
proteins
STRUCTURE O FUNCTION O BIOINFORMATICS

Genome-scale prediction of proteins with long
intrinsically disordered regions
Zhenling Peng, Marcin J. Mizianty, and Lukasz Kurgan*

Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada

ABSTRACT

Proteins with long disordered regions (LDRs), defined as having 30 or more consecutive disordered residues, are abundant

in eukaryotes, and these regions are recognized as a distinct class of biologically functional domains. LDRs facilitate various

cellular functions and are important for target selection in structural genomics. Motivated by the lack of methods that

directly predict proteins with LDRs, we designed Super-fast predictor of proteins with Long Intrinsically DisordERed

regions (SLIDER). SLIDER utilizes logistic regression that takes an empirically chosen set of numerical features, which con-

sider selected physicochemical properties of amino acids, sequence complexity, and amino acid composition, as its inputs.

Empirical tests show that SLIDER offers competitive predictive performance combined with low computational cost. It out-

performs, by at least a modest margin, a comprehensive set of modern disorder predictors (that can indirectly predict

LDRs) and is 16 times faster compared to the best currently available disorder predictor. Utilizing our time-efficient predic-

tor, we characterized abundance and functional roles of proteins with LDRs over 110 eukaryotic proteomes. Similar to

related studies, we found that eukaryotes have many (on average 30.3%) proteins with LDRs with majority of proteomes

having between 25 and 40%, where higher abundance is characteristic to proteomes that have larger proteins. Our first-of-

its-kind large-scale functional analysis shows that these proteins are enriched in a number of cellular functions and proc-

esses including certain binding events, regulation of catalytic activities, cellular component organization, biogenesis, biologi-

cal regulation, and some metabolic and developmental processes. A webserver that implements SLIDER is available at http://

biomine.ece.ualberta.ca/SLIDER/.
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INTRODUCTION

Intrinsically disordered proteins (IDPs) and intrinsi-

cally disordered regions (IDRs) in protein chains are

characterized by lack of stable tertiary structure under

physiological conditions in vitro.1 They are found across

all domains of life, with archaean and bacterial species

having relatively low amounts of disorder and eukaryotes

that are strongly enriched in disorder.2–4 IDPs and IDRs

implement important cellular functions,5–10 and

their prevalence was implicated in various human dis-

eases.11–13 However, currently only a limited number of

disordered proteins were characterized experimentally,14

and these efforts lag behind the rapidly accumulating

number of protein chains. This motivates development

of computational methods that perform accurate and

high-throughput prediction of disorder.

A number of studies have shown that IDPs and IDRs

have unique sequence signatures, i.e., disorder is fre-

quently observed in regions with low complexity, low

content of hydrophobic amino acids, high content of

polar and net-charged residues, in regions that lack sec-

ondary structures and that have unique evolutionary and

solvent accessibility profiles.7,15–17 This suggests that

disorder is predictable from the protein sequence and

enables development of computational approaches for

the sequence-derived prediction of disorder. Many such

predictors have been developed in the past two deca-

des.18–20 Since 2002, they are being continually assessed

in the biannual CASP (Critical Assessment of Techniques

for protein Structure Prediction) experiments.21–25
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Although these methods predict the disorder relatively

well at the residue level,19,25 they are less accurate at the

sequence level. Specifically, they were shown to over- or

under-estimate the overall amount of disorder in a given

chain19,26 and to provide a relatively low predictive per-

formance for the prediction of long disordered seg-

ments.19,25 Furthermore, most of these methods

perform multiple sequence alignment with PSI-BLAST,27

which is relatively time consuming. A modern desktop

computer takes about 5 minutes to run the alignment

for an average-sized protein chain with about 300 resi-

dues. This translates to a prohibitive estimate of

70,000*5 5 350,000 minutes, which equals 243 days to

calculate these alignments for a human proteome. A few

fast predictors, such as ESpritz,28 IUPred,29,30 and

VSL2B,31 are available but their predictive quality and

computational costs require further improvements, which

we demonstrate in our empirical analysis.

