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Abstract 

Deciphering a complete landscape of protein-RNA interactions in the human proteome remains 
an elusive challenge. We computationally elucidate RBPs using an approach that complements 
previous efforts. We employ two modern complementary sequence-based methods that provide 
accurate predictions from the structured and the intrinsically disordered sequences, even in the 
absence of sequence similarity to the known RBPs. We generate and analyze putative RNA-
binding residues on the whole proteome scale. Using a conservative setting that ensures low, 5% 
false positive rate, we identify 1,511 putative RBPs that include 281 known RBPs and 166 RBPs 
that were previously predicted. We empirically demonstrate that these overlaps are statistically 
significant. We also validate the putative RBPs based on two major hallmarks of their RNA 
binding residues: high levels of evolutionary conservation and enrichment in charged amino 
acids. Moreover, we show that the novel RBPs are significantly under-annotated functionally 
which coincides with the fact that they were not yet found to interact with RNAs. We provide 
two examples of our novel putative RBPs for which there is recent evidence of their interactions 
with RNAs. The dataset of novel putative RBPs and RNA binding residues for the future 
hypothesis generation is provided in the supplement.  
 

 

Significance 

RNA binding proteins interact with many types of RNAs, are diverse in their subcellular 
locations, and are involved a wide range of cellular functions. The considerable diversity of the 
transcripts and RNA binding proteins contributes to claims that the corresponding protein-RNA 
networks could be larger than transcriptional networks and protein-protein interaction networks. 
Recent works suggest that the landscape of protein-RNA interactions is largely unexplored and 
that many more RNA binding proteins remain to be discovered. The discovery of a complete 
landscape of protein-RNA interactions in human also remains elusive. We use two 
complementary computational methods that specialize in the predictions from the structured and 
the disordered regions in protein sequences to elucidate novel RNA binding proteins in the whole 
human proteome. We identify and computationally validate 1,511 putative RNA binding proteins 
including 1,230 novel interactors. Moreover, we are the first to provide and analyze putative 
RNA-binding residues in these proteins. We also demonstrate that these putative novel RNA 
binding proteins are currently significantly under-annotated functionally. The dataset of the 
putative RNA binding proteins and residues for the future hypothesis generation is provided with 
this article. 

  



1 Introduction 

RNA binding proteins (RBPs) are known to interact with many types of RNAs including 
mRNAs, tRNAs, rRNAs, lncRNAs and miRNAs [1]. Studies suggest that these transcripts are 
abundant and diverse in their subcellular locations and functions [2]. Correspondingly, RBPs are 
involved a wide range of cellular functions including protein synthesis, post-transcriptional 
modifications and regulation, RNA transport, packing, stabilization and replication, and 
mediation of RNA interactions with other macromolecules [3, 4]. They have been also associated 
with genetic, neurological, neuro-muscular diseases [5]. The considerable diversity of the 
transcripts and RBPs contributes to a recent claim that the corresponding protein-RNA networks 
could be larger than transcriptional networks and protein-protein interaction networks [6]. The 
progress to experimentally identify RBPs is relatively slow and expensive, and suffers 
inaccuracies and incompleteness [6, 7]. In spite of these difficulties, hundreds of novel RBPs are 
being discovered every year [8-10]. One way to quantify this growth is to measure the number of 
non-redundant protein-RNA complexes deposited to the Protein Data Bank (PDB) [11].  Figure 1 
reveals that the number of complexes deposited to PDB has grown by close to 6 folds, from 79 
that were added between 2000 and 2001 to over 463 that were included between 2016 and 2017. 
Recent works suggest that the landscape of protein-RNA interactions is largely unexplored and 
that many more RBPs remain to be discovered [8, 12].  
 
We focus on the computational identification of a complete set of RBPs in the human proteome. 
This choice is motivated by the obvious importance of this organism and the fact that many 
human RBPs were already identified and can be used to validate the computational results. More 
specifically, about 1,500 experimentally annotated human RBPs were recently catalogued by 
Gerstberger et al. [13]. In a follow up article, RNA-binding protein domains collected from across 
different organisms using the SCOP [14] and Pfam [15] resources were mapped into the human 
proteome to estimate completeness of these current experimental data [16]. The authors managed 
to annotate 2,625 RBPs based on their high sequence similarity to the known RNA-binding 
domains. They showed that approximately 40% of these putative RBPs overlap with the 1,500 
experimentally validated RBPs the were assembled by Gerstberger et al. [13]. These 
computational results demonstrate that we are still far from knowing a complete set of human 
RBPs. Moreover, the approach taken in this study is limited to the proteins that include domains 
that share high sequence similarity with the already known RNA-binding domains in other 
organisms. Consequently, it does expand the current knowledgebase of the RNA-binding 
domains.  
 
