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Abstract 

Growth rate of the protein sequence universe dramatically exceeds the speed of expansion for the protein 
structure universe, generating an immense dark proteome that includes proteins with unknown structure. 
We perform a whole-proteome scale analysis of 5.4 million proteins from 987 proteomes in the three 
domains of life and viruses to systematically dissect an interplay between structural coverage, degree of 
putative intrinsic disorder, and predicted propensity for structure determination. We found that Archaean 
and Bacterial proteomes have relatively high structural coverage and low amounts of disorder, whereas 
Eukaryotic and Viral proteomes are characterized by a broad spread of structural coverage and higher 
disorder levels. Our analysis reveals that dark proteomes (i.e., proteomes containing high fractions of 
proteins with unknown structure) have significantly elevated amounts of intrinsic disorder and are 
predicted to be difficult to solve structurally. Although the majority of dark proteomes are of viral origin, 
many dark viral proteomes have at least modest crystallization propensity and only a handful of them 
are enriched in the intrinsic disorder. We mapped the disorder, structural coverage and propensity for 
structural determination onto a novel proteome-level sequence similarity network to analyze the 
interplay of these characteristics in the taxonomic landscape. 

Statement of Significance 

An interplay between structural darkness, intrinsic disorder, and crystallization propensity was 
investigated for 5,381,183 proteins from 987 complete proteomes covering all domains of life 
(Bacteria, Archaea, and Eukaryota) and viruses. We show that the bacterial proteomes are 
characterized by high structural coverage (~60%), whereas the majority of the dark proteomes (i.e., 
proteomes containing large fraction of proteins with unknown structure) are of viral and eukaryotic 
origin. Although eukaryotic dark proteomes possess low crystallization propensity combined with high 
disorder content, the majority of dark viral proteomes have moderate crystallization propensities and 
only some of them possess high intrinsic disorder predisposition. This indicates that structural 
information can be retrieved for many viral proteomes in the future. Therefore, our data provide strong 
support to the important concept that although intrinsic disorder represents an essential contributing 
factor to structural darkness, not all structurally dark proteins and proteomes are necessarily enriched 
in intrinsic disorder. Finally, mapping intrinsic disorder predisposition, currently known structural 
coverage, and propensity for structural determination onto a proteome-level sequence similarity 
network provided taxonomic landscape of the dark proteomes and showed the existence of an intricate 
relationship between the structural darkness and intrinsic disorder across the three domains of life and 
viruses. 
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Introduction 

Advances and investments in the sequencing technologies [1] and structural genomics efforts [2, 3] in the 
last several decades have resulted in large and ever growing protein universe [4, 5, 6]. The structure 
determination efforts do not scale up to the high-throughput of the sequencing, but it is believed that 
this gap can be partially bridged with the help of computational tools that provide accurate predictions 
of protein structures and functions [7, 8]. Knowledge of protein structure is fundamental to the discovery 
and characterization of protein functions (at least for proteins that conform classical structure-function 
paradigm) [9], rational drug design [10], elucidation of the side effects of drugs [11], drug repurposing and 
repositioning [12], and to the understanding of protein evolution [13], to name a few application areas. 
Given the importance of protein structure, numerous studies have focused on estimating current and 
future structural coverage of protein sequences [6, 14]. Our aim is to shed light on the other, dark side of 
the protein sequence space. 
 
Two definitions of the “dark proteome” were coined in recent years. One defines dark proteome as a 
collection of intrinsically disordered proteins and intrinsically disordered protein regions [15]. These 
proteins and regions are usually not amenable to structure determination by conventional methods, such 
as X-ray crystallography and electron microscopy, because of their highly flexible nature and they are 
also typically inaccessible to homology modelling. The other defines the dark proteome as the 
structurally unknown part of the protein sequence space; i.e., collection of sequences and sequence 
fragments for which structure is currently unknown [16, 17]. Both definitions share the focus on the 
structurally undetermined protein sequences. The latter is more comprehensive and oblivious to the root 
causes while the former narrows the dark proteome down to the intrinsically unstructured regions. 
Furthermore, the aforementioned studies of the dark proteome emphasize its importance and the fact 
that it is largely understudied. 
 
Recently, the generic structural darkness has been investigated using a set of about 0.5 million protein 
sequences [17]. This study has analyzed protein sequences that lack structural information and concluded 
that about half of amino acids in Eukaryota are dark compared to a much smaller fraction of about 14% 
in Archaea and Bacteria [17]. A particularly relevant aspect of this work is the observation that while 
intrinsically disordered residues are mostly structurally dark, most of the structurally dark residues are 
not disordered. Our aim is to analyze the interplay of structural darkness, intrinsic disorder and 
propensity for structural characterization on a much larger scale and at a lower level of granularity. We 
analyze these relations at the whole-organism level by considering 5.4 million proteins from close to 
1000 complete proteomes that cover the three domains of life and viruses. 
 