In this work, we focus on the prediction of proteins

with long disordered regions (LDRs), which are defined

as having 30 or more consecutive residues in

length.3,4,32–34 By conservative estimates, about 10–

35% of prokaryotic and about 15–45% of eukaryotic

proteins contain these long disordered regions,3,32 with

over 40% in the human proteome.35 The number of

proteins with LDRs was estimated to be an order of

magnitude higher in eukaryotes than in archaea and bac-

teria.36 They were found in various protein families,

with examples being transmembrane proteins37 and spli-

ceosome proteins.38 Moreover, LDRs are recognized as a

distinct class of biologically functional protein domains,

which points to their important role as functional ele-

ments.35,39 Importantly, knowledge of LDRs finds prac-

tical applications, as they are implicated in protein–

protein recognition and are important for target selection

in structural genomics.39–42 Motivated by the impor-

tance and abundance of LDRs, lack of methods that

directly predict proteins with LDRs, and the fact that

current disorder predictors (which can be indirectly used

to find LDRs) are deficient in speed and accuracy, our

aim was to develop an accurate and fast predictor of pro-

teins with LDRs. Our Super-fast predictor of proteins

with Long Intrinsically DisordERed regions (SLIDER) is

characterized by several advantages: (1) low computa-

tional cost (our method is at least an order of magnitude

faster than the existing methods; it predicts an entire

human proteome in about 30 minutes on a desktop

computer); (2) comprehensive design (we utilize feature

selection to design a well-performing set of descriptors

that are generated by combining composition and physi-

ochemical properties of amino acids and sequence com-

plexity, and a fast, empirically designed logistic

regression-based prediction model); and (3) good predic-

tive performance (SLIDER offers at least modest

improvements when compared with a comprehensive set

of modern disorder predictors on a large benchmark set

that shares low similarity to the SLIDER’s training data-

set). We also applied our predictor to analyze abundance

and to perform first-of-its-kind large-scale functional

characterization of chains with LDRs in 110 eukaryotic

proteomes. Our results on the abundance are in

agreement with previous studies, while the functional

analysis reveals that LDRs are primarily involved in

transcription, enzyme regulation, and various binding

events.

MATERIALS AND METHODS

Datasets

We utilized a recently proposed MxD dataset43 to

design and test our predictor. The disorder in this data-

set is defined based on curated annotations collected

from release 4.9 of the DisProt database14 and annota-

tions based on REMARK 465 utilizing structures from

the Protein Data Bank (PDB),44 which is consistent with

protocols used in CASP. Furthermore, the annotations

for chains from DisProt were enriched using the SL

dataset-based procedure,45 similar to that in several

related recent studies.26,46–49 Each protein was classified

as either having or not having the long disordered

region; residues in chains from DisProt that lack annota-

tions were ignored when classifying the chains. The origi-

nal set of 514 chains was reduced to 494 proteins since

we had to remove several chains that could not be pre-

dicted by the evaluated disorder predictors. These 494

chains were randomly partitioned into equal-sized

TRAINING and TEST datasets, each with 247 proteins

including 130 and 128 chains with LDRs, respectively.

Since the chains in the MxD set are characterized by

pairwise sequence identity below 25%,43 the TRAINING

and TEST datasets also share this low level of similarity.

We could not use the benchmark sets from the recent

CASP9 and CASP10 experiments since they include only

8 and 10 LDRs, respectively, which would not allow for a

statistically sound evaluation. The TRAINING and TEST

datasets are available at http://biomine.ece.ualberta.ca/

SLIDER/

We extracted all 110 fully sequenced eukaryotic pro-

teomes (1,901,810 proteins) from the release 2011_08 of

UniProt.50 These proteomes are predicted with SLIDER

to investigate abundance and functional roles of putative

proteins with LDR in eukaryotes. We also used this data-

set to perform large-scale assessment of the runtime of

SLIDER.

Evaluation criteria and statistical
significance

The prediction consists of a binary label (protein with

or with no LDR) together with a numeric score that

quantifies propensity of the input chain to have LDRs.
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The binary predictions were assessed using four

measures:

Accuracy5 TP 1TNð Þ= TP 1FP 1TN 1FNð Þ

Mathews Correlation Coefficient MCCð Þ
5 TP � TN 2FP � FNð Þ=sqrt TP 1FPð Þ TP 1FNð Þð

TN 1FPð Þ TN 1FNð ÞÞ

Sensitivity 5TP = TP 1FNð Þ
Specificity 5TN = TN 1FPð Þ

where TP (true positive) is the count of correctly pre-

dicted proteins with LDRs, TN (true negative) is the

number of correctly predicted proteins without LDRs, FP

(false positive) is the number of chains that do not have

LDRs but were predicted to have them, and FN (false

negative) is the count of proteins that have LDRs but

were predicted not to have them. MCC values range

between 21 and 1, and they are equal to zero when all

proteins in a given dataset are predicted to have the

same outcome.

The predicted propensities were evaluated using the

receiver operating characteristic (ROC) curves. For a pro-

pensity threshold P that ranges between 0 and 1, the

proteins with predicted propensity equal or greater than

P are assumed to be positive (having LDRs), and all

other chains are set as negative (having no LDRs). Next,

the TP-rate 5 TP/(TP1FN) and the FP-rate 5 FP/

(FP1TN) are used to draw the ROC curve by varying

the values of P. We used the area under the ROC curve

(AUC) to quantify the predictive quality, where higher

values indicate better predictions.

We also assessed statistical significance of improve-

ments, which are measured with MCC and AUC, offered

by our method when compared to the other predictors.

First, we randomly selected 10 sets of 100 protein chains

from the TEST dataset and computed the MCC and

AUC of each considered predictor on each of the 10 pro-

tein sets. Next, we evaluated significance of the differen-

ces in MCC/AUC between these 10 paired results, i.e.,

SLIDER’s results against results of another predictor. If

these MCC/AUC values follow normal distribution, as

tested using Shapiro-Wilk test51 at the 0.05 significance,

then we utilized paired t-test; otherwise we used the Wil-

coxon rank sum test.52 The MCC/AUC of a given pre-

dictor is assumed to be equivalent to that of SLIDER if

the resulting P-value >0.05; otherwise we assumed that

the difference is significant.