A viable alternative to support and extend experimental and sequence-similarity based 
approaches to elucidate putative RBPs is to use computational methods [17, 18, 19-21]. A recent 
review summarizes two classes of methods that produce predictions from protein sequences and 
from protein structures [17]. These methods not only identify RBPs but many of them also predict 
RNA-binding residues and, in the case of the structure-based methods, atomic levels details of 
these interactions. In 2014, a protein structure-based predictor, SPOT-Seq [22, 23], was used to 
identify putative RBPs in the human proteome [24]. This method aligns sequences of human 
proteins to the library of structures of proteins that are in complex with RNAs. Next, the 
structures of the input proteins that are sufficiently similar are modelled and their binding affinity 
to RNA is estimated. This type of an approach is likely to result in a higher coverage than the 



annotations that rely on high sequence similarity to the known RNA binding domains. Using 
SPOT-Seq, the authors generated a list of 2,935 putative RBPs. Analysis by Ghosh and 
Sowdhamini [16] has revealed that these putative human RBPs share 6.1% proteins in common 
with the 1,500 known RBPs that were collected by Gerstberger et al. [13]. Moreover, about 80% 
of these putative RBPs lack functional annotations or are annotated with functions other than 
RNA binding [24]. The combined list of these putative RBPs and the known RBPs was shown to 
constitute about 18% of the human proteome, pointing to the incompleteness of the current list of 
human RBPs. The authors also asserted that the actual number of RBPs is likely even higher due 
to the relatively low sensitivity of SPOT-Seq, which they estimate to be at around 40% [24]. This 
stems from the fact that SPOT-Seq relies on the limited number of the known protein-RNA 
complex structures to make predictions.  
 

 
Figure 1. Number of structures of protein–RNA complexes deposited into the PDB. The data were 
collected on January 31, 2018 and includes non-redundant protein sequences that share identity < 90%. 
 
Our objective is to generate and analyze putative human RBPs using the protein sequence-based 
methods, which are complimentary to the structure-based SPOT-Seq. The sequence-based 
methods are designed to provide accurate results in the absence of sequence similarity, even 
when tested on proteins that share below 30% similarity [25, 26-28]. This will likely lead to a higher 
coverage of RBPs when compared to the current annotations based on the similarity to the 
known RNA-binding domains. The sequence-based methods can be used to generate proteome-
wide predictions as opposed to the structure-based methods that are limited to proteins for which 
either native or putative structure is available. Recent analyses shows that only up to 28% of 
human proteins have either experimental or predicted structures [29]. We note that an older 
generation of the sequence-based methods was empirically shown to cross-predict DNA and 
RNA interactions [19, 20]. This substantially reduced predictive quality of these methods that over-
predicted the DNA-binding proteins as RBPs. However, recent research resulted in the 
development of a new generation of predictors that accurately identify RNA binding protein and 
residues from the protein sequences [26-28].  
 
The defining aspects of our study is that we combine two modern sequence-based methods to 
comprehensively predict RBPs in the human proteome. The first method, DRNApred [26], 
focuses on the predictions for structured regions in protein sequences, while the other, 
DisoRDPbind [28], concentrates on the intrinsically disordered regions. This is motivated by an 
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observation that many RBPs are intrinsically disordered [3, 10, 30, 31]. The inclusion of these 
predictions complements the results from the structure-based approaches, which by definition 
could not be applied to analyze the disordered proteins. Moreover, we are the first to provide and 
analyze putative RNA-binding residues, while such analysis was not pursued [24] or possible [16] 
in the previous studies. 

2 Materials and methods 

2.1 Sequence-based predictors 

The sequence-based predictors that can be used to identify putative RBPs can be divided into 
two groups: methods that directly predict RNA binding proteins vs. methods that predict RNA 
binding residues [17, 19, 21, 32, 33]. We focus on the latter group of methods since they can be easily 
used to annotate putative RBPs (i.e., proteins that include putative RNA binding residues) and 
since the putative RNA binding residues that they generate provide additional information that 
we use to validate these predictions.  
 
We apply two modern computational methods to predict RNA binding residues in the human 
protein sequences. The first method, DRNApred [26], was designed to accurately and in high-
throughput predict RNA and DNA binding residues and to discriminate between these two types 
of interactions. DRNApred is based on a logistic regression model. This model makes 
predictions using a rich set of relevant to the identification of the nucleic acid binding properties 
of the input protein that are derived directly from the sequence. These properties include 
empirically selected set of eight physicochemical characteristics of amino acids, evolutionary 
profiles, and putative intrinsic disorder, secondary structure, and solvent accessibility.  The 
regression maps the numerically quantified properties into real-valued propensities that quantify 
likelihood for RNA binding for each amino acid in the input protein chain. The mapping was 
optimized using a large dataset of proteins annotated based on structures of protein-nucleic acid 
complexes. This dataset is also characterized by a substantially improved coverage of the nucleic 
acid binding residues when compared to the datasets used in the past [19, 26]. Given the origin of 
the dataset, DRNApred is predisposed to make predictions for the structured regions in protein 
sequences. This predictor benefits from several novel design strategies that specifically aim to 
reduce the cross-prediction of the DNA and RNA interactions. As a result, it was empirically 
shown to outperform several other representative sequence-based predictors when considering 
prediction of the RNA binding residues and RBPs [26]. Moreover, DRNApred requires on 
average only about 15 seconds to predict a single protein and about 2 months to predict the 
whole human proteome using a single modern CPU [26]. 
 