There are several related large proteome-scale analyses in the literature. They include studies of the 
abundance and functional roles of intrinsic disorder [18-23], structural coverage of protein sequences [24, 

25], and propensity for structural determination via the most frequently used experimental tool of 
structural biology, X-ray crystallography [4]. However, none of these studies provides a holistic view 
that brings these multiple interconnected aspects together. The defining aspect of our analysis is not the 
scale, but rather the comprehensive scope that, for the first time, analyzes the three interlinked structural 
characteristics together. Furthermore, we analyze these three key characteristics (structural darkness, 
intrinsic disorder predisposition, and propensity for structural characterization) in the context of the 
taxonomic relationships among the diverse set of the considered organisms. This is accomplished by 
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developing and using a novel proteome similarity network. The network associates the proteomes based 
on the proteome-level sequence similarity used as a proxy for the taxonomic relations. Our main focus 
is to annotate and systematically analyze and characterize dark proteomes, defined as the proteomes 
with the highest levels of dark proteins; i.e., proteins lacking structure. 

Materials and methods 

Proteome dataset 

Proteomes, defined as collections of proteins encoded by the genome of a specific organism, were 
collected from the UniProt resource [26]. We collected complete proteomes which are based on the fully 
sequenced genomes. We used one proteome per species, by selecting the proteome that had the largest 
number of sequences among all proteomes with the same taxonomic identifier. We removed the 
proteomes with less than 10 proteins to ensure that statistical analysis is robust. In total we considered 
987 complete proteomes that included 5,381,183 protein chains. They cover 64 Archaean species 
(152,622 proteins), 553 Bacteria (1,971,973 proteins), 201 Eukaryotic organisms (3,245,432 proteins), 
and 169 viruses (12,439 sequences). A complete list of the considered species is provided in the 
Supplementary Materials. 

Portrayal of structural characteristics 

We used computational tools to estimate the current structural coverage (the fraction of proteins for 
which structure is available), the content of intrinsic disorder (the fraction of residues that are predicted 
to be intrinsically disordered), and the projected propensity for structural coverage (the likelihood that 
a given proteome can be solved structurally) at the whole-proteome scale. The latter estimates the 
likelihood to solve protein structures using the presently dominant approach that relies on the X-ray 
crystallography. Over 90% of proteins structures in the Protein Data Bank (PDB) [27] were solved with 
this technology; i.e., 118,425 out of the 131,108 protein structures as of June 2018. 
 
We estimated the current structural coverage of proteomes based on an approach proposed in [24]. For 
each of the 5.38 million protein sequences we ran three rounds of PSI-BLAST [28] searches against the 
sequences of protein structures collected from the PDB. A given sequence is considered to be solved 
structurally if it registers a hit in PDB with the E-value <0.001 that has >50 amino acids in length. In 
other words, this method categorizes a given protein as solved structurally if it contains at least one long 
segment of residues (representing at least one domain) that is sufficiently similar to a sequence of an 
already solved protein structure. Consequently, this approach is particularly effective for annotating dark 
proteins that lack structure along their entire sequence. We defined the structural coverage of a proteome 
as the fraction of the structurally solved sequences among all sequences in this proteome. The remaining 
part of the proteome is considered as dark. This approach is sufficiently computationally efficient to 
process our large dataset with over 5 million proteins. We acknowledge that more precise alternatives 
to accurately estimate the number of proteins for which structure is available can be found. They include 
tools such as I-TASSER [29], HHpred [30], and MODELLER [31] that can better detect remote homology. 
However, it would be virtually impossible to scale these tools up to the size of our dataset. To the best 
of our knowledge, the largest such attempt is the MODBASE, which includes results for 76 species [8] 
and relies on a combination of PSI-BLAST and MODELLER. Furthermore, we did not require high 
levels of accuracy given that we aggregated and analyzed (in relative terms) the abundance of dark 
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proteins at the whole proteome scale. Furthermore, methods that rely on PSI-BLAST were shown to 
provide accurate results. For instance, a similar PSI-BLAST-based method failed to find templates 
(similar sequences that are structured) for only 3 out of 120 target proteins in CASP9 [32]. Nevertheless, 
we should keep in mind that the structural coverage computed by our approach is slightly underestimated, 
as it fails to annotate some of the remotely homologous structures. 
 
Multiple studies suggest that intrinsic disorder can be accurately predicted from protein sequences [33, 34, 