Design of the predictive model

The design of the model was performed in four steps

utilizing the TRAINING dataset. First, we investigated

relation between various physiochemical properties of

amino acids (AAs) and the native annotations of the

LDRs. This led to the empirical selection of certain prop-

erties that are useful for the prediction of proteins with

LDRs. Second, we developed a numerical (feature-based)

representation of the input protein chains using the

composition of the sequence and these selected proper-

ties. Third, we performed correlation-based feature selec-

tion to remove irrelevant (to the prediction of chains

with LDRs) and redundant (with each other) features.

Fourth, we empirically selected and parameterized pre-

diction model that uses the selected features.

Selection of relevant physiochemical properties of amino
acids

Several physicochemical properties of AAs, such as

flexibility, solvent accessibility, net charge, hydrophobic-

ity, etc., were successfully used to implement existing dis-

order predictors.7,17,53,54 This motivated our approach,

in which we investigated whether AA indices from the

AAindex database are useful to predict chains with

LDRs. We collected all 544 indices from version 9.1 of

AAindex55,56 to comprehensively cover physicochemical

properties of AAs; 13 indices were removed since they

include unknown/missing values.

Since some of these indices are likely irrelevant to the

prediction of LDRs, we filtered them by empirically

assessing their relevance using the TRAINING dataset.

For a given index, we calculated the average of its values

for AAs in LDRs and average of its values in the remain-

ing residues for the chains from the TRAINING dataset.

We evaluated whether these averages are significantly dif-

ferent by repeating these calculations for 10 sets of ran-

domly selected 100 proteins from the TRAINING

dataset. If these averages follow normal distribution,

which was tested with the Shapiro-Wilk test at the 0.05

significance, then we used paired t-test to evaluate signif-

icance; otherwise we used the Wilcoxon rank sum test.

We removed all indices for which the resulting P-value

>0.05. Consequently, we kept 451 indexes which are

characterized by significant differences between AAs in

LDRs and other AAs. Next, we discarded redundant indi-

ces, i.e., those that are similar to each other. We com-

puted the Pearson Correlation Coefficient (PCC)

between values of each pair of the remaining indices to

estimate the redundancy. We grouped them together

such that each pair of indices in a given group has

PCC> 0.7, and for each group we retain only one index

that has the smallest P-value. As a result, we selected 48

AA indices.

Sequence representation

Besides the physicochemical properties, previous stud-

ies have shown bias of particular AAs toward disordered

conformations and demonstrated that complexity of

the underlying sequence is related with propensity for

disorder.1,57–59 Importantly, these sequence-derived
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characteristics can be computed very quickly, which facil-

itates our goal to keep the computational costs low. The

above motivates the use of the selected AA indices,

sequence complexity, and the AA composition to develop

feature-based/numerical representation of the input pro-

tein sequence. We considered the following four sets of

features:

1. AA composition, which is defined as the ratio of the

number residues of a given AA type among all resi-

dues in the input protein chain (20 features).

2. Features based on the annotation of the low/high

complexity regions generated by the SEG algo-

rithm60,61 (10 features). We calculated the number of

AAs in the low/high complexity regions (two features),

the number of low/high complexity segments with at

least four consecutive residues (two features), and the

average and maximum length of the low/high com-

plexity segments (2*2 5 4 features); these features were

normalized by the protein length. Furthermore, we

used a sliding window with size of 30 (which corre-

sponds to the minimal length of the LDRs) to count

how many of the resulting 30-residues-long segments

are composed entirely from residues assigned as either

low or high complexity; these counts were normalized

by the total number 30-residues-long segments in a

given sequence (two features).

3. Features based on the selected AA indices/physico-

chemical properties (144 features). We computed three

features for each of the 48 selected AA indices. First,

we calculated the average value of a given AA index

over all residues in the input protein chain. The other

two features correspond to the minimum and maxi-

mum averages among the values calculated using a

sliding window with size of 30. The latter quantifies

particular bias in a given chain to have 30-residues-

long segments with extreme values of the selected

physicochemical properties.

4. Hybrid features that combine AA compositions, the

selected AA indices, and the annotation of complexity

regions (328 features). We computed AA composition

for residues in the high and low complexity regions,

respectively, that were generated by the SEG method

(20*2 5 40 features). We also calculated average values

of each of the 48 selected AA indices using features

defined in the feature set 3 in the high and low com-

plexity regions, respectively (144*2 5 288 features).

All together we generated 20 1 10 1 144 1 328 5 502

features.

Feature selection

Some of the considered 502 features could be irrele-

vant to the prediction of proteins with LDRs and/or

could be redundant with each other. Thus, for each fea-

ture we investigated its relevance to our prediction task

by computing average point-biserial correlation62

between values of this feature and the native, binary

labels of proteins with/without LDRs. The average is

based on five point-biserial correlations that correspond

to five training folds that are generated utilizing five-fold

cross-validation on the TRAINING dataset. We removed

features characterized by low, below 0.2, correlations.