The second method, DisoRDPbind [28], is the first and only method that specifically targets 
prediction of the RNA binding residues located in the intrinsically disordered regions [34]. 
DisoRDPbind is implemented using a computationally efficient design that, similar to 
DRNApred, relies on a comprehensive set of relevant sequence-derived properties of the input 
protein. The properties include seventeen empirically selected physiochemical properties of 
amino acids, sequence complexity, putative (derived from the sequence) secondary structure and 
intrinsic disorder, and sequence alignment. The underlying logistic regression model was 
optimized using experimentally annotated disordered RNA binding regions collected from the 



DisProt resource [35], the database of manually annotated disordered regions. DisoRDPbind is 
very fast. On average, it generates prediction for a single protein in about a second and can be 
used to process the complete human proteome in approximately 2 days [28]. 
 
Importantly, both DRNApred and DisoRDPbind offer relatively good predictive performance 
(AUC = 0.67), especially considering the fact that it was tested on a benchmark set of proteins 
that share below 30% similarity with the training proteins used to optimize these model [26, 28]. 
Proteins at such low levels of similarity cannot be accurately predicted based on sequence 
similarity/alignment. Moreover, both of these methods were also shown to generate low false 
positive rates when tested on proteins that do not interact with RNA, i.e., low rates of incorrectly 
predicted RNA binding residues in these proteins. Specifically, these false positive rates of 
DRNApred and DisoRDPbind were empirically estimated to be at 5% [26]  and 1% [28], 
respectively. This suggests that these tools are unlikely to produce false RNA-binding proteins. 
The ability to accurately predict the low similarity chains together with the low false positive 
rates and computational cost have motivated application of these tools on the full proteome scale 
in this project. Moreover, selection of these tools is also driven by the fact that they were already 
embraced by the end users. The webservers for DRNApred and DisoRDPbind, which are 
publically available since July 2015 and February 2017, respectively, were already utilized by 
962 unique users coming from 60 countries and 435 cities (source: Google Analytics as of 
February 7, 2018). 

2.2 Annotation of sequence-based putative RNA binding residues and 
proteins 

The manually curated human proteome that includes 20,101 proteins was collected from Uniprot 
[36]. Putative RNA binding was annotated using the two sequence-based methods, DRNApred 
and DisoRDPbind. We use both methods to generate real-values propensities for the RNA 
binding for each residue in the input protein chains. The real-values propensities were converted 
into a binary annotation of RNA binding (RNA binding vs. non-binding residues) using a 
method-specific cutoff, i.e., residues with propensities above the cutoff were assumed to bind 
RNA. Based on the published results for these two methods that utilize benchmark datasets that 
include both RNA binding and non-RNA binding proteins, we select the cutoff value that results 
in a low false positive rate (i.e., low rate of incorrectly predicted RNA binding residues) equal 
5% [26, 28]. This is to ensure that we work with a conservative set of accurate predictions of 
protein-RNA interactions. The corresponding sensitivity values of DRNApred and DisoRDPbind 
at this low false positive rate are 18.9% and 19.5%, respectively. Given that these two methods 
specialize in the prediction of different types of RNA binding regions (structured vs. intrinsically 
disordered), the expected combined sensitivity should be at about 38%. This is similar to the 
40% sensitivity of the previously used structure-based approach SPOT-Seq [24]. We use these 
putative annotations of the RNA binding residues to generate putative RBPs. Given the 5% 
residue-level false positive rate of the two predictors, we assume that a given protein binds RNA 
if the number of putative RNA binding residues in this protein exceeds 5%. 



2.3 Annotation of native RNA binding proteins and residues 

We secured 1,556 RBPs after mapping the sequences of the native human RBPs collected from 
the recent study by Gerstberger et.al. [13] into the UniProt’s human proteomes. This 
comprehensive set of known human RBPs was established by aggregating results generated with 
a variety of experimental approaches including next generation sequencing, gel electrophoresis 
and protein mass spectrometry. The authors have also cross-checked these native RBPs via 
analysis of evolutionary conservation, tissue-specific expression levels, and interactions for 
different classes of RNA. However, the original dataset does not provide annotations of the RNA 
binding residues for these RBPs. We used the BioLiP resource, a semi-manually curated 
database of protein-ligand interactions extracted from structures of protein-ligand complexes [37], 
to annotate the binding residues. BioLiP uses all currently available and updated weekly complex 
structures, collected primarily from PDB, to generate list of residues that interact with a wide 
range of over 22 thousand ligands including RNAs. We managed to annotate 5,408 RNA binding 
residues in 124 of the 1556 native RBPs using BioLiP. The coverage is relative low since most 
of the currently known human RBPs were not yet solved structurally in complex with the RNA. 
We compare certain key characteristics of these native RNA binding residues with the putative 
RNA binding residues that were generated with the sequence-based methods.  