35]. Consensus approaches that combine results of multiple disorder predictors were shown to provide 
more accurate predictions when compared to single predictors [36-38]. Analysis in [37] reveals that 
consensus-based predictors more accurately predict the residue-level annotation of disorder, with 2% 
improvement in the AUC (area under ROC curve) and 4% increase in MCC (Matthews correlation 
coefficient). They also provide a more accurate estimate the overall amount of disorder in a given protein, 
reducing the error by about 4%. Recent research also shows that consensus-based predictions provide 
better detection of long disordered regions (20 or more consecutive residues) [38]. These advantages 
come at the cost of a substantial increase in the computational time, given that multiple vs. single 
prediction have to be computed. We utilized a consensus of five predictions produced by two popular 
tools, IUPred [39] and ESpritz [40]. These tools were selected based on their competitive predictive quality 
[33, 35], short runtime (for each individual predictor) and complementary designs. To the latter point, the 
five predictions were generated based on two versions of IUPred tool that were designed to predict long 
(30 or more consecutive residues) and short disordered regions, and three versions of ESpritz that focus 
on three main types of annotations of disordered residues: using DisProt database [41], crystal structures, 
and structures defined by nuclear magnetic resonance. The consensus requires that at least 3 out of 5 
predictions must indicate intrinsic disorder to predict a given residue as disordered. The same consensus 
was applied in several related studies [19, 42]. This is arguably a more accurate methodology that the one 
used in the related study of the dark proteome where a single tool for disorder predictions, IUPred, was 
utilized [17]. Our approach is also similar to the consensus-derived annotations of putative disorder in 
both MobiDB [43] and D2P2 [44] databases. The putative disorder is annotated at the amino acid level 
allowing us to quantify the amount of disorder per protein and per proteome. The disorder content of a 
proteome is defined as a fraction of residues predicted as disordered among all the residues in that 
proteome. 
 
We emphasize again that protein structures determined by X-ray crystallography account for the 
significant majority (over 90%) of the currently solved protein structures [2, 45]. Therefore, we focus here 
on prediction of the predisposition of protein sequence for crystallization as a means for the evaluation 
of its propensity for structural determination. Recent studies reveal that these predictors produce quite 
accurate propensities for crystallization [46, 47, 48]. Although a modest correlation between these predicted 
propensities for crystallization and the resolution of the crystallizable proteins was noted for several 
tools [46], prediction of the resolution is relatively inaccurate and outside the scope of this study. The 
expected propensity for structural coverage was estimated using a recently published fDETECT method 
[49]. fDETECT was selected for our analysis since this is currently the fastest tool capable of making an 
accurate prediction of the crystallization propensity [48, 49], having sufficiently short runtime to process 
the 987 proteomes. Moreover, fDETECT does not use information about disorder to make predictions 
of the propensity for structural determination, which allows us to estimate these two factors 
independently. This tool was previously used to analyze the prospective structural coverage at the multi 
proteome-scale [4]. The crystallization propensity generated by fDETECT is a real number that quantifies 
the likelihood that a diffraction-quality crystal can be produced for a given protein sequence. The 
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projected proteome-level propensity for structural coverage is quantified with the median predicted 
crystallization propensity over all proteins in a given proteome. It is noteworthy that this number does 
not quantify the actual projected structural coverage, but rather a relative propensity for structural 
determination. In other words, we can use the proteome-level crystallization propensity to assess the 
relative difficulty of gaining structural information for proteomes. 

Construction of the proteome similarity network 

We studied the relations between the three structural characteristics (i.e., structural darkness, intrinsic 
disorder predisposition, and propensity for structural characterization) in a large set of 987 proteomes. 
To facilitate this analysis, we created a proteome similarity network that links the proteomes based on 
their mutual sequence similarity. This proteome-level sequence similarity for a given pair of proteomes 
is measured as an average similarity between the most similar pairs of sequences from the two proteomes. 
The corresponding proteome similarity network was subsequently constructed to cluster the proteomes 
based on their taxonomic classification, allowing us to visualize a taxonomic landscape of the structural 
characteristics. Details concerning computation of this network are provided in the Supplement. 
 
Table 1. The overall values of the structural coverage, disorder content and crystallization propensity for X-ray crystallization 

across the domains and kingdoms/phyla of life. The domains of life are arranged according to their overall structural coverage. 

 

Domain of life 
Kingdom/phylum 
of life  

Number of 
Species 

Structural 
Coverage (%) 

Disorder 
Content (%) 

Crystallization 
Propensity 

Bacteria 

All 553 59.7 5.8 0.317 
Proteobacteria 255 61.2 5.8 0.306 
Firmicutes 76 59.8 4.6 0.360 
Actinobacteria 70 59.1 10.0 0.325 
Other 152 57.4 4.4 0.312 

Archaea 

All 64 53.8 5.8 0.372 
Euryarchaeata 43 54.6 6.9 0.366 
Crenarchaeota 17 51.7 3.0 0.392 
Other 4 53.8 5.0 0.356 

Eukaryotes 

All 201 47.7 19.6 0.136 
Fungi 84 45.6 21.5 0.140 
Metazoa 69 55.0 18.3 0.133 
Other 48 41.0 18.2 0.134 

Viruses 

All 169 31.5 9.4 0.235 
Archaeal viruses 10 10.1 6.8 0.425 
Bacterial viruses 28 18.2 9.4 0.388 
Eukaryotic viruses 131 35.9 9.7 0.188 

 