Next, we computed PCC values for all pairs of the

remaining features to remove redundancy. We used six

thresholds to define redundant features, i.e., a given fea-

ture is assumed to be redundant if it has PCC with

another feature that is greater than 0.4, 0.5, 0.6, 0.7, 0.8,

and 0.9, respectively. We grouped the features together

such that each pair of features in a given group has PCC

greater than a given threshold and we selected one fea-

ture, the one with the highest point-biserial correlation,

from each group. As a result, we obtained six sets of fea-

tures, depending on the value of the redundancy thresh-

old. Figure 1 shows (see the gray bars) that the sizes of

the six feature sets decrease proportionally with the value

of the threshold, from 124 features for the thresh-

old 5 0.9 to 19 features for the threshold 5 0.4.

Selection and parameterization of prediction model

We considered two popular classification algorithms,

Support Vector Machine (SVM) and ridge logistic regres-

sion, to generate our prediction model. Moreover, we

tested two commonly used kernel functions, Radial Basis

Function (RBF) and polynomial, to implement SVM.

Each of the three classifiers, including two versions of

SVM and the ridge regression, was parameterized. The

parameterization was performed using grid search in

which we vary the values of the complexity constant

C 5 2x, where x 5 (28, 27, . . ., 8) and the degree of

polynomial d 5 (1, 2) for the SVM with the polynomial

kernel; complexity constant C 5 2x and g 5 2x of the

RBF function for the SVM with the FBF kernel, and the

ridge parameter r 5 10z, where z 5 (211, 29, . . ., 4), for

the ridge logistic regression. The parameters that corre-

spond to the highest value of AUC based on the five-fold

cross-validation on the TRAINING dataset were selected.

This parameterization was performed for each of the six

features sets generated based on different values of the

redundancy threshold for a total of 18 setups; the results

are summarized in Figure 1. The ridge logistic regression

provides slightly higher values of the cross-validated

AUC when compared with both versions of SVM, except

when using low values of the redundancy threshold.

Moreover, the regression is also slightly faster to compute

compared to the SVM model that utilizes the same fea-

ture set. Overall, the highest AUC of 0.853 was obtained

with the ridge logistic regression and the 51 features

selected using the threshold of 0.6. This setup constitutes

the design of our SLIDER predictor. The ridge logistic

regression generates numeric propensities of a given
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input chain to have LDR. The binary predictions were

defined based on thresholding these propensities. A given

chain is predicted to have LDR if the propensity >0.538;

otherwise it is predicted not to have LDR. This threshold

corresponds to the maximal value of MCC based on the

predictions from the five-fold cross-validation on the

TRAINING dataset. The selected 51 features utilize 30

different AA indices that quantify a variety of physico-

chemical properties of AAs. These properties include sec-

ondary structures, solvent accessibility, hydrophobicity,

and flexibility that have been utilized in previous related

works; and some potentially new, in the context of the

disorder prediction, factors related to the propensity to

form transmembrane regions, heat capacity, unfolding

energy, and electron-ion interaction potentials. This

shows that our predictor applies novel sequence-derived

markers to find proteins with LDRs. The SLIDER

method is available, as an easy to use webserver, at

http://biomine.ece.ualberta.ca/SLIDER/.

RESULTS AND DISCUSSION

Comparative evaluation of predictive quality

The predictive quality of SLIDER is compared with a

comprehensive set of 23 modern disorder predictors on

the TEST dataset (see Table I). These predictors include

13 methods that were evaluated in a recent review19 and

other recently published predictors, such as PreDisor-

der,63 PrDos,64 two version of CSpritz: short and

long,46 and six versions ESpritz: optimized for low false

positive rate (FPR) and high Sw using NMR-based anno-

tation of disorder (ESpritz NMR-FPR and ESpritz NMR-

Sw), DisProt-based annotations of disorder (ESpritz DP-

FPR and ESpritz DP-Sw), and X-ray crystals-based anno-

tations (ESpritz Cx-FPR and ESpritz Cx-Sw).28 They

include publicly available versions of the top three disor-

der predictors according to AUC and MCC measures

from the CASP9 experiment: PrDOS, DISOPRED, Pre-

Disorder (also called MULTICOM), and MFDp.25 We

divide these methods into those that are based on a sin-

gle sequence, which are fast to compute, and those that

utilize multiple sequence alignment, which comes with a

higher computational cost. We convert the residue level

predictions from the considered 23 methods into the

per-sequence predictions of proteins with LDRs as fol-

lows. A given chain is predicted to have LDR if the per-

residue prediction includes at least one LDR, i.e., seg-

ment of 30 or more consecutive predicted disordered res-

idues; otherwise it is predicted not to have LDR. For

chains with LDRs, the numeric score that quantifies pro-

pensity to have LDRs was calculated as maximum among

the average per-residues probabilities generated by a

given prediction for 30 AA long sliding windows, i.e.,

highest average propensity for disorder among all LDRs.

For chains without LDR, the propensity is defined as

minimum among the average per-residues probabilities

using the same sliding windows. This approach maxi-

mizes the predictive quality of the per-residue predictors.