2.4 Characterization of hallmarks of RNA-binding residues 

A recent survey has characterized major hallmarks of the RNA, DNA and protein binding 
residues that were discussed in the literature and validated empirically [33]. It shows that the RNA 
binding residues tend to have higher than expected evolutionary conservation and are enriched in 
the positively charged amino acids (Arg and Lys). The latter is a consequence of the ionic 
interactions between the positively charged residues of the protein and the phosphate group of 
RNA [38]. We assess these two hallmarks for the native RNA binding residues and compare them 
with the corresponding values for the putative RNA binding residues.  
 
We quantify the evolutionary conservation for each residues in the considered human protein 
chains using relative entropy (RE) [39]: 

RE = ∑ ଶሺ݃݋௜݈݌
௣೔
௣೔್
ሻଶ଴

௜ୀଵ  

where i iterates over the 20 amino acid types, pi is the emission frequency of the ith amino acid 
type in the alignment profile computed based on the multiple sequence alignments generated 
with HHblits (HMM-HMM–based lightning-fast iterative sequence search) [40], and pib is the 
background frequency of the ith amino acid found in naturally occurring protein sequences We 
compute the latter using the nr dataset. We utilize HHblits since it was shown to produce more 
accurate alignments while also being faster and more sensitive when compared to other popular 
multiple alignment tools like PSI-BLAST and HMMER [40]. We have run HHblits with the 
default parameters and uniprot20 database. Moreover, the relative entropy was empirically 
demonstrated to be more sensitive to detect functional sites (such as RNA binding residues) 
when compared to entropy (which does not utilize the pib values) and several other evolutionary 
conservation measures [39].  
 



Table 1. Summary of the putative human RNA binding proteins and residues generated with the two 
sequence-based predictors. 

Method used 
Number of putative 

RNA binding 
proteins

Number of putative 
RNA binding 

residues

Total number of 
residues for the 

putative RNA 
binding proteins

DisoRDPbind 251 10,892 91,344
DRNApred 1,260 168,465 576,754

Total 1,511 179,357 668,098
 
 

 
 
Figure 2. Venn diagram of the overlap between the set of 1,556 native RBPs (nRBP), 1,511 RBPs 
predicted with the sequence-based methods (pRBPsequence) and 2,935 RBPs predicted with the 
structure-based methods (pRBPstructure). The outside box is at the scale of the size of the complete 
human proteome. The geometrical proportions of the plot were generated using eulerAPE application [41]. 
 

3 Results and discussion 

3.1 Sequence-based putative human RBPs 

We use the putative RNA binding residues generated by the two complementary methods, 
DRNApred and DisoRDPbind, to annotate the putative RBPs (see Section 2.2 for details). Table 
1 summarizes these results. In total, we found 1511 putative RBPs, with 251 and 1260 having 
disordered and structured RNA binding regions, respectively. Since the two methods target 
different types of proteins (structured vs. disordered), two sets of RBPs are disjoint. This support 
our claim that the combined sensitivity of the two predictors should be around 38%. We predict 
close to 180 thousand RNA binding residues in these 1511 proteins, for an overall per sequence 
content of RNA binding residues at 26.8%. The putative RBPs constitute about 7.5% of the 
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human proteome (20,101 proteins). The 1511 RBP are provided in the supporting file S1 in the 
Supplement. For each protein we include its UniProt accession number, annotation whether this 
is an already experimentally validated RBP (based on the list of 1556 native RBPs from 
Gerstberger et al. [13]) or a novel RBP, name of the method that was used to generate this RBP 
and annotation of the putative RNA binding residues.  
 
We analyze relation between the three sets of RBPs: 1,556 native RBPs collected from 
Gerstberger et al. [13] (nRBP), 1,511 putative RBPs generated by our sequence-based predictors 
(pRBPsequence) and 2,935 putative RBPs generated by the structure-based predictor SPOT-Seq[24] 
(pRBPstructure). Figure 2 shows Venn diagram that visualizes overlap between these RBP sets. The 
pRBPsequence set includes 281 native RBPs (gray- and teal-colored areas in Figure 2) and 1230 
novel RBPs. The latter set also includes 166 putative RBPs that were predicted with SPOT-Seq 
(pink area in Figure 2).  The amount of the overlap between the native RBPs and each of the two 
sets of the putative RBPs is similar. About 18.6% of the sequence-based putative RBPs are in 
common with the set of native RBPs, compared to 21.4% of the structure-based predictions. 
Figure 3 evaluates statistical significance of these overlap values. We compare overlap between 
the nRBP set and a set of 500 randomly selected human protein vs. the overlap between the 
nRBPs and a set of 500 randomly selected putative RBPs produced by one of the methods. We 
repeated this experiment 100 times. Figure 4 shows the corresponding averages and standard 
deviations over these repetitions. As expected, the average overlaps with the pRBPsequence and 
pRBPstructure sets equal 18.8% and 21.4%, respectively. The average overlap with a generic set of 
human proteins is much smaller and equals 7.7%. This number stems from the fact that there are 
1556 native RBPs among the 20,101 human proteins. The latter overlap is significantly smaller 
than the overlap with ether set of the putative RBPs (p-value < 0.001). This suggests that both 
sets of putative RBPs are significantly biased toward inclusion of the native RBPs. 
 