Results and discussion 

Structural characteristics at the top taxonomic classification levels 

Table 1 provides a statistical summary of the results at the top taxonomic levels. Remarkably, bacterial 
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proteins are characterized by the highest value of the current structural coverage at about 60%. Based 
on our definition of the structural coverage, this means that at least a partial structure is available for 
60% of the bacterial proteins, while the remaining 40% are dark. The highest structural coverage of 
Bacterial proteomes stems from the availability of the largest number of structures for these proteins, 
relative to their proteome sizes. More specifically, among about 219 thousand structures in the PDB that 
are assigned to the three domains of life and viruses, 120.5 thousand are in Eukaryota, 79.0 thousand in 
Bacteria, 11.8 thousand in viruses and 7.5 thousand in Archaea, respectively (source: PDB as of June 
2018). Furthermore, Bacteria have considerably smaller proteomes than the proteomes of the most 
structurally populated Eukaryota. In our dataset, the average proteome size is 16,146 proteins in 
Eukaryota compared to 3,566 for Bacteria and 2,385 for Archaea. The current structural coverage for 
Archaea is 54%, for Eukaryota is 48% and for viruses is only 32%. The smaller amount of structural 
coverage in Eukaryota when compared to Archaea and Bacteria is in agreement with the prior, smaller-
scale study that analyzed structural darkness at the protein level [17]. Our analysis reveals that viral 
proteomes are predominantly structurally dark. Interestingly, while structural coverage of the 
kingdoms/phyla generally follows the coverage at the domain level for Bacteria, Achaea, and Eukaryota, 
one exception is Metazoa that has a much higher coverage than an average eukaryotic proteome (55% 
vs. 48%). This observation has roots in the skewed distribution of protein structures among Eukaryota, 
where Metazoa is covered by 87 thousand structures (with 54 thousand structures in Homo sapiens alone) 
compared to 23 thousand in Fungi and just 10.5 thousand in all other Eukaryota combined. The current 
structural coverage in viruses spans a wide range between 10% for archaeal viruses, 18% for 
bacteriophages, and 36% for eukaryotic viruses. These differences stem from substantial differences in 
sequences, structures, and mechanisms underlying their interactions with the host organisms [50]. 
However, even the most structurally covered eukaryotic viruses substantially lag behind the structural 
coverage of proteomes in the three domains of life. This reveals that the viruses are universally biased 
to be structurally dark, irrespective of the taxonomic classification of their host organisms. 
 
Furthermore, our analysis demonstrates that Eukaryota have substantially higher levels of intrinsic 
disorder, particularly when compared to Bacteria and Archaea (Table 1). This is in agreement with 
several recent studies that have concluded that intrinsic disorder is significantly enriched in eukaryotes 
when compared to prokaryotes [18-22]. A side-by-side comparison with a prior article that has quantified 
the abundance of disorder using a different collection of organisms reveals that these estimates are 
comparable: 19.6% that we estimated in the current analysis vs. 20.5% [19] and 18.9% [18] that were 
previously estimated in Eukaryota, 5.8% vs. 8.5% and 5.7% in Bacteria, 5.8 vs. 7.4% and 3.8% in 
Archaea, and 9.4% vs. 13.2% for viruses (the other study did not consider viral proteomes). The 
enrichment in Eukaryota is partially due to the documented involvement of the intrinsically disordered 
regions in cell division, gene regulation, and cellular differentiation [18, 51]. Furthermore, combination of 
alternative splicing and disorder was suggested to enable tissue-specific modulation of protein functions 
that is necessary for cell differentiation and evolution of multicellular organisms [52]. 
 
Similar to the two structural properties, the crystallization propensities are also distinct across taxonomic 
domains (Table 1). The highest propensity is found in Archaea, followed by Bacteria, viruses, and 
Eukaryota. This is in close agreement with a recent study that estimated the crystallization propensity 
in a similarly large and diverse set of proteomes [4]. Our estimate for the overall crystallization propensity 
in Archaea is 0.37 vs. 0.39 in the earlier study, 0.32 vs. 0.33 in Bacteria, and 0.14 vs. 0.14 in Eukaryota. 
As a point of reference, crystallization propensities for the structurally solved proteins in PDB has 
median value of 0.50 with the first and third quartiles equal to 0.27 and 0.81, respectively [4]. One 
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possible explanation for the high crystallization propensity in Archaea is that many of these organisms 
are thermophiles. Proteins in thermophilic organisms are particularly stable and consequently are more 
easily purified and processed for crystallization [53]. Bacteria are the most commonly used host 
organisms for expression of recombinant proteins for structure determination efforts; i.e., E.coli is used 
as the protein expression organism for 85.4% of the structures in PDB (120,977 out of 141,702 structures 
as of June 2018). This use of bacteria as factories for production of large number of copies of the 
recombinant DNA needed for the robust production of recombinant proteins is determined by several 
factors. These include rapid multiplication of bacteria [54], easiness to grow allowing obtaining high cell 
density cultures [55], easiness to maintain and manipulate in laboratory (culture media can be made from 
readily available and inexpensive components [56]), and presence of the plasmids, which are 
extrachromosomal elements of bacteria that can be used as carriers of recombinant DNA into cells that 
can be readily isolated from bacteria [57]. The fact that bacteria are able to produce massive amounts of 
recombinant proteins, still maintaining production of their own proteins at levels suitable for normal 
survival suggests that bacterial proteins are easier to be expressed compared to proteins from other 
domains of life, providing a plausible explanation for the relatively high crystallization propensities for 
these organisms. In contrast, Eukaryotes have higher levels of intrinsic disorder, which is one of the key 
characteristics that makes structural determination of these proteins via crystallization more challenging 
[48, 58, 59]. Interestingly, the crystallization propensities for viral proteins are in step with the propensities 
of the host proteomes in their respective domains of life. The crystallization propensities for archaeal, 
bacterial, and eukaryotic viruses are 0.42, 0.39 and 0.19, respectively (Table 1). This parallels the 
crystallization propensities of archaeal, bacterial, and eukaryotic proteins (0.37, 0.32, and 0.14, 
respectively). Similar results were also observed in [4]. 
 
