (black dotted line) correctly identifies 
the IDR at the N-terminus and also partially predicts the IDR at the C-terminus. This prediction 
highlights our observation that the IDR predictors are likely to over-predict DMRs. Interestingly, the 
average of the two highest scores from DisoRDPbind (gray line) fails to identify the native DMR, 
although we observe a slight increase in the scores at the N-terminus due to higher values for its 
protein-binding predictions. Finally, conservation scores (black solid line) are not suitable to identify 
DMRs since they point to several highly conserved regions that do not line up with DMRs. Overall, 
we conclude that DMRpred offers reasonably accurate predictions for this protein that cannot be 
substituted with outputs of the other methods. 
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Figure 5. Predictions for human PP2BA protein (serine/threonine-protein phosphatase 2B; DisProt 
ID: DP00092). The horizontal lines at the bottom show native disordered regions (IDRs; light green), 
native DMRs (dark green), NDMRs (blue) and unknown regions (violet). We include outputs from 
DMRpred (thick red line), DisoRDPbind (gray), SPOT-disorder (dotted black) and conservation 
scores from HHblits (solid black). 

Prediction and analysis of DMRs in the human proteome 

We characterize putative DMRs and IDRs in the complete reviewed human proteome that we 
collected from UniProt66,67. We retrieved the annotations of intrinsic disorder for these proteins from 
the MobiDB database68,69. We use 19,917 human proteins after removing about 200 proteins that 
could not be mapped to MobiDB. We make predictions with DMRpred and annotate DMR residues 
based on the binary predictions that are calibrated to produce 5% false positive rate on the test 
dataset, i.e., residues with propensities ≥ 0.761 are assumed as DMR residues. We annotate putative 
DMRs as segments of at least four consecutive DMR residues. This is in line with the definition of 
all IDRs that are expected to include at least four consecutive amino acids18,19. We found about 32 
thousand putative DMRs in the human proteome, which corresponds to around 30% of the 107 
thousand putative IDRs. This is similar to the 37% rate of DMRs among the IDRs included in 
DisProt, which was reported in15. We focus our analysis on long (≥ 30 consecutive residues) putative 
DMRs and IDRs since they are recognized as a distinct class of biologically functional domains4,70,71. 
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Figure 6.  Analysis of putative DMRs in the complete reviewed human proteome. Panel A shows 
relation between the number of long (>30 consecutive residues) putative DMRs and intrinsically 
disordered regions (IDRs). Bars show number of proteins that have the number of long regions given 
on the x-axis. Panel B summarizes content of residues in putative DMRs and putative IDRs. Bars 
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show the number of proteins with content ranges given on the x-axis. Panel C analyzes the length of 
putative DMRs and IDRs. Bars show the number of regions with length ranges given on the x-axis. 
Lines show the corresponding cumulative fractions of proteins in each of the three panels. The 
putative DMRs were generated with DMRpred. Putative IDRs were collected from MobiDB. 
 
Figure 6A suggests that about 53% of human proteins have at least one long IDR. This agrees with 
recent estimates that ranged between about 45%4 and 50%5. Interestingly, we show that about 25% 
of human proteins may have at least one long DMR, and 8% may have three or more long DMRs. 
Figure 6B shows that about 29% human proteins have DMRs. The content of DMR residues among 
the remaining 71% proteins is below 5%. These are considered spurious predictions since that the 
false positive rate of DMRpred is estimated to be 5%. To compare, about 81% of human proteins 
have disordered residues, i.e., their disorder content > 5%. Such substantial difference in the rate of 
disorder vs. DMR content is reasonable given that only a small fraction of IDRs are DMRs. Further 
analysis shows that about 11% of human proteins are predicted to have at least modest content of 
DMRs (>30% of their residues are in DMRs) and 4.6% to have large content (> 50%) (Figure 6B). 
These results also reveal that three times as many proteins (approximately 31%) have > 30% disorder 
content. The latter result is in good agreement with a recent analysis in Ref. 4 where about 31.5% of 
proteins were predicted to have at least 30% of disordered residues. The histograms of length of 
DMRs and IDRs are given in the Figure 6C. Both histograms follow the same trend, where there are 
gradually fewer regions that are longer. The main differences are the overall number of regions that, 
as expected, is much lower in the case of DMR. The rate of decline that is also lower for DMRs; see 
black bars (for IDRs) and gray bars (for DMRs) in Figure 6A. Interestingly, our analysis reveals that 
most of the very long disordered regions are possibly DMRs, given that the number of regions longer 
than 150 residues is similar when comparing IDRs and DMRs.  

DMRpred’s webserver 

DMRpred’s webserver is available at http://biomine.cs.vcu.edu/servers/DMRpred. Users only need 
to provide FASTA-formatted protein sequence(s) to obtain predictions that are computed on the 
server side. The webserver outputs a propensity score for each residue in the input sequence(s) for 
being a DMR residue. It also produces binary predictions that are generated from the propensities 
using the cutoff = 0.761; residues with propensity ≥ 0.761 are predicted as DMR residues. This 
cutoff was calibrated to provide 5% FPR on the test dataset. The DMRpred’s webserver allows batch 
submissions of up to 50 sequences at one time. The sequences should be at least 21 residues long 
since ASAquick that is embedded into DMRpred requires this. Users are encouraged to provide 
email address which is used to provide notification when the prediction is finished and a private URL 
where the results can be downloaded from. Whether or not the email is provided, the results are also 
made available in the browser window, given that the user will not close it when the results are being 
processed. DMRpred is relatively fast. The webserver produces prediction for a protein with length 
of about 500 residues in less than one minute. 

Conclusions 

We conceptualized, designed, tested and deployed DMRpred, the first-of-its-kind computational 
method for the prediction of DMRs directly from protein sequences. DMRpred uses the input 
sequence to derive a comprehensive profile that includes sequence conservation, putative relative 
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solvent accessibility and intrinsic disorder, and a novel set of residue-level propensities for functions 
that are relevant to DMRs. The information in this profile is aggregated using sliding windows and 
an innovative type of windows defined based on putative IDRs. Features extracted from this profile 
are input to the Random Forest model to make the predictions.  
 
We empirically demonstrate that the various parts of the profile and the two types of windows are 
useful for the prediction. Results on a blind test dataset reveal that DMRpred provides accurate 
predictions of DMRs. The predictive quality of DMRpred is statistically significantly higher than the 
predictive performance of a comprehensive set of alternative approaches to make these predictions. 
Predictions on the complete human proteome reveal that as many as 25% of human proteins may 
have at least one long DMR. A webserver that implements DMRpred is freely available at 
http://biomine.cs.vcu.edu/servers/DMRpred/. 
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