 
 
Figure 3. Comparison of overlap between the putative and native RBPs. The calculation of overlap 
was sampled 100 times, each time using the complete set of 1556 native RBPs and selecting at random 
500 human proteins (left-most bar) or 500 putative RBPs (the other two bars). The bars and error bars 
give the average overlap values and the corresponding standard deviations, respectively, computed over 
the 100 tests. Since the distributions of the overlap value are normal (based on the Anderson-Darling test 
at 0.05 significance) t-test was used to evaluate statistical significance of differences between the overlap 
of native RBPs and random human proteins and between overlap of native and putative RBPs. Results are 
shown above the bars; we include only the statistically significant differences with p-values < 0.05. 
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We further analyze 322 proteins that overlap between the sequence-based predictions and the 
structure-based predictions (gray and pink regions in Figure 2). They include 277 proteins that 
were predicted by both DRNApred and SPOT-Seq and 45 that were predicted by both 
DisoRDPbind and SPOT-Seq. The latter set covers 45 out of 251 = 18% of the putative RBPs 
generated by DisoRDPbind and includes proteins with disordered RNA-binding regions that 
likely undergo binding-induced folding [31]. 
 

 

 

Figure 4. Average content of charged residues and evolutionary conservation for the RNA binding 
residues in the native RBPs, sequence-based putative RBPs, and a generic set of human proteins. 
Panel A compares the fraction of charged residues (Arg and Lys) while panel B focuses on the 
evolutionary conservation. We consider native RBPs, sequence-based putative RBPs and novel sequence-
based putative RBPs, which are annotated with the native RNA binding residues and sequence-based 
putative RNA binding residues. We also compute a baseline results that is based on a random set of 
residues selected from a randomly drawn set of human proteins such that the number of protein and 
residues equals to the number of native RBPs and native RNA binding residues, respectively. The plots 
show the 10th centile (bottom whisker), first quartile (bottom of box), median (horizontal line inside the 
box), third quartile (top of the box), and 90th centile (top whisker) of the per protein fraction of charged 
residues and average conservation. Mean values are shown using dotted horizontal lines. To ensure 
robustness of the statistical analysis we randomly choose the same number of proteins for each analysis, 
which is equal to the smallest set of the sequence-based putative RBPs that have native RNA binding 
residues. Since these distributions are normal (based on the Anderson-Darling test at 0.05 significance), t-
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test was used to evaluate statistical significance of differences between distributions of the charge content 
and conservation for every pair of the six protein sets. Results are shown above the bars; we include only 
the statistically significant differences with p-values < 0.05. 
 

3.2 Validation of the sequence-based putative human RBPs based on the 
annotations of RNA binding residues 

We validate the annotations of the putative RBPs based on the annotations of the RNA binding 
residues. We compare the values of the two main hallmarks of RNA binding residues between 
the native RNA binding residues and the putative RNA binding residues. The latter were used to 
annotate the putative RBPs. The hallmarks include the enrichment in charged amino acids (Arg 
and Lys) and high levels of evolutionary conservation.  
 
Figure 4A summarizes the results of analysis of the content of charged amino acids, defined as 
the fraction of the charged amino acids among all considered (either putative or native) RNA 
binding amino acids. We compute the content values for the native RNA binding residues that 
are annotated in the native RBPs as well as in the sequence-based putative RBPs. We compare 
these values to the content of the sequence-based putative RNA binding residues predicted in the 
native RBPs, putative RBPs, and novel putative RBPs. As a baseline, we compute the content of 
the charged residues among randomly selected residues. More precisely, we select at random the 
same number of proteins and residues as the number of the native RNA binding residues in the 
native RBPs to calculate the baseline content. The mean content of the charged residues for a 
generic (randomly selected) residues is 0.122. This in agreement with the overall abundance of 
Arg and Lys. A recent study list the Arg and Lys content in the eukaryotic proteomes at 0.057 
and 0.056, respectively [42]. As expected, Figure 4A reveals that the content of charged residues 
among the native RNA binding residues in the native RBPs and in the sequence-based putative 
RBPs is significantly higher and equals 0.278 and 0.303, respectively (p-value < 0.001). More 
importantly, the content for the sequence-based putative RNA binding residues is also similarly 
high and equals 0.280 for the native RBPs, 0.237 for all sequence-based putative RBPs, and 
0.254 for the 1230 novel sequence-based putative RBPs. These content values are significantly 
higher than the baseline content (p-value < 0.001). This means that the putative RNA binding 
residues, which we use to annotate putative RBPs, share the same levels of enrichment in 
charged residues as the native RNA binding residues.  
 
Figure 4B focuses on the analysis of the evolutionary conservation. Similar to the analysis of the 
charged residues, we compare the average value of conservation for the native and putative RNA 
binding residues, and random/generic residues, which are computed per protein. The average 
conservation for the randomly chosen (baseline) residues equals 0.155. Consistent with other 
studies [33], we show that the average conservation among the native RNA binding residues in the 
native RBPs and in the sequence-based putative RBPs is significantly higher than the baseline. It 
equals 0.193 (p-value = 0.007) and 0.185 (p-value = 0.021), respectively. Similarly, the 
conservation of the sequence-based putative RNA binding residues is also significantly higher. 
Figure 4B show that this is true for the native RBPs (average conservation = 0.196, p-value = 
0.007), for all sequence-based putative RBPs (average conservation = 0.213, p-value < 0.001) 
and for the novel putative RBPs (average conservation = 0.229, p-value < 0.001).  
 