Supplementary Figure S2 visualizes the interplay of the three structural characteristics that are 
aggregated at the level of domains of life (see results in bold font in Table 1). Eukaryota has the richest 
content of disorder coupled with the moderate levels of current structural coverage and lowest 
crystallization propensity. Bacteria and Archaea share similarly low disorder content. However, Bacteria 
have somewhat higher current structural coverage, which is compensated with lower propensity for 
crystallization when compared to Archaea. The viral proteomes are characterized by moderate levels of 
disorder and a wide range of current structural coverage and crystallization propensity, which is 
dependent on the taxonomic classification of their hosts. Eukaryotic viruses have the highest structural 
coverage coupled with the lowest propensity for crystallization. On the other side of the spectrum, 
archaeal viruses are featured by the lowest structural coverage and the highest propensity for 
crystallization. 
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Figure 1. Relations between the current structural coverage, disorder content, and crystallization propensity for the 987 

considered proteomes. The proteomes are arranged in the ascending order based on their corresponding structural coverage. 

The solid gray and dashed black lines show a linear fit into the disorder content and crystallization propensity values, 

respectively. 

 

 

Proteome-level interplay between structural coverage, disorder content 
and crystallization propensity 

Figure 1 compares the values of structural coverage, disorder content, and propensity for crystallization 
over the set of 987 considered proteomes. Interestingly, the values of disorder content and crystallization 
propensity show relatively weak relations with the structural coverage. The corresponding Pearson 
correlation coefficients (PCCs) of these two features are -0.23 and 0.17, respectively. This is represented 
by the relatively low value of slope for the linear fit into these data shown as solid gray and dashed black 
lines in Figure 1. The negative sign of the correlation between structural coverage and disorder content 
is in agreement with the fact that the presence of the disordered regions negatively impacts many of the 
steps involved in the protein crystallization process [58, 60]. In fact, the PCC between disorder content and 
crystallization propensity is strong and equals -0.65. We test veracity of these correlations by comparing 
results based on the applied here consensus disorder predictions with the use of another popular disorder 
predictor, VSL2 [61]. We collected VSL2 predictions from the D2P2 database [44] for a subset of 631 
proteomes that are in common between this resource and our list of 987 complete proteomes. PCC over 
the 631 proteomes between the consensus and VSL2 predictions is 0.89, which suggests that these 
disorder estimates are in close agreement. This test confirms the weak relationships between disorder 
content and structural coverage (PCC = -0.35 for the consensus prediction vs. -0.36 for VSL2), and 
between crystallization propensity and structural coverage (PCC = 0.09 vs. 0.27). They also confirm 
strong negative correlation between disorder content and crystallization propensity (PCC = -0.69 for the 
consensus prediction vs. -0.76 for VSL2). The lower value of the correlation between disorder content 
and structural coverage can be explained by the underrepresentation of disorder in PDB, the public 
resource that defines current structural coverage. In other words, the high levels of current structural 
coverage are fueled by the focus on structured proteins (i.e. proteins lacking disorder) and structured 
fragments of hybrid proteins that have ordered domains and disordered regions. The latter is realized by 
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solving structures of structured domains or sequence fragments in the disorder-rich proteins, rather than 
complete protein structures.  
 
A recent study illustrated this point by comparing the amount of disorder in the full protein chains 
collected from UniProt and protein sequences for which structures are included in PDB for the same set 
of 25 thousand proteins [33]. The disorder content in the PDB chains was estimated to be 5.5%, compared 
with 11.4% in the complete UniProt sequences [33]. This clearly shows a substantial bias toward solving 
structures of less disordered regions in the disordered proteins, which in turn lowers the value of the 
correlation. In an earlier related study, it was also pointed out that the vast majority of PDB proteins are 
shorter than their corresponding UniProt sequences and/or contain numerous residues, which are not 
observed in maps of electron density [62]. For example, only ~7% of structures in PDB correspond to 
proteins with complete amino acid sequences, and only ~25% of the PDB structures represent proteins 
with >95% of their sequences [62]. Furthermore, many PDB structures were shown to contain ambiguous 
regions; i.e., regions where more than one structure of the same protein sequence "disagree" in terms of 
their structural description. This ambiguity fits the nature of intrinsically disordered regions [62, 63]. 
 