Table I shows that SLIDER obtains the highest values

of MCC and AUC. The magnitude of the improvements

over the other methods ranges from modest to relatively

large. SLIDER improves MCC by 100%*(0.63–0.61)/

0.61 5 3.3% and AUC by 100%*(0.87–0.86)/0.86 5 1.2%

Figure 1
Summary of results obtained during feature selection and selection and parameterization of the prediction model. The x-axis denotes the threshold

used to remove redundant features. The gray bars denote the number of selected features, which are quantified using the y-axis on the right and

shown using numbers at the bottom of the bars. The markers denote the predictive quality, measured using AUC shown on the y-axis on the right,
for a given prediction model. All results are based on the five-fold cross-validation on the TRAINING dataset.
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compared to the second-best in AUC VLS2B, and by

1.6% in MCC and by 3.6% in AUC compared with the

second-best in MCC CSpritz long. These improvements

were found to be statistically significant for all other pre-

dictors except VLS2B in case of AUC, and for 15 out of

23 methods when using MCC. Our predictor is charac-

terized by relatively high specificity coupled with strong

levels of sensitivity. This means that it relatively rarely

generates false positives (i.e., relatively few incorrect pre-

dictions among the chains predicted to have LDRs) and

that it correctly predicts majority (73%) of the native

chains with LDRs. Figure 2 gives the ROC curves for the

four top-performing according to AUC methods:

SLIDER, VSL2B, and two versions of CSpritz. SLIDER

provides high TP-rates for low FP-rates (i.e., can find a

high-quality subset of native chains with LDRs), which

are comparable with the results from VSL2B. It can also

find the highest number of native chains with LDRs for

higher values of the FP-rate, above 0.45.

This comparative analysis revealed that our specialized

predictor of chains with LDR offers competitive predic-

tive performance compared to a comprehensive set of

state-of-the-art generic, per-residue predictors. Moreover,

our predictions are very fast to compute, which gives a

substantial advantage when considering large-scale appli-

cations, which we demonstrate next.

Comparative evaluation of runtime

Our empirical analysis demonstrates that several meth-

ods obtain comparable to SLIDER levels of predictive

quality, i.e., high AUC >0.8 combined with high MCC

>0.55; they include VSL2B,31 CSpritz,46 PONDR-FIT,67

PreDisorder63, and MFDp.43 We compared runtime of

SLIDER with these top-performing predictors. CSpritz,

Table I
Comparison of Predictive Quality of SLIDER and 23 Modern Disorder Predictors on the TEST Dataset

Predictors Reference Accuracy Sensitivity Specificity MCC Sig. AUC Sig.

Single-sequence
predictors

SLIDER This paper 0.81 0.73 0.90 0.63 0.87
VSL2B 31 0.81 0.86 0.75 0.61 5 0.86 5

ESpritz Cx-Sw 28 0.76 0.76 0.76 0.52 1 0.79 11

IUPred short 29 0.76 0.63 0.91 0.55 5 0.77 11

Espritz NMR-Sw 28 0.70 0.73 0.67 0.40 11 0.77 11

IUPred long 29 0.74 0.57 0.93 0.54 1 0.76 11

Espritz Cx-FPR 28 0.74 0.63 0.86 0.49 1 0.76 11

Espritz NMR-FPR 28 0.72 0.63 0.82 0.45 1 0.75 11

Espritz DP-Sw 28 0.66 0.82 0.49 0.33 11 0.75 11

Espritz DP-FPR 28 0.71 0.52 0.92 0.47 11 0.67 11

Predictors that utilize
multiple sequence
alignment

Cspritz long 46 0.81 0.83 0.79 0.62 5 0.84 1

Cspritz short 46 0.78 0.80 0.75 0.55 1 0.83 1

RONN 65 0.78 0.80 0.76 0.55 5 0.82 1

DISOCLUST 66 0.75 0.80 0.70 0.51 1 0.82 11

PreDisorder 63 0.78 0.76 0.81 0.56 5 0.82 1

MFDp 43 0.78 0.80 0.76 0.56 5 0.81 11

PONDR-FIT 67 0.78 0.68 0.89 0.58 5 0.81 11

DISOPRED2 68 0.78 0.68 0.88 0.57 5 0.80 11

PrDos 64 0.74 0.55 0.94 0.53 1 0.78 11

NORSnet 69 0.72 0.49 0.97 0.53 1 0.77 11

Profbval 70 0.70 0.73 0.66 0.40 11 0.77 11

MD 71 0.73 0.66 0.82 0.48 11 0.72 11

DISpro 72 0.68 0.40 0.97 0.45 11 0.69 11

Ucon 73 0.70 0.45 0.97 0.48 1 0.69 11

The highest values for each quality index are shown in bold font. The “Sig.” columns give results of the test of significance of the differences in MCC and AUC between

SLIDER and a given predictor. The test compares results obtained with 10 randomly selected sets of 100 chains from the TEST dataset; “1” and “11” indicate that

improvements offered by SLIDER were significant with P-value <0.05 and <0.001, respectively; “5” denotes that the differences were not significant.