The significantly higher content of the charged residues and evolutionary conservation among 
the putative RNA binding residues, which are on par with the values of these hallmarks for the 
native RNA binding residues, suggest that the putative residue-level annotations are likely to be 
correct. This in turn validates the release of the putative RBPs that were annotated based on these 
putative binding residues. 
 

 
 
Figure 5. Comparison of the counts of functional annotations between the native RBPs, putative 
RBPs, and a generic set of human proteins. Panel A compares the number of molecular functions 
annotated using GO computed per protein. Panel B contrasts the number of pathways extracted with 
Reactome calculated per protein. The plots show the 10th centile (bottom whisker), first quartile (bottom 
of box), median (horizontal line inside the box), third quartile (top of the box), and 90th centile (top 
whisker). Mean values are shown using dotted horizontal lines. Since the distributions of the counts are 
not normal (based on the Anderson-Darling test at 0.05 significance), Wilcoxon rank sum test was used to 
evaluate statistical significance of differences between distributions of counts for every pair of the four 
protein sets. Results are shown above the bars; we include only the statistically significant differences 
with p-values < 0.05. 

3.3 Novel sequence-based putative RBPs are functionally under-
annotated 

We hypothesize that the reason why the sequence-based putative RBPs were not yet annotated is 
that these proteins are in general under-annotated functionally. To study that, we compare the 
per-protein rates of functional annotations in the native RBPs, all putative RBPs, novel putative 
RBPs and a generic (randomly chosen) set of human proteins. Figure 5 presents the results when 
considering two types of functional annotations: GO molecular function terms [43] collected from 
Uniprot [36] (Figure 5A), and pathways that were obtained from the Reactome resource [44] 
(Figure 5B). We count the number of these functional annotations per protein and the figure 
summarizes distributions of these counts for the four protein sets, including the mean and median 
values.   
 
Figure 5 reveals that the native RBPs have on average 3.2 GO molecular functions and are 
assigned to 2.7 pathways. Moreover, only 4.9% of these proteins lack molecular function terms 
and 43.5% are not associated with pathways. The other three protein sets are characterized by 
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lower functional annotation counts. Compared to the native RBPs, the sequence-based putative 
RBPs have significantly less GO molecular functions (average = 2.2, p-value < 0.001) and 
pathways (average = 2.3, p-value < 0.001). Moreover, a much larger fraction of 26.7% and 
54.7% of these proteins do not have any GO molecular function terms and pathway terms, 
respectively. Similar trend is observed when comparing the 1230 novel putative RBPs with the 
native RBPs. They also have significantly fewer GO terms (average = 1.96, p-value < 0.001) and 
associated pathways (average = 2.0, p-value < 0.001) and much more of them have no 
annotations (32.1% and 58.3%, respectively). Interestingly, the generic set of human proteins is 
also relatively sparsely annotated. These proteins have significantly fewer GO molecular 
function terms when compared to the native RBPs (average = 2.25, p-value < 0.001). However, 
they actually have significantly more of these terms than the novel putative RBPs (p-value < 
0.001). Also, fewer human protein have no GO terms compared to the novel putative RBPs 
(24.1% vs. 32.1%). These observation are also consistent when considering the pathway 
annotations. The human proteins are associated with significantly fewer pathways compared to 
the native RBPs (average = 1.7, p-value < 0.001) but also fewer of them lack pathway 
annotations when compared to the novel putative RBPs (50.5% vs. 58.3%). Moreover, the novel 
putative RBPs have significantly fewer GO terms (p-value < 0.001) and pathways (p-value = 
0.025) when compared to the set of all putative RBPs that were generated by our sequence-based 
predictors and which include some of the native RBPs.  
 
Overall, these results demonstrate that the sequence-based putative novel RBPs are significantly 
under-annotated when compared to native RBPs. We believe that this is linked to the fact that 
they are yet to be recognized as interacting with RNAs. The novel RBPs also have significantly 
fewer molecular function terms when contrasted against generic human proteins. That suggest 
that the completeness of their functional annotations is below the expected levels. 