However, the left side of Figure 1 also shows a large group of proteomes that have higher disorder 
content and lower structural coverage. The low positive correlation between structural coverage and 
propensity for crystallization can be explained by the disproportional focus on the eukaryotic proteins 
that are relatively difficult to be structurally solved (as indicated by low values of crystallization 
propensity). Eukaryotic proteins account for about 55% of the structures in PDB (120.5 out of 219 
thousand structures). To compare, UniProt includes 29 million eukaryotic proteins compared to 79 
million in Bacteria, 2.5 million in Achaea and 3.5 million viral proteins. Therefore, over half of 
structures target eukaryotic proteins that constitute only 25% of the currently known proteins.  
 
 



11 
 

 
 

 
 
Figure 2. Relations between structural coverage, content of intrinsic disorder, and crystallization propensity (CP) across the proteomes within each domain of life. Panel A shows the 

Eukaryotic (colored in green) and Achaean (in blue) kingdoms/phyla. Panel B focuses on the Bacteria (in pink). Panel C shows the viruses (in red) categorized by the type of their genomes. 
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Figure 2 visualizes relationship between disorder content and structural coverage in the context of 
taxonomic classification. The disorder content and structural coverage values of proteomes in the same 
domain of life are clustered together (Figures 2A and 2B), except for viruses (Figure 2C). Nevertheless, 
we also observe distinct patterns across different domains, kingdoms, and phyla of life. The eukaryotic 
proteomes are characterized by a wide range of intrinsic disorder content (between a few and over 40%), 
and an even wider range of the current structural coverage that spans between about 10 and 80%. Figure 
2A reveals that the animal proteomes have high current structural coverage, among which the puffer fish 
(T. rubripes) had the highest value of 80%, combined with the modest content of disorder, as opposed 
to the other Eukaryota. The proteome of H. Sapiens secures the structural coverage of 55% and disorder 
content of 24%; the latter value is close to a previous estimate of 25% [22]. Eukaryotes with the lowest 
structural coverage of below 20% include single-cell flagellates (from Kinetoplastida class) and a 
malaria parasite (Plasmodium genius). Eukaryotic species with the largest disorder content are in the 
Apicomplexa phylum. In contrast, the species in Archaea possess much narrower ranges of structural 
coverage (between 40 and 70%) and intrinsic disorder content (between a few and 20%), with the 
Crenarchaeota phylum having the disorder content consistently below 5%. The highest structural 
coverage is observed for thermophilic methanogen M. fervidus. Compared to Archaea, the proteomes in 
Bacteria are characterized by a similarly narrow range of the disorder content values combined with 
much broader range of structural coverage, between 17% for the parasitic bacteria in the Mollicutes 
class to about 90% in several Proteobacteria (Figure 2B). Interestingly, viruses have by far the largest 
spread in terms of the current structural coverage and disorder content (Figure 2C). The structural 
coverage values for the viral proteomes range between 0% (i.e. entirely dark proteomes) and over 80% 
for a few single-stranded RNA viruses, including Influenza A virus that has the structural coverage of 
86%. Similarly, the disorder content values range between 2% and 36% for the viral proteomes, with 
the plant polerovirus having the largest amount of disorder content. This is in line with the conclusions 
of previous studies also reporting a wide spread of disorder predisposition across the viral proteomes [19, 

20]. 
 
A comprehensive view of the relations between the three investigated structural characteristics and the 
taxonomic classification is summarized in Figure 3. Figure 3A shows the proteome similarity network 
(PSN), where nodes represent the considered 987 proteomes and edges correspond to the sequence 
similarities between the proteomes. The nodes in the network are colored according to their taxonomic 
classification where green, blue, pink, and red correspond to Eukaryota, Archaea, Bacteria, and viruses, 
respectively. The proteomes with >40% similarity are connected with black edges, those with between 
20 and 40% similarity are colored with gray edges, while those with <20% similarity are rendered 
transparent. PSN is self-organized into multiple clusters according to the taxonomic classification, with 
various bacterial phyla localized in the lower left corner, eukaryotic kingdoms at the top, archaeal phyla 
in the middle, and viruses on the outside and in the vicinity of the domain of their host organisms. The 
constructed PSN facilitates convenient analysis of the taxonomic landscape of disorder content (Figure 
5B), crystallization propensity (Figure 3C), and structural coverage (Figure 3D). 
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Figure 3. Proteome similarity network (PSN) for the considered 987 complete proteomes (species). Nodes denote 

complete proteomes. The length of an edge represents the average similarity between the corresponding proteomes where 

edges with >40% similarity are black, between 20 and 40% similarity are gray, and <20% similarity are transparent. Panel 

A gives PSN with color-coded taxonomic annotation. Panels B, C and D show PSN with color-coded annotations of the 

disorder content, propensity for structure determination, and current structural coverage, respectively. The networks were 

generated with the NAViGaTOR software [64]. 