Figure 2
ROC curves for the four predictors with the highest AUC values:
SLIDER, VSL2B, CSpritz long, and CSpritz short on the TEST dataset.
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PONDR-FIT, PreDisorder, and MFDp utilize PSI-

BLAST27 and thus we estimated their runtime by the

time to run PSI-BLAST with one iteration (i.e., j 5 1)

against the nr database. The runtimes of SLIDER,

VSL2B, and one-iteration of PSI-BLAST that were calcu-

lated on the TEST dataset using a modern desktop com-

puter are compared in Figure 3(A). We focus our

analysis on relative differences in the runtime, rather

than on the absolute values, since these are hardware

independent. On average, over all considered chains,

SLIDER is 16.2 times faster than VSL2B and over three

orders of magnitude faster than PSI-BLAST; these differ-

ences are consistent across all chain sizes. Prediction for

a single chain with SLIDER takes between 25 and 100

milliseconds, depending on the chain length. The run-

times of SLIDER and VSL2B grow linearly with the chain

size, in contrast to PSI_BLAST that registers a quadratic

increase. Comparison of the increase between the run-

time for shortest (<100 AAs) and longest (>1000 AAs)

chains for SLIDER and VLS2B shows a modest 2.6-fold

increase, compared to the 15.1-fold increase when using

PSI-BLAST.

We further investigate these results by estimating the

runtime to perform predictions on 110 complete eukary-

otic proteomes, i.e., 1,901,810 proteins. We used linear

fitting from Figure 3(A) to estimate the runtime for

SLIDER and VLS2B and the quadratic fitting for the

PSI-BLAST. Both, linear and quadratic fits, provide good

approximations of the measured data, see Figure 3(A).

Figure 3(B), which compares the actual and approxi-

mated (using the linear fit) total runtime of SLIDER for

each of the 110 proteomes, confirms that the linear fit

provides accurate runtime estimates; the average absolute

error in the estimate is 26 seconds compared to an aver-

age per-proteomes runtime of 8 minutes and 46 seconds.

The total runtimes for the considered 1.9 million chains

for SLIDER, VSL2B, and one-iteration PRI-BLAST are

approximately 21 hours, 14 days, and 36 years, respec-

tively. We note that the considered 110 eukaryotic pro-

teomes constitute less than 0.02% of the total number of

known (to date) eukaryotic species, which exceeded

554,000 in a recent version of UniProt. To sum up, our

results demonstrate that SLIDER provides a fast and

accurate prediction of chains with LDRs that is required

to perform analysis in the high-throughput, proteomic-

scale setting.

Abundance of chains with LDRs in
eukaryotes

Using SLIDER, we assessed and characterized abun-

dance of proteins with LDRs in 110 fully sequenced

eukaryotic proteomes collected from UniProt50 and con-

trasted our results with similar recent analyses. An early

work investigated abundance of proteins with LDRs in a

limited set of five eukaryotic species.3 This was followed

by more recent contributions that include analysis of 67

eukaryotes4 and the largest to date investigation that

Figure 3
Comparison of runtime. Panel A shows relationships between the length of proteins chains (x-axis) and the runtime in milliseconds (y-axis in loga-
rithmic scale) computed for individual chains from the TEST dataset using a modern desktop computer for SLIDER (solid black markers), VSL2B

(hollow black markers), and one iteration (j51) of PSI_BLAST (hollow gray markers). Linear fits for these relations are shown for SLIDER (thick
black line) and VSL2B (thin black line); a quadratic fit is shown for the PSI_BLAST (thick gray line). Panel B gives relationship between the pro-

teome size and the total actual (black markers) and estimated based on linear fit from Panel A (gray markers) runtime in minutes to complete pre-

dictions with SLIDER on a modern desktop computer for each of the considered 110 eukaryotic proteomes.
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included 194 proteomes and which primarily focused on

contrasting the intrinsic disorder between eukaryotes and

prokaryotes.34 The former work utilized predictions with

an accurate VSL2B method, but it covered fewer species

than we considered here, and the results were not broken

down by different eukaryotic kingdoms/phyla, which

would provide further insights. The latter study per-

formed predictions with a less accurate, in the context of

the prediction of proteins with LDRs, IUPred method

and comprehensively analyzed ratios of chains with LDRs

and ratios of AAs in LDRs for individual proteomes; we

compare our results against this analysis. Another recent

contribution looked into relations between the intrinsic

disorder, proteome size, and organism complexity in 53

eukaryotes74; however, the authors did not analyze pro-

teins with the long disordered segments.

Similar to works by Xue et al.4 and Pancsa and

Tompa34 we quantified the overall abundance of proteins

with LDRs and studied the relation of the presence of

LDRs with the underlying chain length. The overall frac-

tion of proteins with LDRs over the considered 110

eukaryotes is estimated to be 30.3%, which is similar to

the estimate of 33.0% given by Ward et al.3 and lower

than 38.0% that was shown by Pancsa and Tompa.34

Figure 4 gives side-by-side comparison of the distribu-

tions of fractions of proteins with LDRs across eukaryo-

tic proteomes between the results by Pancsa and

Tompa34 and the results that we obtained using SLIDER.

The two distributions have similar shape, which demon-

strates that majority of the 110 proteomes have fairly

substantial fractions of chains with LDRs, i.e., 25–40% of

a given proteome computed with SLIDER and 30–50%

computed with IUPred. We found relatively few pro-

teomes on both tails of the distributions including those

that are depleted (below 10%) or highly enriched (above

50%) in these proteins. The main difference is that our

estimates are generally more conservative, which resulted

in the shift to the left. Figure 5 summarizes the relation

between the fractions of chains with LDRs and the aver-

age chain length per proteome for various eukaryotic

phyla/kingdoms. Our results confirm the results from a

smaller scale study by Xue et al.,4 where the fractions of

proteins with LDRs were shown to positively correlate

with the chain length in the eukaryotic species; the corre-

sponding Pearson Correlation Coefficient (PCC) equals

0.80 over all eukaryotes and ranges between 0.79 and

0.91 over various phyla/kingdoms. This relation is sum-

marized in Figure 6 over the considered 1.9 million

eukaryotic proteins, where the fraction of proteins with

Figure 4
Comparison of distributions of fractions of chains with LDRs for 110 eukaryotic proteomes predicted with SLIDER and 194 proteomes predicted
with IUPred in Ref. 34.