3.4 Sequence-based predictions of RBPs have low false positive rate 

We also estimate false positive rates of the sequence-based predictions with DRNApred and 
DisoRDPbind. We evaluate the rate of putative RBPs generated by these tools on a set of human 
proteins that are unlikely to interact with RNA. Inspired by a procedure by Zhou et al. [22], we 
generate this dataset in three steps. In the first step we cluster the human proteome with 
BLASTCLUST at 25% similarity and remove all clusters that include any of the 1556 native 
RBPs that we collected from Gerstberger et al. [13]. Next, among the resulting 13,101 clusters we 
remove proteins that have functional annotations that may suggest interactions with RNA and 
those that are lacking functional annotations. More specifically, we remove proteins with the 
UniProt names and GO terms that include RNA, ribosome, ribosomal keywords, as well as 
proteins that do not have molecular function and biological process GO terms in UniProt. In the 
third step, we uniformly sample the remaining 10,484 proteins based on their sequence similarity 
to avoid biasing the results to certain protein families. We cluster with BLASTCLUST at 25% 
similarity and select one protein from each of the resulting 7332 clusters. The 7332 non-RNA 
binding human proteins together with a list of false positive predictions from the DisoRDPbind, 
DRNApred and SPOT-Seq that overlap with these proteins are included in the supporting file S2 
in the Supplement. DisoRDPbind and DRNApred predict 48 and 372 RBPs in this dataset. This 
corresponds to 48/7332 = 0.6% and 5.1% false positive rates, respectively, and is in good 
agreement with their previously estimated false positive rates of 1% and 5%[26, 28]. To compare, 



the structure-based SPOT-seq identifies 714 RBPs among the 7332 non-RNA binding human 
proteins, which corresponds to also a relatively low 9.7% false positive rate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Structures of the two case study proteins. Panel A shows structure of the Aurora kinase A-
interacting protein (AURKAIP1; UniPRot accession number: Q9NWT8; PDB identifier: 3J9M chain A3). 
Structure of this protein, which covers positions 128 to 196, is shown as a part of the small subunit of the 
human mitochondrial ribosome; the surface of the lower part of large subunit is visible at the top of this 
panel. Gray and red structures denote proteins and RNAs, respectively. Panel B shows structure of the 
high mobility group protein B3 (HMGB3; UniPRot accession number: O15347; PDB identifiers: 2EQZ 
(top structure) and 2YQI (bottom structure)). The structures of the tw proteins are shown with green and 
black ribbons where black denotes putative RNA binding residues predicted by DisoRDPbind (Q9NWT8) 
and DRNApred (O15347). The structures were visualized using Protein Workshop [45]. 

3.5 Case studies 

We further investigate two putative novel RBPs to explain and validate these predictions. We 
selected based on three criteria. First, they must have at least a partial structure in PDB, so we 
can visualize the putative RNA binding residues. Second, one protein should be predicted with 
DisoRDPbind and the other with DRNApred. Third, they should target different types of RNA. 
 
Aurora kinase A-interacting protein [46] (AURKAIP1; UniProt accession number: Q9NWT8; 
PDB identifier: 3J9M chain A3) has 199 amino acids and is annotated in UniProt as 
ribonucleoprotein. AURKAIP1 is a component of mitochondrial small ribosomal subunit, a large 
protein-RNA complex that includes 12S ribosomal RNA and 30 proteins [47]. Figure 6A shows 
the structure of the small subunit where the protein of interest is visualized using green and black 
color; the black denotes RNA binding residues that were predicted with DisoRDPbind. This 
protein has elongated conformation and thus is likely to be disordered outside of the complex, 
which is why it was predicted by DisoRDPbind. The structure of AURKAIP1 covers the C-
terminus of this protein (positions 128 to 196). Figure 6A reveals that the entire C-terminus 
interacts with RNA, including the part that was correctly predicted by DisoRDPbind. This 

disordered region 
(Pro80-Pro90) 

A          B 



protein was identified as a part of a mammalian mitochondrial ribosome in 2013 [46] and more 
recently this finding was confirmed when structures of the small subunit [48] and the entire 
mitochondrial ribosome [47] were released. These studies have occurred after the set of the native 
RBPs was developed, which is why AURKAIP1 was not included. However, our sequence-
based prediction was able to correctly identify this protein as RBP. 
 
High mobility group protein B3 (HMGB3; UniPRot accession number: O15347; PDB 
identifiers: 2EQZ and 2YQI) has 200 amino acids. This multifunctional protein associates with 
chromatin, regulates B-cell and myeloid cell differentiation, and was suggested (via sequence 
similarity) to act as a cytoplasmic immunogenic DNA/RNA sensor. It includes two HMG-box 
domains, first spanning positions 1 to 79 (PDI identifier: 2EQZ) and the second between 
positions 91 and 164 (PDI identifier: 2YQI) [49]. The short Pro80 to Pro90 region between these 
two domains is intrinsically disordered based on the results produced using the MobiDB resource 
[50]. Figure 6B shows the two domains and the annotation of the putative RNA binding residues 
generated with DRNApred. We computed solvent accessibility for the putative RNA binding 
residues using the DSSP software [51]. Six out of the seven putative RNA binding residues that 
are located in these two structures (Met8 and Lys17 in 2EQZ; Asn98, Lys101, Arg102 and 
Phe107 in 2YQI) are solvent exposed (relative solvent accessibility > 25%) and thus they would 
be accessible to interact with RNA. Our putative annotation of HMGB3 as RBP is in agreement 
with a recent study that has shown that mouse HMGB3 interacts with both RNAs and DNA in 
vitro [52]. Another more recent experiment that aimed at finding RBPs that are involved in the 
innate immune response further confirms that HMGB3 indeed interacts with RNA [53]. 
 