 
Many proteomes with high structural coverage also tend to have high propensity for crystallization and 
low amounts of disorder (red and orange nodes in Figures 3B, 3C and 3D), which suggests that further 
increase in their structural coverage should be relatively easy to attain. These proteomes primarily 
include Bacteria with the exception of the Actinobacteria phylum that has the modest amounts of 

B C D

A 
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disorder content. Eukaryotic proteomes have the moderate to high structural coverage coupled with low 
propensity for crystallization and the moderate to high levels of disorder content. Interestingly, 
Metazoan proteomes form two distinct clusters (dark green nodes in Figure 3A). While both clusters 
share similarly low propensity for crystallization, the upper cluster has comparatively higher structural 
coverage (Figure 3D) and lower disorder content (Figure 3B) when compared to the lower cluster. A 
similar observation can be made for the Fungi kingdom, which also forms two major clusters in Figure 
3A. Both clusters share low crystallization propensity, while they trade lower disorder content and 
higher structural coverage (upper cluster) for higher disorder content and lower structural coverage 
(lower cluster). This suggests that sequence similarity at the level of proteomes is associated with the 
similarity in structural coverage and disorder content. The archaeal proteomes share higher sequence 
similarity with the eukaryotic proteomes while exhibiting less similarity to the bacterial proteomes 
(Figure 3A). However, they have higher propensity for crystallization, and many of them have lower 
disorder content when compared to the eukaryotic proteomes. Overall, this analysis reveals an 
interesting interplay between the three considered structural properties, sequence similarity, and 
taxonomic classification. 

Analysis of dark proteomes 

The current structural coverage measured in this study provides high-confidence annotations of dark 
proteins that lack structural coverage along the entire sequence. We aggregated this information at the 
proteome level to comprehensively annotate dark proteomes that are largely composed of dark proteins. 
Figure 4A shows distributions of the proteome-level structural coverage across all the proteomes (gray 
bars) and specific domains of life and viruses (colored bars). We defined the dark proteomes as the 
proteomes having the lowest quintile of the structural coverage. The left-most bar plot shows the range 
of structural coverage for the dark proteomes, which spans an interval between 0 and 43%. Sliding 
horizontally along this range of the structural coverage values reveals that the dark proteomes exclude 
archaeal species while including about 4% of bacterial organisms, 35% of eukaryotic organisms and 75% 
of viral proteomes. 
 
Figure 4B compares the disorder content values of the dark proteomes and the proteomes located in the 
other four quintiles of the current structural coverage. The gray bars show statistics over all proteomes, 
while colored bars focus on specific domains of life and viruses. The bars at the top show p-values that 
quantify the statistical significance of the differences in the disorder content between the dark proteomes 
and each of the other four quintiles. Overall, disorder content is significantly lower for the proteomes in 
the top three quintiles when compared to the dark proteomes (gray bars in Figure 4B; p-values < 0.01). 
The dark archaeal proteomes are also significantly enriched in disorder compared to the remaining 
archaeal proteomes (p-values ≤ 0.05), while the differences in the disorder content for bacterial, 
eukaryotic, and viral proteomes are not significant. This means that the significant enrichment in 
disorder for the dark proteomes predominantly stems from the differences in disorder content across the 
domains of life. In other words, the dark proteomes are significantly enriched in the disorder, since they 
are primarily composed of viral and eukaryotic species. In contrast, only 10 bacterial and none of 
archaeal organisms are among the 198 dark proteomes. 
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Figure 4. Distributions of the values of the current structural coverage (panel A), content of intrinsic disorder (panel B), and 

crystallization propensity (panel C) across all considered species (gray bars) and species in Archaea (blue), Bacteria (pink), 

Eukaryote (blue) and viruses (red). The x-axes group the species into the five consecutive quintiles of the structural coverage 

distribution. Correspondingly, the ranges in the panel A are disjoint. Each distribution is depicted by a box plot that shows 

the minimum, first quartile, median, third quartile and the maximum. P-values are shown at the top of panels B and C. They 

were generated with the Wilcoxon rank sum test that is used to quantify statistical significance of the differences in the 

intrinsic disorder content (panel B) and in the crystallization propensity (panel C) between the dark proteomes (the bottom 

quintile for structural coverage defined by the gray bars in panel A) and the proteomes in the other four quintiles. 
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Figure 4C contrasts the propensity for crystallization between the dark proteomes and the remaining 
proteomes. We observe that the dark proteomes have significantly lower propensity for crystallization 
when compared to the proteomes in each of the other four quintiles of the current structural coverage 
(gray bars in Figure 4C; p-values < 0.01). The same observation also holds true for the bacterial 
proteomes (pink bars in Figure 4C; p-values < 0.01). However, the crystallization propensity is similar 
between the dark archaeal/eukaryotic proteomes and the archaeal/eukaryotic proteomes that had higher 
levels of current structural coverage (green and blue bars in Figure 4C). This trend is actually reversed 
for the viral proteomes, where the dark viruses have significantly higher propensity for crystallization 
than the remaining viruses (red bars in Figure 4C; p-values ≤ 0.02). This suggests that although the 
majority of the dark proteomes are viruses, many of viral dark proteomes should be relatively easy to 
characterize structurally using X-ray crystallography, which currently is the method of choice for 
structural determination. Furthermore, the significant drop in the crystallization propensity for the dark 
proteomes (gray bars in Figure 4C) is mostly a result of the inclusion of a large number of eukaryotic 
species (62 out of 198 dark proteomes), which generally have low propensity for crystallization. 
 