Figure 5
Relation between fraction (per proteome) of chains with LDRs (x-axis)

and average (per proteome) chains size (y-axis) for the considered 110
eukaryotic proteomes. Markers types represent phyla/kingdoms: alveo-

lata, fungi, metazoa, viridiplantae, and others that include amoebozoa,

choanoflagellida, cryptophyta, diplomonadida, euglenozoa. parabasalia,
and stramenopiles.
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LDRs grows monotonically with the chain size. Figure 6

shows that over 70% of large proteins that are composed

of over 1000 AAs have LDRs. Our results that focus on

eukaryotes are analogous to the results that were

obtained based on proteins collected from the SwissProt

databank.75 Overall, we conclude that proteomes with

bigger proteins are more likely to have more proteins

with long disordered segments. An extreme example is

the proteome of Toxoplasma gondii, which is located in

the top right corner in Figure 5. This host-changing par-

asite has fairly large protein chains, and prior studies

have suggested that the disorder in such parasitic organ-

isms could be utilized to implement complex life cycle

related to their ability to adapt to a wide range of envi-

ronments.34,76 The other species that include over 40%

of chains with LDRs include two parasites from Plasmo-

dium and another from Leishmania, several fungi, such

as Ustilago, Trichophyton, Sporisorium, Filobasidiella,

Neurospora, and Lodderomyces and a small algae Ecto-

carpus. Figure 5 also shows that fungi and alveolates are

characterized by the widest spread of the content of

chains with LDRs, spanning between 5 and 51% and

between 17 and 64%, respectively. On the other hand,

animals and plants have relatively small intra-species dif-

ferences in the content of these chains, e.g., for the ani-

mals the spread is between 14 and 39%.

Functional characterization of chains with
LDRs in eukaryotes

The prior characterizations of the cellular functions

carried by proteins with LDRs were done only on a small

scale. The earliest study considered only the S. cerevisiae

proteome,3 which was followed by an analysis of human

proteome.33 Several functions, such as transcription fac-

tor activity, DNA and protein binding, RNA metabolism,

kinase signaling, and phosphorylation were found to be

enriched in proteins with LDRs across these two stud-

ies.33 We also note a couple of related studies, including

analysis of a relatively small set of proteins collected

from the SwissProt databank75 and investigation of cel-

lular localizations of proteins with LDRs in the human

proteome.35 The latter contribution found that proteins

with long disordered segments are preferentially localized

in nucleus, various membranes, cytoplasm, and endo-

plasmic reticulum.35

Our study is the first to investigate functions that

are enriched in proteins with LDRs for a comprehen-

sive set of eukaryotes. We utilize the prediction by

SLIDER and the biological process and molecular func-

tion terms from Gene Ontology (GO),77 which are

linked to the proteins from the considered 110 eukar-

yotes that we collected from the UniProt. We discarded

terms/annotations that are linked to <1000 chains over

the 110 proteomes to assure that our analysis is statis-

tically sound. The enrichment was calculated using a

statistical test of significance based on the procedure

introduced in.78 Specifically, for a given annotation,

we randomly selected half of proteins with this annota-

tion and calculated their fraction that have LDRs. This

fraction was compared with the corresponding fraction

computed for the same number of size-matched chains

(protein length was matched to be 610%) drawn at

random from the entire set of 110 eukaryotes. The

Figure 6
Relation between the fraction of chains with LDRs (black line) and chain length (x-axis) over the considered 110 eukaryotes. The gray bars show
the corresponding number of chains for a given range of chain length.
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Figure 7
Molecular functions (top of the figure) and biological processes (bottom of the figure) that are significantly enriched in eukaryotic proteins with
LDRs. The first column gives all significant functions/processes including their name, the number of corresponding annotated proteins (# annot.),

fraction of these chains that have long disordered segment(s) (%LDRs), and significance of the enrichment (sig.). The significance is denoted with
“1” and “11”, which indicate that the P-value is <0.05 and <0.001, respectively. The functions/processes are sorted by the values of the differ-

ence. The horizontal bars in the second column shows the magnitude of the enrichment (difference in the fraction of proteins with LDRs between
proteins annotated with a given functions and the baseline in the entire eukaryotic complete proteome). The remaining columns show the major

types of molecular functions and biological processes and their association with the GO annotations; for the molecular functions they include bind-

ing (BIN), catalytic activity (CAT); enzyme regulator activity (ENR), and nucleic acid binding transcription factor activity (TRF), for the biological
processes they include cellular process (CPR), metabolic process (MPR), biological regulation (BRE), single-organism process (SOP), cellular com-

ponent organization or biogenesis (CCO), response to stimulus (RTS), and developmental process (DPR).
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matching of the size was done to accommodate for the

relation discussed in the “Abundance of chains with

LDRs in eukaryotes” section. These calculations are

repeated ten times and we assessed significance of the

differences in the corresponding ten pairs of fractions.