 
Figure 7. Content of charged residues and evolutionary conservation. We compare these two 
hallmarks for the putative RNA binding residues in the AURKAIP1 and HMGB3 proteins against the per 
protein averages for the randomly selected residues in a generic set of human proteins, native RNA 
binding residues in the native RBPs, and sequence-based putative RBPs in the novel putative RBPs. Dark 
gray bars and the y-axis on the right compare the fraction of charged residues (Arg and Lys) while light 
gray bars and the y-axis on the left correspond to the evolutionary conservation. The results for the first 
three sets of bars include the median (bar) and the first and third quartiles (error bars) over the per-protein 
values in a given protein sets, while the last two sets of bars are for a single protein. 
 
Figure 7 compares the average evolutionary conservation and fraction of charged residues 
computed for the putative RNA binding residues in the AURKAIP1 and HMGB3 proteins versus 
the corresponding per protein averages for the generic (randomly chosen) set of human residues, 
native RNA binding residues, and sequence-based putative RNA binding residues in the novel 
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RBPs. The putative RNA binding residues in the two proteins have much higher conservation 
levels and are enriched in the charged residues when compared to the generic set of residues. 
Moreover, these two hallmarks for the putative RNA binding residues for AURKAIP1 and 
HMGB3 are on par with the native RNA binding residues and the sequence-based putative RNA 
binding residues. These observation further confirm that these two proteins indeed interact with 
RNAs and that these hallmarks are indicative of the protein-RNA interactions. Altogether, we 
conclude that our sequence-based approach has correctly identified the two putative novel RBPs. 

4 Concluding remarks 

Recent years have seen a strong push to identify RBPs in the human proteome. This problem was 
addressed with the help of experimental [13] and computational [16, 24] methods. However, we are 
still a long way from deciphering the complete landscape of protein-RNA interactions in human. 
This work complements the previous efforts by exploring a different class of computational 
methods. We employ methods that predict propensity of protein sequences to interact with 
RNAs, in contrast to the previously utilized computational methods that generated the putative 
RNA-binding proteins from the protein structures. We use two complementary sequence-based 
methods that specialize in the predictions from the structured and the disordered regions in 
protein sequences. These recently released sequence-based methods were shown to give accurate 
results even in the absence of sequence similarity to the known RNA-binding proteins [26, 28], 
allowing us to comprehensively scan the whole human proteome. Moreover, we are the first to 
provide and analyze putative RNA-binding residues. 
 
We identified 1,511 putative RBPs including 281 proteins that are already known to interact with 
RNA and 1230 novel RBPs. These novel RBPs include 166 proteins that were previously 
predicted with the structure-based approach [24]. We show that the overlap between our 
predictions and the other native and putative RBPS is statistically significant. We also validate 
the putative RBPs based on the annotations of the putative RNA binding residues that we use to 
annotate the putative RBPs. We show that the values of the two main hallmarks of the RNA 
binding residues, high levels of evolutionary conservation and enrichment in charged amino 
acids, are similar between the known native RNA binding residues and the putative RNA 
binding residues. Moreover, these values of the two hallmarks are significantly higher than 
expected, which we assessed by comparing them against conservation and content of charged 
residues in generic human proteins. Finally, we empirically show that the computational tools 
that we use are characterized by low false positive rates in human proteins. These observations 
provide support for the release of the putative RBPs that we generated. 
 
We also attempt to explain why these putative RBPs were not yet identified. Our empirical 
evaluation of the current functional annotations of these proteins has revealed that they are 
significantly under-annotated when compared to the native RBPs and typical human proteins. 
The lower than expected completeness of the functional annotations for the putative RBPs 
suggests that they were so far under-studied, which coincides with the fact that they were not yet 
found to interact with RNAs. We also provide examples of two putative RBPs for which we 
found recent evidence that demonstrates that they in fact interact with RNAs. 
 



Our study is parallel to a number of other projects that aim at a comprehensive, genome wide 
identification of the DNA binding proteins. This projects similarly utilize a mixture of 
experimental and computational methods [54]. An interesting intersection of these efforts are the 
proteins that bind both RNA and DNA. Recent article suggests that as many as 2% of the human 
proteins may in fact interact with both nucleic acids [55]. Thus, besides providing a high quality 
set of putative novel RBPs, our analysis will also contribute to the identification of these 
functionally important proteins.  
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Supporting Information 

The supporting file S1.doc includes the set of 1511 putative RBPs along with the predicted RNA 
binding residues. For each protein we provide UniProt accession number, annotation whether 
this is an already experimentally validated RBP (Native) or a novel prediction (Novel), name of 
the predictor used to identify this protein, and protein sequence with annotated putative RNA 
binding residues. 
 
The supporting file S2.doc includes the set of 7332 non-RNA binding human proteins that are 
used to estimate false positive rates. It also provides a list of false positive predictions from the 
DisoRDPbind, DRNApred and SPOT-Seq that overlap with these proteins. We provide UniProt 
accession number and sequence for all proteins. 