Supplementary Figure S3 provides a graphical overview of the three structural characteristics and 
taxonomic classification for the dark proteomes. A detailed discussion of this figure is included in the 
Supplement while here we summarize these observations. The figure reveals that the majority of the 
dark proteomes with the lowest current structural coverage are viruses. Virtually all dark proteomes that 
are depleted in disorder are viruses and most of these have at least moderate values of crystallization 
propensity. On the other hand, majority of dark eukaryotic proteomes are enriched in intrinsic disorder 
and have low propensity for crystallization. There are only a few dark bacterial proteomes and they have 
modest levels of both crystallization propensity and intrinsic disorder. 
 
Overall, we have shown that the dark proteomes are primarily viruses and Eukaryota. The dark 
eukaryotic proteomes have significantly elevated disorder content and low propensity for crystallization, 
while the majority of the dark viral proteomes have at least moderate crystallization propensity and only 
a handful of them are enriched in the intrinsic disorder. This large-scale analysis sheds light on the 
interplay between key structural characteristics measured at the whole-proteome scale on the taxonomic 
landscape. It improves our understanding of the relationships between structural darkness, intrinsic 
disorder predisposition, and propensity for structural characterization across the three domains of life 
and in viruses. 

Summary 

It is recognized now that a significant fraction of the protein sequence space corresponds to the dark 
proteome; i.e., a set of sequences and sequence fragments for which structure is currently unknown and 
which are inaccessible to homology modelling. In order to systematically examine an interplay between 
structural darkness, intrinsic disorder, and crystallization propensity in the light of the taxonomic 
landscape, we computationally investigated 5,381,183 proteins from 987 complete proteomes that cover 
all three domains of life (Bacteria, Archaea, and Eukaryota) and viruses. Our analysis revealed that with 
their current structural coverage of almost 60%, bacterial proteomes are rather well structurally 
characterized in comparison with the proteomes of other domains of life and viruses, whereas viral 
proteomes are the most structurally dark. In fact, none of the 198 dark proteomes (i.e., proteomes having 
the lowest quintile of the structural coverage) are of archaeal origin, whereas 4% of bacterial proteomes, 
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35% of eukaryotic proteomes, and 75% of viral proteomes are structurally dark at the moment. Our 
analysis also showed that Eukaryota have substantially higher levels of intrinsic disorder, particularly 
when compared to Bacteria and Archaea, and viruses are characterized by the broadest distribution of 
the intrinsic disorder content values. We also show that the dark proteomes are significantly enriched in 
the disorder, being primarily composed of viral and eukaryotic species. As far as crystallizability is 
concerned, the highest predisposition for structural characterization is found in Archaea, followed by 
Bacteria, viruses, and Eukaryota. Furthermore, the crystallization propensities for viral proteins are 
correlated with the crystallizabilities of the host proteomes in their respective domains of life. In fact, 
the crystallization propensities for archaeal, bacterial, and eukaryotic viruses are 0.42, 0.39 and 0.19, 
respectively, which aligns with the crystallization propensities of archaeal, bacterial, and eukaryotic 
proteins (0.37, 0.32, and 0.14, respectively). Importantly, although the majority of the dark proteomes 
belong to viruses, many of the dark viral proteomes should be relatively easy to characterize structurally 
by X-ray crystallography. We also built proteome similarity network (PSN) that illustrates a 
comprehensive view of the relations between the three investigated structural characteristics and the 
taxonomic classification. Utilization of this network for visualization of the taxonomic landscape of 
disorder content, crystallization propensity, and structural coverage revealed the existence of an 
interesting interplay between the three considered structural properties, sequence similarity, and 
taxonomic classification.  
 
In summary, we show that the significant majority of the dark proteomes are of viral and eukaryotic 
origin. In Eukaryota, the dark proteomes are characterized by high disorder content and low 
crystallization propensity. On the other hand, the majority of the dark viral proteomes have moderate 
crystallization propensities and only some of them possess high intrinsic disorder predispositions. 
Furthermore, our comprehensive, whole-proteome-scale analysis illuminates the existence of an 
intricate relationship between the structural darkness and intrinsic disorder, thereby providing a 
taxonomic landscape view of an interplay between structural darkness, intrinsic disorder predisposition, 
and propensity for structural characterization across the three domains of life. 
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The supplementary materials include three figures (S1, S2 and S3), additional details for the 
“Construction of the proteome similarity network” and “Analysis of dark proteomes” sections, and the 
complete list of the 987 considered species. The list includes information about the corresponding 
domain of life, taxonomic identifier, and taxonomic classification. 