If these measurements follow normal distribution, as

tested using Shapiro-Wilk test at the 0.05 significance,

then we used paired t-test; otherwise we used the Wil-

coxon rank sum test. A given annotation is assumed to

be significantly enriched in proteins with LDRs if the

resulting P-value <0.05. Furthermore, we only consid-

ered annotations where the increase in the fraction of

chains with LDRs had sufficiently large magnitude, i.e.,

the increase must be at least 10% compared to the

fraction of proteins with LDRs across all considered

eukaryotic proteomes.

Figure 7 shows a relatively high number of cellular

functions that are significantly enriched in proteins with

LDRs. Some of these functions are associated with pro-

tein sets where majority of chains have LDRs. For

instance, we identified eight molecular functions and five

biological processes where over two-thirds of the corre-

sponding chains have LDRs. Some of the enriched func-

tions that we found overlap with the results from the

previous studies,3,33,75 including various DNA and

RNA binding events that facilitate transcription, DNA

repair, DNA replication, DNA recombination, and RNA

metabolism; signal transduction via the GTPases and

protein kinases; rRNA and mRNA processing; cell cycle

processes; intracellular transport; metal ion binding;

ribosome biogenesis and nucleosome assembly that was

recently investigated by Peng et al.79 Our results also

point to the involvement of proteins with LDRs in some

other functions and processes, including cell differentia-

tion, cell division, and RNA splicing, which corroborates

with the results obtained using SwissProt,32,75 transla-

tion, protein dimerization, binding with unfolded pro-

teins, several catalytic activities associated with cysteine

peptidases, pseudouridine synthases, endonucleases and

exonucleases, and involvement in activity of heat shock

proteins, which was recently studied by Reichmann

et al.80 All considered individual functions and proc-

esses, including those that are and are not significantly

enriched, were aggregated to the second level of GO to

summarize our findings (see Fig. 8.) This figure lists

major types of functions and processes that are enriched

or depleted in proteins with LDRs and quantifies levels

of their coverage; only the processes and functions that

have enough data to provide a statistically sound evalua-

tion are included. The proteins with LDRs were found to

be functionally involved in about 26% of the considered

binding annotations, in majority of catalytic regulation

activities, and also to a smaller extent in the catalysis.

These proteins are predominantly involved in processes

related to cellular component organization, biogenesis,

and biological regulation. The proteins with LDRs were

also found to be enriched in about 24–32% of metabolic,

developmental, and cellular processes, and in 25% of

processes that implement responses to stimuli. On the

other hand, Figure 8 also gives the major processes and

functions that are less likely to utilize proteins with

LDRs. They include establishment of cellular localization,

transport of molecules, and transducer and receptor

activities.

Figure 8
Major types of molecular functions (top of the figure) and biological processes (bottom of the figure) that are significantly enriched in eukaryotic

proteins with LDRs. The specific functions/processes were aggregated to the second level in the GO ontology, which is shown on the left. Black
bars show fractions of the considered annotations in a given second-level category that were found to be significantly enriched in chains with

LDRs.
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CONCLUSIONS

We have developed an accurate and fast method, called

SLIDER, which predicts whether a given sequence has

long disordered regions. A webserver that implements

our predictor is available at http://biomine.ece.ualber-

ta.ca/SLIDER/. Empirical tests show that SLIDER offers

competitive predictive performance coupled with low

computational cost, which allows for high-throughput,

genome-scale applications. The strong predictive per-

formance stems from our design that utilizes a carefully

chosen set of custom-designed numerical features that

quantify information extracted from selected physico-

chemical properties of amino acids, sequence complexity,

and amino acid composition. Our method predicts an

average size eukaryotic proteome in well under half an

hour on a modern desktop computer and provides a 16-

fold speedup compared to the best currently available

approach.

SLIDER was used to perform large-scale investigation

of occurrence and functional roles of proteins with LDRs

in 110 eukaryotic proteomes. Our results are in agree-

ment with prior studies that analyzed the abun-

dance.3,4,34 We showed that eukaryotes have substantial

amounts of chains with LDRs, with the average of 30.3%

proteins with LDRs and majority of proteomes having

between 25 and 40%. We also demonstrated that pro-

teomes that have larger proteins are more likely to have

more proteins with LDRs. Such proteomes are character-

istic to certain parasites and fungal species. Our first-of-

its-kind large-scale analysis of the functional roles

includes both confirmatory and novel results. Similar to

studies that investigated these functional roles for yeast3

and human33 proteomes, we showed that chains with

LDRs are enriched in transcription, DNA repair, replica-

tion, and recombination, RNA metabolism, signal trans-

duction, rRNA and mRNA processing, metal ion

binding, ribosome biogenesis and nucleosome assembly.

Our analysis also reveals that proteins with LDRs are

also involved in cell differentiation and division, RNA

splicing, translation, protein dimerization, binding with

unfolded proteins, and some catalytic activities.
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